eCos User Guide

eCos User Guide
Copyright © 2001, 2002, 2003, 2004, 2009 Free Software Foundation, Inc.

Documentation licensing terms

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpuby/).
Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright

holder.

Trademarks

Altera® and Excalibur™ are trademarks of Altera Corporation.

AMD® is a registered trademark of Advanced Micro Devices, Inc.

ARM®, StrongARM®, Thumb®, ARM7™, ARMO9™ is a registered trademark of Advanced RISC Machines, Ltd.
Cirrus Logic® and Maverick™ are registered trademarks of Cirrus Logic, Inc.

Cogent™ is a trademark of Cogent Computer Systems, Inc.

Compaq® is a registered trademark of the Compaq Computer Corporation.

Fujitsu® is a registered trademark of Fujitsu Limited.

IBM®, and PowerPC™ are trademarks of International Business Machines Corporation.

IDT® is a registered trademark of Integrated Device Technology Inc.

Intel®, i386™, Pentium®, StrataFlash® and XScale™ are trademarks of Intel Corporation.

Intrinsyc® and Cerf™ are trademarks of Intrinsyc Software, Inc.

Linux® is a registered trademark of Linus Torvalds.

Matsushita™ and Panasonic® are trademarks of the Matsushita Electric Industrial Corporation.

Microsoft®, Windows®, Windows NT® and Windows XP® are registered trademarks of Microsoft Corporation, Inc.
MIPS®, MIPS32™ MIPS64™, 4K™, S5K™ Atlas™ and Malta™ are trademarks of MIPS Technologies, Inc.
Motorola®, ColdFire® is a trademark of Motorola, Inc.

NEC® V800™, V850™, V850/SA1™, V850/SB1™, VR4300™, and VRC4375™ are trademarks of NEC Corporation.
PMC-Sierra® RM7000™ and Ocelot™ are trademarks of PMC-Sierra Incorporated.

Red Hat, eCos™, RedBoot™, GNUPro®, and Insight™ are trademarks of Red Hat, Inc.

Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.

Sharp® is a registered trademark of Sharp Electronics Corp.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.
Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SuperH™ and Renesas™ are trademarks owned by Renesas Technology Corp.

Texas Instruments®, OMAP™ and Innovator™ are trademarks of Texas Instruments Incorporated.

Toshiba® is a registered trademark of the Toshiba Corporation.

UNIX® is a registered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

Table of Contents

I. Introduction xiii
L K@Y FRALUIES ...ttt ettt sttt s b et b et s b ettt s bt et e bt e st e sbe e bt e besbeensenbeeenenee 1
2. ©C0OS OVEIVIEW ..eueriiiiiiieitenteeitet ettt ettt sbe et e sa e et et e bt ea e eb e ebt e bt sbe e te s bt eb b et e eb e et e ebeemtesbesbeenbenbeentenbesueenees 3
3. €C0S LICENCE OVEIVIEW ..couviiiriiiiiiieiientieitetieteete st eitent sttt e st eatesaesbtetesbeee b et e ebeenaesbeemtesbesbeenbesbeensensesneennes 5

QUESHIONS ANA ANSWETS ..eecuvvieeuiieeirieeeieeeeteeeireeestreeessseeetseessseessseesssesasssesesssasassseasssesssseesssseesssseesssees 5
PrevIOUS LICENSEuiviiuiiiiiietiit ettt sttt sttt et et b e sttt e sae et e et sae et e beean e 6
4. Notation and CONVENTIONScc.ceouireeriererientenietenteeitenteettestesteesesteeteestesueestessesasetesteessesseeseessesseensensessnenne 7
GDB and GCC Command NOLAIONcccuevuerieriireeriinieieneetenteeteete sttt sttt saeeeeesae e esnesbeeanenee 7
Directory and File System CONVENTIONScc.eeruiirreiriieniieriieeieesttesteeieeieesitesseeseesbeesssessseesseesssessesnses 7
VErsion CONVENTIONSccueruietiriieieniertetenteeetettettete st etesue et et e steeseesaeeseessesaeensesbeeasenaeeseensesueensenseeanenne 7
5. Documentation ROAAMADc.eiiuiiiiiiiiiiiiie ettt ettt st sttt e st st e sbeesaeesateenbeesaeesaneens 9

IL. Installing eCos 1
6. SyStem REQUITEIMENLS.....c..couiiiiiiiiieieieee ettt ettt et st e e ae st e st e e enesae 13
7. Installation ON LANUX ...coc.eiiiiiiiiiieiieeeeeet ettt sttt et ettt st e s bt s bt st e bt e sbtesateebeesbeesaees 15
8. InsStallation 0N WINAOWS......co.uiiiiiiiiiiiiiiieetete ettt ettt st e sb e s bt e st e bt e sbeesateeabeenaeens 17
9. TALZEE SETUP......eeuiiiieiieieeieete ettt ettt et st e h et e e et e e s ae e s e s bt e ae e s e eaeesaesae e s e saeeanesteeneeaesaee 19

Connecting Via Serial LINeoccooiiiiiiiiiiii e e 19
Connecting Via EtREINEL........co.oouiviiiiiiiiinereiceetetrest ettt sttt 19
USING A SIMUIALOT TATZEL....cveveiieiieiiitiniertertetceet ettt sttt et eb s sbe et s sn s enee 19
USING A SYNRETC TATEL ...ouvieieiiiieieeie ettt ettt st ettt et se et esbe st esbesbe et e beeneeeeeaes 20

III. Programming With eCos 21

10. Programming With @C0Scoutiiiriiieieicetet ettt ettt st et bt st e b s bt ettt et e naesaeenaesbeas 23
The DevelOPMENt PIOCESSccoiiuieiiniiiieniieiteiert ettt ettt ettt sttt st b et e bt e e 23

€C0S CONTIGUIALION ...ttt sttt ettt ettt ettt et b ettt e bt et sbe et s bt et e teebeeeesaee 23

Integrity check of the eCos CONfIGUIAtiONccuevuieiiriiiiiniiieeneeeee e e 23
Application Development - Target Neutral Partccccoceviriiiiniiiininiiniieenecicceceee 23
Application Development - Target SPecific Part.........ccccevevieriienieniiiiieenienie e 24

11. Configuring and Building €CoS fTOM SOUICE.......cceeriiirieriiiiierieeie ettt ettt ve e sieeseteeaeeeee s 25
€C0S Start-up CONTIGUIALIONS ...eevieruieriiiiiieitenteeieereerite st eteesteesaeebeeteesbeesbesseesbeesasesaseenseesssesnsesnse 25
Configuration Tool on Windows and Linux QUIick Start..........cccceeeueeviierienieniieiieeniesieeieesiee e eieenne 26
Ecosconfig on Windows and Linux QUICK STart........ccccecuiiriierieniiniieenienie ettt 30
SEIECHING @ TATEEL...eeeueieiieiteeie ettt ettt ettt et ettt et et e sat e sabe e beesbeesabeesbeebeesasesnbeensaens 31

12. RUNNING AN €C0S TS CASE.....eiuvieiieriieiiieiieeteett ettt ettt ste st et e st e st e sabe e s bt esatesabeesbeesatesateenbeessaenanes 33
Using the Configuration TOOLcccoiiiiiiiiiiniiiieeete ettt sttt e sbe e st st e beesabesaseenee 33
Using the cOMMANA HNEcooiiiiiiiiiiiiiieeteste ettt ettt sbe e st et e sbe e st e sabe e beesabesaneenne 34
TESTNZ FAILETS ..ottt ettt st st et e e s bt e s bt e bt e s bt e sabeenbeenbeesateenseenbeens 36

13. Building and Running Sample APpLICAtiONS........cc.evirciiriiriieriinieieniieiete ettt s 37
€C0S HEILO WOTIA ...ttt ettt e e s be e st e st e be e st e sateeane 37

€Cos hello world program HSHNG.c.coeevieriiiieiiinieeeeee et 37

A Sample Program with Two Threadscccoiiiiiiiiiiiiiiiiee e 38

eCos two-threaded program LIStINGccooiiiiiiiiiiiiiieeeee e 38

14. More Features — Clocks and Alarm Handlerscoceoeiiiiniiniiiiiiiiceetceeseeteeee e 41
A Sample Program with AQITS......c.cooiiiiiiiiiiiiiieee ettt et st 41

iii

v

IV. The eCos Configuration Tool 45

15, GEUNZ STATTEA .euvteeiiieiieiiteete ettt ettt ettt sat e et e bt e st e s it e et e e bt e sabesabeesbeesabesabeebeesatesateenbeensaenanes 47
INErOAUCTION ...ttt s 47
Invoking the eCos Configuration TOOL........ccceviiiiiiiiiiiiiiieeee ettt st 47

ON LINUX 1.ttt s 47

ON WINAOWS.....ooiiiiiiiiiieiet ettt ettt sttt et ae st ne s bt e n et eneenesaeennennees 47

The Component REPOSILOTYcc.eeuiiiiriiiieiieieiereeete ettt 48
eCos Configuration TOOl DOCUMENLScc.eoieiiiiiiiiiiiiieierccieteeete et s 49
Configuration Save FIIEcociiiiiiiii e e 49

Save the currently active dOCUMENLT.........cc.coiiiiiriiiiiiiiiiiiei e 49

Open an existing dOCUMENTcc..eeiteiriirierieeiteete ettt et et e e e bt e st eareesbeesateseeeane 50

Open a document you have used reCentlycocceeveeriiriierieeniinieneeneeeeee e 50

Create a new blank document based on the Component Registryccccoeeeieneeieenncnne. 51

Save to a different file NAMEcccveiuiiieiiiiieeeee e e 51

Build and INStall TIEEScccuetieiieiieiieieete ettt ettt et st s b et e e e 51

160, GLUNZ HEIP ..ottt ettt b e bt a et e b et s bt e st e b e eb e e st e ebeeatenaesaeenaenbeas 53
Context-sensitive Help fOr DIalogscooueiuiiieiiiiiieiieieeet ettt s 53
Context-sensitive Help for Other WIndOWS.........coeeioririiniiiiieiee ettt 53
Context-sensitive Help for Configuration TemS.........coerieririiieniinieriireeiesieeteesieeesie et 53
Methods of Displaying HTIML Helpcocueiiiiiniiiiiiiieseeteneeteeeteeseete ettt 53

17, CUSTOMUZALION ...ttt ettt sttt sttt b e bt et e a st b st e st eb e e b saeae e ae st euesaesnene 55
WINAOW PLACEMENLoiiiiiiiiiiiiiiiiiece ettt s 55
SELLITIZS +eeuvveeereeteeriteeteeteesteesttesteebeesteesuteesbeeseesstesasaessaensaesssaenseensaesssesssesnsaesssenssesnseensaenssesnseenseenssensses 55

Settings: DISPIAY TAD c..eiiiiiiieeieeieerteete ettt ettt e st st e e e e it e st ebe e beesabeenbeebaens 55
LADEIS ..o e s 55
IO ZET TEEIMS ceutieiieeiieeieectte ettt ettt st s e et e s bt e st e e be e bt e sabesnbeenbaesanesnseenne 56
FOME. e e 56
MISCEIANEOUS ...ttt 56
SELNES: VIEWETS LD ...ceiutieiieeiieiiieriteeite ettt st ettt s ettt e bt e saa e sabe e st e saeesabeebaenseesaseenseensaens 56
View header fIles ... 57
View dOCUMENTALION........cuiiiiiiiiiiiiiiitiieiie et s 57

18, SCIEEM LLAYOUL ..ttt ettt et e b e st e et e bt e bt e sab e sabe e bt e s st e sabeesbeesatesabeenbeesaesanes 59

ConfIGUIAtion WINAOWcocuiiiiiiiiiiiieiie ittt sttt sttt et esbe e s be e bt e sbeesabesabeenbeesabesaseenne 59
DiSADIEA TEEIMIS.....cuieeeiiiriieieiceii ettt ettt et st st 60
RIGHE-CHCKINGontiiieieieeee ettt st e 60
CONTIICES WINAOW ...ttt ettt sttt st e bt e satesate e be e bt esaees 60
OULPUE WINAOW .ottt e st e 61
Properties WINAOWc...coiiiiiiiiiiiieeieeeeee ettt ettt ettt et 61
Short Description WINAOWcocueiiiiriiriiiiniiinieeeee ettt sttt 62

19. Updating the CONfIGUIALIONc.cotriririeieieiiitrteetetee ettt sttt sttt be s b s ee et sae e enene 63
Adding and Removing PaCKagescceeiiriiieiiiieieicee ettt sttt 63
PLAtfOrm SELECTION ...ttt ettt ettt sttt b et sb e et esbesat e besbeentesbeeneeneeeaee 64
USING TEMIPLALES ...ttt ettt sttt et e b e bt et e st e et e s besse e besbeentenbeeneeneesaes 65

RESOIVING CONFIICES ...ttt ettt ettt st b et e e e 65
AULOMALIC TESOIULION ...ttt ettt ettt b et e st ebt et sat et e bt e st ebeeeesaee 66

20 SEATCHINEZ ...ttt ettt et b e e bt et b e s et e bt e st e s bt et e s bt ea e e bt e bt et sbe et e e bt ebt et eae et naes 69

21 BUILAINE .ttt ettt b ettt e b et bt et b e a e bt bttt bbb e bt e b eaee e sas 71
Selecting BUild TOOIS.cc.eitiriiriieieriietieet ettt sttt ettt st s b et bee e saeenae b 71

SeleCting USET TOOLSeeviiiiiriiieiieieeite ettt sttt ettt ettt e st st e e bt e sbeesabeesseesbeesabesabeenbeesasesnseente 72

22, EXECULION.cuviniiiiiiiiitiitc ittt st bbb sa et 73
PLOPEITIES ...ttt ettt et e bt e s et e et e e bt e s bt e et e e bt e sbeesabeeateesbeesabeeabe e beesabesabeente 73
DowWnload TIMEOUL.......co.eoriiriiiiiiirietentet ettt sttt et et st ne b st enne e 73

RUN tIME TIMEOULcouiiiieiiiiicieiieeete ettt ettt et st st 74
CONNECHION ...ttt ettt ettt ettt et e a et ae st e e s bt eas et eae e st saeennesbeeanenseeneennenaee 74
EXeCUtables Tabc.coouiiiiiiiiiiiic e e e 74

OULPUL TAD ettt et st 75

SUMMATY TaD ...t s 76

23, Creating @ SHEll........ooiiiiii ettt e st e 77
Keyboard ACCEIETALOTSccoutiruiiiiiiiieniie ettt sttt ettt ettt et et esbe e st e bt e s beesabesabe e beesabesaneenne 77

V. eCos Programming Concepts and Techniques 79
24, CDL CONCEPLS -.evveeueeenreeniteete et sttt et ettt et et e bt e s et e bt e bt e sbteeabe e bt esbeesaee s bt e sbeeebeesateebeenbeesate e beenseenaees 81
ADOUL thIS CRAPLETuitieiietieiieteet ettt ettt ettt et e e b et e bt et e sbe s st e besbeentenbeeneeneeeaes 81
BaCKZIOUNA ...ttt ettt b ettt et e bt bbbt et et et e e eas 81
CONTIGUIATIONS ..ttt ettt ettt ettt et b e et e e b et e st e et e be s bt et eebeen b e bt este bt sbeenbesbeentenbeeseeneenaes 81
COMPONENE REPOSIEOIY ..c.uventiiieniiiieiertteitet ettt ettt ettt et eb et bt st e b s bt e e sbe e bt e naesbeenaenbeas 81
Component Definition LanGUAZEcooverierieriinieieie ettt st 81
PACKAZES ..ottt ettt sh et bbb b et h et b e s bt et bt et beebe et saes 81
CONIGUIATION TEETIIS ...ttt ettt sttt sb et ebee et sbeennesbeas 82
EXPIESSIONS .nveneteniiiienienitet ettt ettt ettt ettt ettt et ettt et et st e e b e ea et ebe e bt sbe et e s bt e et et e ebeeneenaee 82

PIOPEITIES 1.vvieiiieiieeie ettt ettt ettt e st e st e et e e s teessbesnbe e saessaesnbeensaenaeessseenseanseennses 82

INACTIVE TEEIMIS ...viiiiiiiieccc e et 83

CONTIICES ..t st 83
TOIMPIALES ..ttt ettt ettt ettt et e st e bt et esab e e bt e bt e s abe st e e bt e s abesabe e be e beeeabeenbeebeesaseenbeenbeens 84

25. The Component Repository and Working DIr€CtOTIeS........eervierieriieriierierieeieenieniesveeieesieeseeeveenaeens 85
COMPONENE REPOSIEOTY ..iiniiiiiiiiieiiesiie ettt sttt st ettt s e et e bt e sbtesbeesbeesbeesabesabeebeesasesaseense 85
PUIPOSE. ..ttt ettt ettt e e s he e sttt st e bt e s abe st e e bt e s atesat e e beenaeesanes 86

HOW 18 1t MOAITIEAT ...ttt st 86

When is it edited ManUALLY?.......coouiiiiiiiiiieeee ettt st 87

USET APPLICALIONS.veeutteiieeiieeieestteeite ettt ste et e st e st e e bt e sbtesatesabe e bt e sabesate e beesatesateebeenseesaees 87

Examples of files in this hierarchy:.........ccccooeoiiiiiiiiiiinicece e 87

BUIIA TIE ...ttt ettt et s ne s bt e e st e ne e 87
PUIPOSE....ceniteee ettt et et st st 87

HOW 18 1 MOAIIEAT ...euteiiieeiieeie ettt sttt e e e e 88

USET APPLHCALIONS.eeuiiiieiieiieiieteeeet ettt ettt et st ne s e n e e e eae 88

Examples of files in this hIierarchyccooeeieiiiieiiieee e e 88

TISTALL TTEE ...ttt ettt ettt st e bt e s bt st e bt e bt e st e e bt e bt e saneeseenbeens 88
PUIPOSE.... ettt ettt st e bt e st st e be e bt st e b e e saee e 88

HOW 18 18 MOGITIEAT ...ttt ettt st s b et e st et eee e 88

When is it edited MaNUAlLY?.......cc.ooiiiiiiiiieie et e 88

USET @PPLICATIONS. ...ttt ettt ettt sttt et eat bbbttt ebe b et ne et ebesbesbenaens 89

Examples of files in this hierarchycocceviiiiininiiniiiiiiecceeene et 89
APPLCAION BUILA TIEE ...ttt ettt st sb et sb et e e et eae b 89

26. Compiler and LinKer OPtions.........ccoeeieriirietenieienesitet ettt ettt sb ettt st e st seeebesbeesee b eaeeneesas 91
Compiling @ C APPIICALION....c..eeitiriieiiitietetertetert ettt ettt ettt sbe st sbe ettt e e seesaeenaesbeas 91
Compiling @ CA+ APPIICALIONeviiniiiiiiiiieeiieteete ettt ettt sttt sbe et e bt e et saeenesbeas 91

27. DebUZZING TECHNMIQUESveeruvieuteetieriieeieette sttt et e st e stte st e btesatesateebeesatesasesabeesseesstesabeensaenseesasesnseenseens 93

TTACIIIZ ¢ttt ettt ettt ettt ettt esae e s et et e e bt e sat e e bt e bt e s abesa b e e bt e sbeesabeenbeenbeesabeenbeenbeesateenseenbeens 93
Kernel InStrumentationc..couiiiiiiiiiiiiiiiciir et 94

VI. Configuration and the Package Repository 99
28. Manual CONfIGUIATIONc..oouieiiiiiiieiereeteteee ettt ettt ettt ettt et ea e sae e s st eas et e st e s e sae e e esaesanesnenaeeas 101
DIrectory TIEE STIUCTUTEc..eeuiriieiiiiieieete ettt ettt sttt e ae s se s esnesaeeneesaesaees 101
Creating the BUild TIEEcccooiiiiiiiiieiic et 101
€COSCONTZ QUALTTIETS.o.viiiiiiiiiiie e s 102

€COSCONTIZ COMMANAS ...eeuvtiiiiriiiiiieite ettt ettt ettt et sttt e sbe e sa e et e bt e sbaeeareeneenne 103

CONlICtS ANA CONSTIAINES.veiruririeetierite ettt ettt ettt et e sbt e st e st esbeesaeesat e e beesseesateenbeenseenaeean 104
BUilding the SYSTEIMcc.eeiiiiieieitiei ettt ettt ettt b et sbeeeesbesae e teebe et e saeeneesaesaean 106
PACKAZES ettt ettt ettt ettt et et bt et st be e eans 107
Coarse-grained CONTIZUIATIONceruiiuieriertieientietiente ettt ettt et esteetesbeesteteebeentesbeeneesbesaeesesbeans 107
Fine-grained CONfIUIALIONciuiiuiiiiirieieitietest ettt ettt e bt et et e b et esae et enaeeaean 108
Editing an €08 SAVEILEc.eoveriiiiieiiiirencceet ettt et 109
HEAART ..ttt ettt et et b ettt e b et e b et b bt b b ens 109

TOPIEVEL SECTIOM ...ttt ettt b ettt et sbe e sbesbe e aesbeens 110

CONTIICES SECHOMviiiiieiieee ettt st be e e 111

Daata SECHIOM ...c.cuiiiieiiiiiertetet ettt sttt st 111

TCL SYNEAX oottt ettt ettt ettt et a e st e e b eat et e bt et sbeestesaesbeenaenbeeas 120

Editing the SOUICES ...c..eoutiiiriiiiertieteteettete ettt sttt ettt et be st sb et esbeeaeenaesaees 124
Modifying the MemOTy LaYOUL.......cccceciiiriiiriieiieeieerteste ettt eteete et esteesteebeessaessaeenbeessnesssesnses 125

29. Managing the Package RePOSIIOTYcccuiiiieriiieiieiieiieete ettt site et e st e sitesbeebeesteesebeesbeebeesssesasesnses 127
Package INSAllAtIONeocveeriieiiieieeieesite ettt sttt e st eb e et e s bt e sabeeabe e baesabesateenbeensnessseenseanseennnenn 127
Using the Administration TOOL........cccuevviiiriiiniieniiiieeeeste ettt sttt siae st e e 127

Using the cOMMANG [INEcevviiiieniiiiiiiieiente ettt ettt st sbeestteseteebeesaeesaaessbesseenns 128

PACKAZE STIUCLUTE ...coeviiiiieiieeiie ettt ettt et s e st e be e st e sate e beesstesabeenbeenseenanean 129

VII. Appendixes 131
AL TATEE SEIUD ...ttt ettt b et et e b e s bt e sat e e bt e s bt e sateeab e e bt esbeesabeenbeenbeesuseenbeenbeesasesnseebeanne 133
MN10300 stdevall HardWare SELUP.......ccceevueeriiriieeiienieeieeieestte ettt ettt ettt s e st e saee s 133
MN10300 Architectural SIMUIAtOr SETUP.......cccuerreriiriinieiineereeerereee et 133
AM33 STB Hardware SELUPc..ccceeeuieieiiinieieieeicteeeete ettt st et sae e 134

Use With GDB Stub ROMccooiiiiiiiiiiieieieinenteteeteeet ettt sttt 134

Use with the JTAG debUZEErc..couiiiiiiiiiie e 134

Building the GDB stub ROM 1Mage.......cccueeviiriiriiiiieniiiieeiterte ettt 135

TX39 HardWare SETUDcc.couiiiiiiiiiiiieieie ettt st s e s 136
TX39 Architectural SIMUIAtOr SETUP.......coervirieieieiitietieeeeeer et 136
TXA9 HardWare SETUDcc.couiiiiiiiiiiiiiiiei et sttt s 137
Preparing the GDB STUDSc..oouiiiiiiieieiieiee ettt ettt st saeens 137

Building the GDB stub image with the eCos Configuration Tool...........ccccecererienienncne 137

Building the GDB stub image with €COSCONTIZ........cccueririeriniiieiieieereeee e 137

Installing GDB stubs into FLASHcccociiiiiiiiiiieeeee et 137

VRA300 HardWare SELUPc..ceouertirieiieiieterteetent ettt ettt ettt sttt sb et sb et e st sbt et sbeeatesbeeaeenaesaean 138
VRCA37S5 HardWare SELUPcc.verueeuiertiriietenteetenteeiteie ettt sttt sttt sb et st st esbesbtebesbeeatesbeeneenaesaeas 138
Atlas/Malta HardwWare SELUPcocveririerieriirieieeitere sttt sttt sttt ettt e s sbeenaesbeens 139
PowerPC Cogent HardwWare SETUP........ccccevirerieririiiineetenieetesie ettt sttt et et 139

Installing the Stubs int0 ROMcc.cociiiiiiiiiiniiiinienieieseetese ettt st 139

Preparing the BINAriesoocveeiiiiiienieniieiiesteee ettt ettt ettt s 139

Building the ROM images with the eCos Configuration Tool........c..ccccceceecuenuennee. 139

Building the ROM images with €COSCONTIZ.......ccceeviiiriiiiiiiiinieeieceee e 140

Installing the Stubs into ROM or FLASH........ccociiiiiiiiiiiiiieeeceeeeee e 140

PowerPC MBX8600 Hardware SETUPccc.eevueeriiriiieiieniieeieeie ettt ettt ettt st 140
Installing the Stubs into FLASHcooiiiiiiiiiii ettt 141
Preparing the BINAriescocueeiiiiiiiiiniieieeteee ettt sttt s 141

Building the ROM images with the eCos Configuration Tool............cccccccecvenenee. 141

Building the ROM images with €CoSCONfig.........ccevieviiniiiininieiiicceceeeeee 141

Installing the Stubs into ROM ..ot 141

Installing the Stubs into FLASHcc.cooiiiiiiiiieeteteeeeeese e 142

Program FLASH ..ottt 142

PowerPC Architectural STmulator SETUPccoueiueeieririeieet et 142
SPARCIIte HardWare SEIUPceueruieuieriirieeieste ettt ettt st te sttt e e ea et sbe et e sbe st e tesbeeneeneeene 143
ELhETNEt SETUP ..ceuvtiiiiiiietteeet ettt ettt sttt et et et e be e sbaesaneenee e 143
BOOTP/DHCP Service on LINUXccccoririeriiriieieniieienie ettt 144
BOOTP/DHCP DOOE PIOCESS «.c.veeuvevieiieniesiteieaiteiesteeitentesieestesbestestesseetesaeeeesbeseeensesneens 144

SEITAL SEIUP ..ttt ettt sttt ettt b et e bt et e bt s bt et e s bt e st e st e estenbesbeenaenbeens 144
SPARClite Architectural SIMUIAtOr SETUP.......coerieriiriiiiiriieieeeteere ettt 145
ARM PID HardwWare SEIUP........ccueeteruirierientieitenieeitenie sttt sttt ettt e st sbesiteaesbeentesbeentesbesueensenbeens 145
Installing the Stubs into FLASHcccccoiiiiiiiiiieetete ettt 145
Preparing the BINATIESccc.eoueviiiiniiiiniiieeseete ettt 146

Building the ROM images with the eCos Configuration Toolcc.cccceveevencnienenenns 146

Building the ROM images With €COSCONTIZ....c..cccueririiririiiniiniriieeieieeeee e 146

Building the FLASH Tool with the eCos Configuration Tool..........cccccccevvervinenriencnens 146

Building the FLASH Tool with €COSCONTIZ......cecviiiiiiriinieeiieiieeeeieeieeee st 147

Prepare the Board for FLASH Programming...........cccceeecveeeiienienienieenieeneenieeieenieenenenn 147

Program the FLASH.......ccooiiiiiiieeeeeteteee ettt sttt st st n 147
Programming the FLASH for big-endian mode...........ccecevevienienieniiinniienienie e 149

Installing the Stubs iNt0 ROMcoociiiiiiiiiiieniiiiieete ettt st 150
ARM AEB-T HardwWare SETUPcccterieriieriieniieiieeie ettt ettt ettt sttt e st esate e bt esatesateenbeesaeesaeeen 150
OVETVIBW ..ottt st 150
Talking to the BOArd........c.cooiiiiiiiiiiiiie ettt st e st et be e 150
Downloading the Stubs via the ROM Menuccoovieiiiiiiiiiiniiiieeeeeeeeeeese e 151
Activating the GDB StUDS.......c..cociiiiiiiiiiieceee et 151
Building the GDB Stub FLASH ROM Images........ccccccevieiiniriienieniiieiieeeeeeeeeene e 152
Building the GDB Stubs with the eCos Configuration Tool.........c..c.ccoceiiiiiiiniiiininieeens 152
Building the GDB Stub ROMSs with €COSCONTIgcceecuiriiiiiiiiiiiiiiiiciccececeeeeees 152
ARM Cogent CMA230 HardWare SELUDccoveerueeiieriinieeieenieeeie ettt ettt et s e e e saee s 153
Building the GDB Stub FLASH ROM 1MAaZESc.eeveeriiriiiiienie ittt 153
Building the GDB Stubs with the eCos Configuration Tool...........cccceeieririerinieenerieeees 153
Building the GDB Stub ROMS With €COSCONTIZecveiiiriieiiniiiieiesceeeee e 154
Cirrus Logic ARM EP7211 Development Board Hardware Setupccoceeveveneenieneenienenieneeee 154
Building programs for programming into FLASHcccociiiiiiiiiiiiieeeeeeeees 155
Building the GDB Stub FLASH ROM 1MAa@ES.....cc.eeterieriieieniiniieienieeienieeiceie e sieeniesaeens 155
Building the ROM images with the eCos Configuration Tool.........c..ceceririiriniinenenienenens 155
Building the ROM images With €COSCONTIZcocueriiriiiiiriiiieniiiees et 155
Loading the ROM Image into On-board Flashcccooieiiniiiinininiiiceeceees 156

Vii

viii

Building the Flash Downloader on LiNUX........ccceeveerienieniieniienie ettt eieesiee e eeeeeee e 157

Developing eCos Programs with the ARM Multi-ICEcccccoooiiiiiiniiniiniiieeeenieeeeeeee 157
Cirrus Logic ARM EP7212 Development Board Hardware Setupcccceevceeviiieniienieniiennieeniennenn 158
Cirrus Logic ARM EP7312 Development Board Hardware Setupcccceevceeviiienienieniennieeneennnen. 158

OOMHZ OPEIALION «..cevetieiiieiieeiie ettt ettt ettt et et e sbt e st e ebe e btesabeesbeebeesabesabeenbeesasesanesases 159
Cirrus Logic ARM EP7209 Development Board Hardware Setup...........coccocveeevievienienencnieenenene 159
Cirrus Logic ARM CL-PS7111 Evaluation Board Hardware Setup...........ccceeeveeciiniencncnieenenene 159
StrongARM EBSA-285 Hardware SETUPccieieriiieiieniieieiieeeie st 160

Building the GDB Stub FLASH ROM ImMages.....c..cccuecuiriieiieniiieieneeieiieeeieeeeeeese e 160

Building the GDB Stubs with the eCos Configuration Tool............c..coceeieiiiiniininineenens 161

Building the GDB Stub ROMS With €COSCONMIZeevveiriiriiiiiiii it 161

Loading the ROM Image into On-board Flashcceceoiiiiiiiiiiiniieeececeeeeee 161

Running your eCos Program Using GDB and the StubROM............ccociiiiiiiiniiieneeeees 162
Compaq iPAQ PocketPC Hardware SEIUPccoeieririerienieeienieeiete sttt et ee e 163
Arm Industrial Module AIM 711 Hardware SetUpceceveeriererieniinieieseeesie et 163

SELUP HATAWATE........eotiiiiiiieiieie ettt ettt ettt st b ettt et e sae bt eaesbeens 163

POWET SUPPLY -ttt bbbttt be st e b b 164
SEITAL AEVICES .. .teutetientetieitett ettt sttt ettt ettt s b et e bt e bt et s bt et e sbe e st ebesbeeneesaeeae 164
EEREINEE ...t 164
Installing RedBoot into FLASH ...c..cociiiiiiiiiiieeeetee ettt 164
USING REABOOL ...ttt sttt 164
USINZ JTAG .ttt sttt sttt ae st e b b ean 165

MOTE dOCUMENTALIONeuvnvinieiieiieiiitietete ettt sttt ettt st ebe b b ae 165
SH3/EDK7708 HardWare SELUPccccueerierieriierieeiteeiteesiteeteesteesttesseesseessaesssessseensesssaesssessessseesseees 165

Installing the Stubs iNt0 FLASHoociiiiiiieiii ettt st s 165

Preparing the BINAriesooueeiiiiienieeieeieeteete ettt ettt et sbeeaeesane s 165

Building the ROM images with the eCos Configuration Tool........c..ccccceceevennenee. 165

Building the ROM images with €COSCONTIZ.......ccoiiriiiriiiriiiienieeieeeese e 166

Installing the Stubs into ROM or FLASH........cccciiiiiiiiiiiiiieteeeeeeeeeee e 166
SH3/CQ7708 HArdWare SETUDcccveerieriieriieniienieeieeieesiteete et e sttesteesteesbeesitesateebeesstesasesnseesseesseens 166
Preparing the DOATcc.eeviiiiiiiieiieeie ettt st ettt st et saaesbeebee e 166

€C0S GDB StUDS ..ottt e 167
Preparing the GDB StUDSc...oouiiiiiiieieeieeteeeetete ettt st s 167

Building the GDB stub image with the eCos Configuration Tool...........c.ccccceverieniennees 167

Building the GDB stub image with €COSCONfiZ.........cccevirieniniiiieniieiiiinceeeeeeeieeee 167

Programming the stubs in EPROM/FLASHccccociiiiiiiiiiiceceeeeceeeeeeeiees 167
SH3/HSTT29PCI HardWare SETUD..........cccueeuirieriieieieieeiesieeiete ettt sne s 168
SH3/SET77X9 HardWare SETUDcccoirieriiiiiiieiieiee ettt sttt st ne s 168
SHA/CQT7750 HArdWare SELUPcciiieriiiiiiieiieieie ittt ettt 168

Preparing the DOArd ..o 169

€C0S GDB STUDS ..ttt ettt sttt et st ettt ae e 169

Preparing the GDB StUDSc.coiiiiiiiieieieinieeceetees ettt 169
Building the GDB stub image with the eCos Configuration Tool............cccceeeveerenennene 169
Building the GDB stub image with €coSCONfig......c..cccevvririrenieciiieiiineneiceeiecneens 169

Programming the stubs in EPROM/FLASHc.cccoiiiiiiiiiiiiiee et 170
SHA/SET7751 HardWare SELUPccoueeuieriinieienieeiteieeieeteste ettt sttt ettt sttt st s eate e 170
NEC CEB-V850/SAT Hardware SELUPccecueiriruiriinienieieieinenie ettt snenes 171

Installing the Stubs int0 ROMcc.cociiiiiiiiiiiiiiiieteeeetere ettt 171

Preparing the BINAriesoocveeiiiiiienieniieiiesteee ettt ettt ettt s 171

Building the ROM images with the eCos Configuration Tool........c..ccccceceecuenuennee. 171

Building the ROM images with €COSCONTIZ.......ccceeviiiriiiiiiiiinieeieceee e 172

Installing the Stubs into ROM or FLASH........ccociiiiiiiiiiiiiieeeceeeeee e 172

Debugging with the NEC V850 LC.E.ccooiiiiiiiiiiieteetete ettt 172
INITTAL SETUP ..ottt ettt st ettt st e b et st st e b e naee s 172

BUILD PROCEDURESoooieiteeet ettt sneens 173
VES50ICE.EXE EXECUTIONcootiiiiiieieiteetteteett ettt sttt enee s eeessesneesesneens 173
V850-ELF-GDB EXECUTIONooiiiiieieitieiieieetteeee ettt sve e saesneens 174

MDI INTERFACE VS. GDB INTERFACEccooiiiiieieeeeeeeeeeee e 175

€Cos THREAD DEBUGGINGccceeiiieitieiieeieeitesiteete et esteeseeesveeteesseeseseevaesseeseneas 175

NEC CEB-V850/SB1 Hardware SEUDceceeriiriiriienitieieeeenite ettt ettt 176
1386 PC HArdWare SELUPeeveruieieiteeiieieet ettt et sttt sttt et ettt et sbe e te e e st et e s bt eneesbeeneesesneans 176
REAB OO SUPPOIT.....teiiieeieie ettt sttt ettt ettt e ae s bt et et e e s e e teebeeneesaeeseesenneans 176
FLOPPY DiSK SUPPOIT ...ttt ettt sbeens 176
GRUB BOOtIoAder SUPPOITcoiiiiiiiriiiriiieitetterteee ettt sttt e 177
Debugging FLOPPY and GRUB ApPpliCations........cceecuerueeieririenienieeienieeieeie et 178
1386/Linux Synthetic Target SEIUPc..cevertirierieiene ettt st sbe s 178
TOOIS 1ttt ettt ettt ettt ettt et et e et e e ebe e beesaee e st e et e e st e esaean b e et e ensaeenbeeabeenteeesbeenbeenseeesaeenbaeraenns 178

B. Real-time CharaCteriZation.........c.veiveerieeiiieriieeieeieesteesteeteesteesseesseebeesseesssessseesseesseesssessseenseesssesssessseee 181
Board: ARM AEB-1 Revision B Evaluation Board.............cccceerireiieiienieniecieeieeeeeeieeee e 181
Board: Atmel ATOT/EBAOooiiiiieiieieeite ettt ettt stt e steeteesbe e s beesbeenbaessaesssesnbeessnenssesnses 183
Board: Intel StrongARM EBSA-285 Evaluation Board............coccecueviirieninenienenienenecnceeeneaees 186
Board: Cirrus Logic EDB7111-2 Development Boardccoccecvevinienineniencnienienceienceeenenaen 188
CPU : Cirrus Logic EP7211 7T3MHZ ..c..coovuiiiiiiiieiieeesie ettt sttt st sve e 188

CPU : Cirrus Logic EP7212 T3MHZcoovuiiiieiiieiieeeste ettt sttt st eiee e 190
Board: ARM PID Evaluation BOard..........ccceeiiiiiiiiiiiieniieieeieesteete ettt ettt n 193
CPU : ARM TTDMI 20 MHZccuttiiiiiiiiiteteste ettt sttt st ettt sttt seaesnseesee e 193

CPU : ARM 920T 20 MHZ...ccoutiiiieiieeitettesteste ettt sttt st ettt st et eseaesbeesee e 195
Board: Intel IQ80310 XScale Development Kit..........cccceviiriiiiienieniieniieieneesieeieeste e 198
Board: Toshiba JMR3904 Evaluation Board..............cocciiriiriiiiiieniinieeieeiteeeeie et 200
Board: Toshiba REF 4955 ..ottt sttt ettt et et esaeesaee s 202
Board: Matsushita STDEVALT BOArdcoceeiiiiiiiiiiiiiieieiiteiteeeeeete ettt 205
Board: Fujitsu SPARClite Evaluation Board............ccccecieiiniiiiiniiiiiinieicncecccecreeceseeeeeie e 207
Board: Cogent CMA MPC860 (PowerPC) Evaluationccoceeeuervieenienieniieeieenieeieeieeseeeee e 209
Board: NEC VRA373 ... oottt ettt ettt ettt et e e be e sbaessbeeabeebeaesbeasseesbaesssessseensaesssassseanss 211
Board: INte]l SATTTO (ASSADEL) ..veeeviieiiieeeiieeeieeeciteeeee et et e et e st e e seaeeestaeessaeesseeesnseeeensaeenssens 214
Board: Intel SATTO0 (BIULUS) c.uvvieeiiieeiieeeiie ettt stteeeieeeetee et eeesteeeeteeseaeeensaeeesssesssseesnseeennsaeensses 216
Board: Motorola IMBXoiiiieciie ettt ettt e ettt e e et e e et e e et e e e ne e e enbe e e nnaeeenneas 219
Board: Hitachi EDK7708ccuooiieiiiiiieieeeie ettt ettt te et steesveeveesteessaeesseesbaessaessseensassssasssennss 221
Board: CQ CqREEK SH3 Evaluation Board (€q7708)cceeoeierieiieiieieneeese et 223
Board: Hitachi HS7729PCI HS7729 SH3......oo ittt ettt ettt et ae e ea e 226
Board: Hitachi Solution Engine 7751 SH4 (S€7751) w.eeueeiuiiieieieeieeeteese et 228
57071 s N o OO SRR 231
Board: NEC V850 Cosmo Evaluation Board...........ccccevueeiieiiiiieeieeieesiecieeie et 233
Board: NEC V850 Cosmo Evaluation Board...........cccccevueeiieiiieiieeiicieeieeie et 235
Board: ARM Industrial Module AIM711 (S3C4510) ..ccuuiiiieeieiieeieeieesieereeie et eve e 238
C. GNU General PUDIIC LICENSE ..cc.vveiuieeiieiieiieeieeieeitteete et esteeseesssesbeesseesssesnseesseesseesssesssessseesssesssessseees 241

ix

List of Tables

11-1. Configuration for various download MEthodsc.ccecuereriiriniiiiiniiieee e 25
I8-T. CRIL L PRS ettt ettt ettt ettt ettt et b e e bt et s bt e et b e e st nae bt et bt e a bbbt et bt e b et e bt b e e saes 59
23-1. KeYDOAIA ACCEIETALOTS ...e.vveeuvieiieeiieeiietiesie et et estteseteebeesteesttesabeeseesseesssessseenseessseanseenseesaesnsesnseenseesnsessennes 77
24-1. CDL EXPIESSIONS..cutteitteeureeiierteerteeteeteestesseeteesseesssesseesseesssesssessseesseesssesssessseesssssssesssessssesssesssessseesssesssesne 82
24-2. CONTIGUIALION PIOPETLIES .. veeuvretrerrrerieerteerterteeteerstessteeseesseesseessseesseesseesssesseessessssesssesssessssesssesssesnseesssesssesnne 83

Xi

Xii

l. Introduction

Chapter 1. Key Features

+ eCos is distributed under the GPL license with an exception which permits proprietary application code to be
linked with eCos without itself being forced to be released under the GPL. It is also royalty and buyout free.

+ As an Open Source project, eCos is under constant improvement, with an active developer community, based
around the eCos web site at http://ecos.sourceware.org/.

+ Powerful GUI-based configuration system allowing both large and fine grained configuration of eCos. This
allows the functionality of eCos to be customized to the exact requirements of the application.

+ Full-featured, flexible, configurable, real time embedded kernel. The kernel provides thread scheduling, syn-
chronization, timer, and communication primitives. It handles hardware resources such as interrupts, exceptions,
memory and caches.

« The Hardware Abstraction Layer (HAL) hides the specific features of each supported CPU and platform, so that
the kernel and other run-time components can be implemented in a portable fashion.

« Support for pITRON and POSIX Application Programmer Interfaces (APIs). It also includes a fully featured,
thread-safe ISO standard C library and math library.

+ Support for a wide variety of devices including many serial devices, ethernet controllers and FLASH memories.
There is also support for PCMCIA, USB and PCI interconnects.

A fully featured TCP/IP stack implementing IP, IPv6, ICMP, UDP and TCP over ethernet. Support for SNMP,
HTTP, TFTP and FTP are also present.

« The RedBoot ROM monitor is an application that uses the eCos HAL for portability. It provides serial and
ethernet based booting and debug services during development.

+ Many components include test programs that validate the components behaviour. These can be used both to
check that hardware is functioning correctly, and as examples of eCos usage.

+ eCos documentation included this User Guide, the Reference Manual and the Components Writer’s Guide. These
are being continually updated as the system develops.

Chapter 1. Key Features

Chapter 2. eCos Overview

eCos is an open source, configurable, portable, and royalty-free embedded real-time operating system. The follow-
ing text expands on these core aspects that define eCos.

eCos is provided as an open source runtime system supported by the GNU open source development tools. Devel-
opers have full and unfettered access to all aspects of the runtime system. No parts of it are proprietary or hidden,
and you are at liberty to examine, add to, and modify the code as you deem necessary. These rights are granted
to you and protected by the GNU Public License (GPL). An exception clause has been added to the eCos license
which limits the circumstances in which the license applies to other code when used in conjunction with eCos. This
exception grants you the right to freely develop and distribute applications based on eCos. You are not expected or
required to make your embedded applications or any additional components that you develop freely available so
long as they are not derived from eCos code. We of course welcome all contributions back to eCos such as board
ports, device drivers and other components, as this helps the growth and development of eCos, and is of benefit to
the entire eCos community. See Chapter 3 for more details.

One of the key technological innovations in eCos is the configuration system. The configuration system allows the
application writer to impose their requirements on the run-time components, both in terms of their functionality
and implementation, whereas traditionally the operating system has constrained the application’s own implementa-
tion. Essentially, this enables eCos developers to create their own application-specific operating system and makes
eCos suitable for a wide range of embedded uses. Configuration also ensures that the resource footprint of eCos
is minimized as all unnecessary functionality and features are removed. The configuration system also presents
eCos as a component architecture. This provides a standardized mechanism for component suppliers to extend the
functionality of eCos and allows applications to be built from a wide set of optional configurable run-time com-
ponents. Components can be provided from a variety of sources including: the standard eCos release; commercial
third party developers or open source contributors.

The royalty-free nature of eCos means that you can develop and deploy your application using the standard eCos
release without incurring any royalty charges. In addition, there are no up-front license charges for the eCos runtime
source code and associated tools. We provide, without charge, everything necessary for basic embedded applica-
tions development.

eCos is designed to be portable to a wide range of target architectures and target platforms including 16, 32, and
64 bit architectures, MPUs, MCUs and DSPs. The eCos kernel, libraries and runtime components are layered on
the Hardware Abstraction Layer (HAL), and thus will run on any target once the HAL and relevant device drivers
have been ported to the target’s processor architecture and board. Currently eCos supports a large range of different
target architectures:

+ ARM, Intel StrongARM and XScale
+ Fujitsu FR-V

« Hitachi SH2/3/4

+ Hitachi H8/300H

+ Intel x86

+ MIPS

« Matsushita AM3x

+ Motorola PowerPC

Chapter 2. eCos Overview

+ Motorola 68k/Coldfire

« NEC V850

+ Sun SPARC

including many of the popular variants of these architectures and evaluation boards.

eCos has been designed to support applications with real-time requirements, providing features such as full pre-
emptability, minimal interrupt latencies, and all the necessary synchronization primitives, scheduling policies, and
interrupt handling mechanisms needed for these type of applications. eCos also provides all the functionality re-
quired for general embedded application support including device drivers, memory management, exception han-
dling, C, math libraries, etc. In addition to runtime support, the eCos system includes all the tools necessary to
develop embedded applications, including eCos software configuration and build tools, and GNU based compilers,
assemblers, linkers, debuggers, and simulators.

To get the most out of eCos you should visit the eCos open source developers site: http://ecos.sourceware.org/.

The site is dedicated to the eCos developer community and contains a rich set of resources including news, FAQ,
online documentation, installation guide, discussion and announcement mailing lists, and runtime and development
tools downloads. The site also supports anonymous CVS and WEBCVS access to provide direct access to the latest
eCos source base.

eCos is released as open source software because we believe that this is the most effective software development
model, and that it provides the greatest benefit to the embedded developer community as a whole. As part of this
endeavor, we seek the input and participation of eCos developers in its continuing evolution. Participation can take
many forms including:

+ providing us with feedback on how eCos might be made more useful to you - by taking part in the ongoing
mailing list discussions and by submitting problem reports covering bugs, documentation issues, and missing
features

« contributing bug fixes and enhancement patches
« contributing new code including device drivers, board ports, libraries, and other runtime components

Our long term aim is to make eCos a rich and ubiquitous standard infrastructure for the development of deeply
embedded applications. This will be achieved with the assistance of the eCos developer community cooperating
to improve eCos for all. We would like to take this opportunity to extend our thanks to the many eCos developers
who have already contributed feedback, ideas, patches, and code that have augmented and improved this release.

The eCos Maintainers

Chapter 3. eCos Licence Overview

As of May 2002, eCos is released under a modified version of the well known GNU General Public License
(GPL) (http://www.gnu.org/copyleft/gpl.html), now making it an official GPL-compatible Free Software License
(http://www.gnu.org/philosophy/license-list.html). An exception clause has been added to the eCos license which
limits the circumstances in which the license applies to other code when used in conjunction with eCos. The
exception clause is as follows:

As a special exception, if other files instantiate templates or use macros
or inline functions from this file, or you compile this file and link it
with other works to produce a work based on this file, this file does not
by itself cause the resulting work to be covered by the GNU General Public
License. However the source code for this file must still be made
available in accordance with section (3) of the GNU General Public
License.

This exception does not invalidate any other reasons why a work based on
this file might be covered by the GNU General Public License.

The goal of the license is to serve the eCos user community as a whole. It allows all eCos users to develop products
without paying anybody anything, no matter how many developers are working on the product or how many units
will be shipped. The license also guarantees that the eCos source code will always be freely available. This applies
not only to the core eCos code itself but also to any changes that anybody makes to the core. In particular, it should
prevent any company or individual contributing code to the system and then later claiming that all eCos users are
now guilty of copyright or patent infringements and have to pay royalties. It should also prevent any company from
making some small improvements, calling the result a completely new system, and releasing this under a new and
less generous license.

The license does not require users to release the source code of any applications that are developed with eCos.
However, if anybody makes any changes to code covered by the eCos license, or writes new files derived in any
way from eCos code, then we believe that the entire user community should have the opportunity to benefit from
this. The license stipulates that these changes must be made available in source code form to all recipients of
binaries based on the modified code, either by including the sources along with the binaries you deliver (or with
any device containing such binaries) or with a written offer to supply the source code to the general public for three
years. It is perhaps most practical for eCos developers to make the source code available online and inform those
who are receiving binaries containing eCos code, and probably also the eCos maintainers, about the location of the
code. See the full text of the GPL (http://www.gnu.org/copyleft/gpl.html) for the most authoritative definition of
the obligations.

Although it is not strictly necessary to contribute the modified code back to the eCos open source project, we are
always pleased to receive code contributions and hope that developers will also be keen to give back in return
for what they received from the eCos project completely free of charge. The eCos maintainers are responsible for
deciding whether such contributions should be applied to the public repository. In addition, a copyright assignment
(http://ecos.sourceware.org/assign.html) is required for any significant changes to the core eCos packages.

The result is a royalty-free system with minimal obligations on the part of application developers. This has resulted
in the rapid uptake of eCos. At the same time, eCos is fully open source with all the benefits that implies in terms
of quality and innovation. We believe that this is a winning combination.

Chapter 3. eCos Licence Overview

Questions and answers

The following queries provide some clarification as to the implications of the eCos license. They do not consititute
part of the legal meaning of the license.

Q. What is the effect of the eCos license?

A. In the simplest terms, when you distribute anything containing eCos code, you must make the source code to
eCos available under the terms of the GPL.

Q. What if I make changes to eCos, or write new code based on eCos code?
A. Then you must make those changes available as well.
Q. Do I have to distribute the source code to my application? Isn’t the GPL "viral"?

A. You do not have to distribute any code under the terms of the GPL other than eCos code or code derived from
eCos. For example, if you write a HAL port based on copying an existing eCos HAL in any way, you must make
the source code available with the binary. However you would not need to make available any other code, such as
the code of a wholly separate application linked with eCos.

Q. I would rather stick with the RHEPL code, but I updated my anonymous CVS checkout.

A. You can check out the final version of anonymous CVS before the license change using the CVS tag
last-rhepl. See the anonymous CVS access page (http://ecos.sourceware.org/anoncvs.html) for details.

Previous License

Prior to May 2002, eCos was released under the Red Hat eCos Public License (RHEPL)
(http://ecos.sourceware.org/old-license.html). The RHEPL required any modifications to eCos code to be made
available under preferential terms to Red Hat and was therefore incompatible with code licensed under the GPL.
The use of eCos source code which was licensed under the RHEPL is not affected by the switch to the modified
GPL for later revisions.

Chapter 4. Notation and Conventions

Since there are many supported target architectures, notation conventions are used in this manual to avoid repeating
instructions that are very similar.

GDB and GCC Command Notation

Cross-development commands like gee and gdb will be shown with a TARGET- prefix. You need to replace TARGET-
with the correct prefix before using the command. Just using gee or gdb will use the tools for the host, which is not
(usually) what you want.

For example use arm-elf-gcc and arm-elf-gdb for ARM, Thumb, and StrongARM targets. Use xscale-elf-gcc and
xscale-elf-gdb for Intel Xscale targets. Use i386-elf-gcc and i386-elf-gdb for IA32 targets. And so on, the exact
prefix to use is shown in the documentation for each target.

Note that some versions of the GCC cross compiler generate executable files with the .exe suffix on Windows,
but not on Linux. The suffix .exe will be omitted from executable file names, so you will see hello instead of

hello.exe.

Directory and File System Conventions

The default directory for installing eCos on Windows (usually C: /Program Files/eCos) is different from that
on Linux (usually /opt/ecos). Since many command line examples in the tutorials use these paths, this default
(base) directory will be cited as BASE_DIR.

Windows and Linux have a similar file system syntax, but the MS-DOS command interpreter on Windows uses
the backslash character (\) as a path separator, while Linux and POSIX shells (including the Cygwin bash shell for
windows) use the forward slash (/).

This document will use the POSIX shell convention of forward slashes throughout.

Version Conventions

This manual does not refer explicitly to any particular version of eCos. However, version numbers form part of
many file path names. In all of these places the version number will be shown like this: <version>.

If you have used anonymous CVS to check eCos out of the CVS repository, the version number will always be
current, since that is the name of the directory in the repository. When a stable release is made this directory
name is changed, in the release, to the number of the release, for example v2_0 or v2_1.

Chapter 4. Notation and Conventions

Chapter 5. Documentation Roadmap

The eCos documentation is divided into a three main parts:

User Guide

This document. It includes the following sections:

Installing eCos
This section describes how to install the eCos software, how to set up your hardware and how to test that
it is all working.

Programming Under eCos

This section describes how to write programs that run under eCos by running through some examples.

The eCos Configuration Tool
This section describes the eCos graphical configuration tool and how to use it to change how eCos
behaves.

eCos Programming Concepts and Techniques
An explanation of the eCos programming cycle, and a description of some debugging facilities that eCos
offers.

Configuration and the Package Repository

Information on how to configure eCos manually, including a reference on the ecosconfig command,
memory layouts, and information on how to manage a package repository using the eCos Package Ad-
ministration Tool.

Reference Guide

The Reference Guide provides detailed documentation on various aspects of eCos. This document is being
constantly updated, so the following list just mentions the more important sections, take a look at the guide
itself for the full story.

The eCos Kernel

In-depth description of eCos"s native C kernel API Important considerations are given for programming
the eCos kernel. The semantics for each kernel function are described, including how they are affected
by configuration.

POSIX and pITRON APIs
A description of the POSIX and pITRON APIs and how they are supported under eCos.

The eCos Hardware Abstraction Layer (HAL)

A description of the structure and functionality of the eCos HAL. This section also includes a porting
guide to help moving eCos to different platforms.

Chapter 5. Documentation Roadmap

10

Device Drivers

A description of the philosophy behind eCos device drivers, as well as a presentation of the C language
APIs for using the current device drivers.

Device driver support includes serial, ethernet and FLASH devices, and support for PCI, PCMCIA and
USB interconnects.
RedBoot User’s Guide

This describes RedBoot, which provides a complete bootstrap environment for a range of embedded op-
erating systems, such as embedded Linux and eCos, and includes facilities such as network downloading
and debugging. It also provides a simple flash file system for boot images.

TCP/TP Stack Support

This describes the Common Networking for eCos package, which provides support for a complete
TCP/IP networking stack. The design allows for the actual stack to be modular and at the current time
two different implementations, one based on OpenBSD from 2000 and a new version based on FreeBSD,
are available.

Other components related to networking, including support for SNMP, DNS, HTTP and FTP, are also
described.

Component Writer’s Guide

The Component Writer’s Guide is intended for developers who need to add or modify parts of eCos itself. It
describes the following things:

Overview
An explanation of the configuration technology used in eCos, why it is done this way, how it works and
the terminology used.

Package Organization

A description of the eCos package repository, how it is organized and how packages themselves are
organized.

The CDL Language

A description of the CDL language and how it is used to control the configuration of eCos components.
The document also contains a complete specification of the language.

The Build Process

A description of what happens once a configuration has been created and must be built into a set of
executables.

Il. Installing eCos

Chapter 6. System Requirements

+ Standard Intel architecture PC running Linux (tested on recent Fedora, openSUSE and Ubuntu distributions),
Microsoft Windows NT 4 + SP6a, Windows 2000, Windows XP and Windows Vista. Linux distributions from
other vendors may also work, but are currently untested.

« Enough disk space for the installed distribution. The eCos installation process will detail the various components
of eCos and the compiler toolkit that can be installed, and their disk space requirements.

+ 64MB of RAM and a 350MHz or faster Pentium processor.

If you are downloading the eCos release distribution from ecos.sourceware.org (http://ecos.sourceware.org), you
will also need space to store that image and to compile the toolchain and eCos from source.

13

Chapter 6. System Requirements

14

Chapter 7. Installation on Linux

Full instructions for the downloading and installation of eCos (http://ecos.sourceware.org/getstart.html) on Linux
hosts are provided on the eCos website.

15

Chapter 7. Installation on Linux

16

Chapter 8. Installation on Windows

Full instructions for the downloading and installation of eCos (http://ecos.sourceware.org/getstart.html) on Win-
dows hosts are provided on the eCos website.

17

Chapter 8. Installation on Windows

18

Chapter 9. Target Setup

While eCos supports a variety of targets, communication with all the targets happens in one of four ways. These
are described in general below. Any details or variations from these descriptions will be found in the eCos docu-
mentation for a specific target, in the appendix.

Connecting Via Serial Line

Most targets will have RedBoot or GDB Stubs installed. These normally waits for GDB to connect at 38400 baud,
using 8 data bit, no parity bit and 1 stop-bit and no hardware flow control. Check the documentation for your target
to ensure it uses this speed. If not, adjust the following instructions accordingly.

The following instructions depend on your having selected the appropriate serial port on the host. That is, the serial
port which connects to the target’s (primary) serial port. On Linux this could be /dev/ttys0, while the same port
on Windows would be named COM 1. Substitute the proper serial port name in the below.

Connect to the target by issuing the following commands in GDB console mode:

(gdb) set remotebaud 38400
(gdb) target remote /dev/ttySO

In Insight, connect by opening the File->Target Settings window and enter:

Target: Remote/Serial
Baud Rate: 38400
Port: /dev/ttySO

Set other options according to preference, close the window and select Run->Connect to target.

Connecting Via Ethernet

Some targets allow GDB to connect via Ethernet - if so, it will be mentioned in the document describing the
target. Substitute the target’s assigned IP address or hostname for <hostname> in the following. Depending on
how RedBoot has been configured, it will either have this address allocated statically, or will acquire it via BOOTP.
In both cases RedBoot will report the IP address it is listening on in its startup message printed on the serial port.
The <port> is the TCP port which RedBoot is listening on, usually 9000. It is also listed in the target document.

Connect to the target by issuing the following command in GDB console mode:
(gdb) target remote <hostname>:<port>

In Insight, connect by opening the File->Target Settings window and enter:
Target: Remote/TCP

Hostname: <hostname>

Port: <port>

Set other options according to preference, close the window and select Run->Connect to target.

19

Chapter 9. Target Setup

Using A Simulator Target

GDB connects to all simulator targets using the same basic command, although each simulator may require addi-
tional options. These are listed in the document describing the target, and should be used when connecting.

Connect to the target by issuing the following command in GDB console mode:
(gdb) target sim [target specific options]
In Insight, connect by opening the File->Target Settings window and enter:

Target: Simulator
Options: [target specific options]

Set other options according to preference, close the window and select Run->Connect to target.

Using A Synthetic Target

20

Synthetic targets are special in that the built tests and applications actually run as native applications on the host.
This means that there is no target to connect to. The test or application can be run directly from the GDB console
using:

(gdb) run

or from Insight by pressing the Run icon. There is therefore no need to connect to the target or download the
application, so you should ignore GDB “target” and “load” commands in any instructions found in other places in
the documentation.

lll. Programming With eCos

Chapter 10. Programming With eCos

The following chapters of this manual comprise a simple tutorial for configuring and building eCos, building and
running eCos tests, and finally building three stand-alone example programs which use the eCos API to perform
some simple tasks.

You will need a properly installed eCos system, with the correct versions of the GNU toolchain. On Windows you
will be using the bash command line interpreter that comes with Cygwin, with the environment variables set as
described in the toolchain documentation.

The Development Process

Most development projects using eCos would contain some (or most) of the following:

eCos Configuration

eCos is configured to provide the desired API (the inclusion of libc, uitron, and the disabling of certain undesired
funtions, etc.), and semantics (selecting scheduler, mutex behavior, etc.). See Chapter 11.

It would normally make sense to enable eCos assertion checking at this time as well, to catch as many programming
errors during the development phase as possible.

Note that it should not be necessary to spend much time on eCos configuration initially. It may be important to
perform fine tuning to reduce the memory footprint and to improve performance later when the product reaches a
testable state.

Integrity check of the eCos configuration

While we strive to thoroughly test eCos, the vast number of configuration permutations mean that the particular
configuration parameters used for your project may not have been tested. Therefore, we advise running the eCos
tests after the project’s eCos configuration has been determined. See Chapter 12.

Obviously, this should be repeated if the configuration changes later on in the development process.

Application Development - Target Neutral Part

While your project is probably targeting a specific architecture and platform, possibly custom hardware, it may be
possible to perform part of the application development using simulated or synthetic targets.

There are three good reasons for doing this:

+ It may be possible by this means to perform application development in parallel with the design/implementation
of the target hardware, thus providing more time for developing and testing functionality, and reducing time-to-
market.

+ The build-run-debug-cycle may be faster when the application does not have to be downloaded to a target via a
serial interface. Debugging is also likely to be more responsive when you do not have to to communicate with

23

Chapter 10. Programming With eCos

24

the remote GDB stubs in RedBoot via serial. It also removes the need for manually or automatically resetting
the target hardware.

« New hardware can often be buggy. Comparing the behaviour of the program on the hardware and in the simulator
or synthetic target may allow you to identify where the problems lie.

This approach is possible because all targets (including simulators and synthetic ones) provide the same basic API:
that is, kernel, libc, libm, uitron, infra, and to some extent, HAL and 1O.

Synthetic targets are especially suitable as they allow you to construct simulations of elaborate devices by interac-
tion with the host system, where an IO device API can hide the details from the application. When switching to
hardware later in the development cycle, the IO driver is properly implemented.

Simulators can also do this, but it all depends on the design and capabilities of the simulator you use. Some, like
SID (http://sources.redhat.com/sid) or Bochs (http://bochs.sourceforge.net/) provide complete hardware emulation,
while others just support enough of the instruction set to run compiled code.

Therefore, select a simulator or synthetic target and use it for as long as possible for application development. That
is, configure for the selected target, build eCos, build the application and link with eCos, run and debug. Repeat the
latter two steps until you are happy with it.

Obviously, at some time you will have to switch to the intended target hardware, for example when adding target
specific feature support, for memory footprint/performance characterization, and for final tuning of eCos and the
application.

Application Development - Target Specific Part

Repeat the build-run-debug-cycle while performing final tuning and debugging of application. Remember to disable
eCos assertion checking if you are testing any performance-related aspects, it can make a big difference.

It may be useful to switch between this and the previous step repeatedly through the development process; use
the simulator/synthetic target for actual development, and use the target hardware to continually check memory
footprint and performance. There should be little cost in switching between the two targets when using two separate
build trees.

Chapter 11. Configuring and Building eCos from
Source

This chapter documents the configuration of eCos. The process is the same for any of the supported targets: you
may select a hardware target (if you have a board available), any one of the simulators, or a synthetic target (if your
host platform has synthetic target support).

eCos Start-up Configurations

There are various ways to download an executable image to a target board, and these involve different ways of
preparing the executable image. In the eCos Hardware Abstraction Layer (HAL package) there are configuration
options to support the different download methods. Table 11-1 summarizes the ways in which an eCos image can
be prepared for different types of download. This is not an exhaustive list, some targets define additional start-up
types of their own. Where a ROM Monitor is mentioned, this will usually be RedBoot, although on some older,
or low resource, targets you may need to use CygMon or the GDB stubs ROM, see the target documentation for
details.

Table 11-1. Configuration for various download methods

Download method HAL configuration
Burn hardware ROM ROM or ROMRAM start-up
Download to ROM emulator ROM or ROMRAM start-up
Download to board with ROM Monitor RAM start-up
Download to simulator without ROM Monitor ROM start-up
Download to simulator with ROM Monitor RAM start-up
Download to simulator ignoring devices SIM configuration
Run synthetic target RAM start-up
Caution

You cannot run an application configured for RAM start-up on the simulator directly: it will fail
during start-up. You can only download it to the simulator if you are already running RedBoot
in the simulator, as described in the toolchain documentation or you load through the SID
GDB debugging component. This is not the same as the simulated stub, since it does not
require a target program to be running to get GDB to talk to it. It can be done before letting
the simulator run or you use the ELF loader component to get a program into memory.

Note: Configuring eCos’ HAL package for simulation should rarely be needed for real development; binaries
built with such a kernel will not run on target boards at all, and the MN10300 and TX39 simulators can run
binaries built for stdeval1l and jmr3904 target boards. The main use for a “simulation” configuration is if you are
trying to work around problems with the device drivers or with the simulator. Also note that when using a TX39
system configured for simulator start-up you should then invoke the simulator with the --board=9mr3904pal
option instead of --board=jmr3904

25

Chapter 11. Configuring and Building eCos from Source

Note: If your chosen architecture does not have simulator support, then the combinations above that refer
to the simulator do not apply. Similarly, if your chosen platform does not have RedBoot ROM support, the
combinations listed above that use RedBoot do not apply.

The debugging environment for most developers will be either a hardware board or the simulator, in which case
they will be able to select a single HAL configuration.

Configuration Tool on Windows and Linux Quick Start

This section described the GUI based configuration tool. This tool is probably more suited to users who prefer
GUT’s. The next section describes a CLI based tool which Unix users may prefer.

Note that the use of the Configuration Tool is described in detail in Part IV in eCos User Guide.

The Configuration Tool (see Figure 11-1) has five main elements: the configuration window, the conflicts window,
the properties window, the short description window, and the output window.

Figure 11-1. Configuration Tool

= untitled - el uration Tool 208
File Edit View Build Tools Help
|D=a & K2 %

= [configuration
@3 Redbeot for SuperH options
= [Global build options

|tem Conflict Property

CYGPKG_HAL_SH_SH77 Unsatisfied Requires CYG
CYGPKG_HAL_SH_SH77 Unsatisfied Requires CYG

| Clobal command prafix [ERENECTH CYGPKG_HAL_SH_SH7? Unsatisfied Requires CYC
[aB] Global compiler flags -l -m3 -wall Wl | cyG PG _HALLSH_SHF7 Unsatisfied Requires CVGE
[a¥] Clobal linker flags -ml -m3 -q9db -nd |CYGINT_HAL_SH_VARIA Unsatisfied Requires 1 ==
™ Build GDB stub ROM image <z
[T Bulild common GOEB stub R
¥ eCos HAL current Property Value
& 1/0 subsystem current URL ref/ecos-ref html E
% Serial device drivers current File Stmpduntitled_install/include/p
% Infrastructure current Macro CYCELD_GLOBAL_COMMAND_P
& eCos kernel current Value sh-elf
& Dynamic memory allocation current Default sh-elf
150 C and POSI¥ infrastructu current
150 C library current
4 Math library current This option specifies the command prefiz used

when invoking the build tools,

aqn

k d current

u current

El

CYGPRG_HAL_SH_7750, no radio buttons are set

|Ready ,7|5 conflicts

Start by opening the templates window via Build->Templates. Select the desired target (see Figure 11-2).

26

Figure 11-2. Template selection

rHardware

&RM development board (PID)

(]

The pid target provides the packages needed to run eCos
on an &RM development board (formerly known as PID).

-Packages

default hd |

This is a default eCos configuration, It
contains the infrastructure, kernel, C and
maths libraries, plus their support
packages.

K

Cancel

Details => |
il

ik

Chapter 11. Configuring and Building eCos from Source

Make sure that the configuration is correct for the target in terms of endianness, CPU model, Startup type, etc. (see

Figure 11-3).

Figure 11-3. Configuring for the target

'3
[+

=]

eCos HAL current
3 Platform-independen
[Z3 HAL interrupt handlir
[CJ HAL context switch su
[Z3 Explicit control over ¢
23 Source-level debuggir
ZJ ROM monitor support
[T Build Compiler sanity

HHHHHHUI

[

A ARM architecturs current
[T Enable Thumb inst
[T Enable Thumb inte
[T Usze big-endian mo
EB arM CPU family ARM7
T Provide diagnostic
[T Process all exceptic
[T Support GDB threa
¥ Support for 'gprof
[BB) Linker script srcfarm.ld
= ARM PID evaluatior current

[BB) Common HAL tests | tests/cache tests

[«]

[«

Next, select the Build->Library menu item to start building eCos (see Figure 11-4). The application will configure
the sources, prepare a build tree, and build the 1ibtarget.a library, which contains the eCos kernel and other

packages.

27

Chapter 11. Configuring and Building eCos from Source

28

Figure 11-4. Selecting the Build Library menu item

Euildl Teols Help

i Library F7
" Tests Shft+F7
_ Clean

Generate Build Tree
Options..

~ Repository...

. Templates..

Packages...

The Save As dialog box will appear, asking you to specify a directory in which to place your save file. You can use
the default, but it is a good idea to make a subdirectory, called ecos-work for example.

Figure 11-5. Save file dialog

L
far =
Current directory: ftmpfecos
i
arm.ecc 019
* B o Show hidden files Cancel

The first time you build an eCos library for a specific architecture, the Configuration Tool may prompt you for the
location of the appropriate build tools (including make and TARGET-gcc) using a Build Tools dialog box (as shown

in Figure 11-6). You can select a location from the drop down list, browse to the directory using the Browse button,
or type in the location of the build tools manually.

Chapter 11. Configuring and Building eCos from Source

Figure 11-6. Build tools dialog

@
Enter the location of the i386-elf build tools oK
folder, which should contain i386-elf-gcc You can
type in a path or use the Browse button to cancel
navigate to a folder.
Browise..,
|fusrfcygnusfecos-arm-01 1121 /H-I686-pc-linux-gnulibc2.2/bin j

The Configuration Tool may also prompt you for the location of the user tools (such as cat and Is) using a User
Tools dialog box (as shown in Figure 11-7). As with the Build Tools dialog, you can select a location from the drop
down list, browse to the directory using the Browse button, or type in the location of the user tools manually. Note
that on Linux, this will often be unnecessary as the tools will already be on your PATH.

Figure 11-7. User tools dialog

o

Enter the location of the user tools folder, oK
which should contain cat and Is. You can type in

a path or use the Browse button to navigate to a cancel
folder.

Browise..,
[#bin JE|

When the tool locations have been entered, the Configuration Tool will configure the sources, prepare a build tree,
and build the 1ibtarget .a library, which contains the eCos kernel and other packages.

The output from the configuration process and the building of 1ibtarget .a will be shown in the output window.

Once the build process has finished you will have a kernel with other packages in 1ibtarget .a. You should now
build the eCos tests for your particular configuration.

You can do this by selecting Build -> Tests. Notice that you could have selected 7ests instead of Library in the earlier
step and it would have built both the library and the tests, but this would increase the build time substantially, and
if you do not need to build the tests it is unnecessary.

29

Chapter 11. Configuring and Building eCos from Source

Figure 11-8. Selecting the Build Tests menu item

Euildl Teols Help

i Library F7
" Tests Shft+F7
Clean

Generate Build Tree
Options..

~ Repository...

. Templates..

i Packages...

Chapter 12 will guide you through running one of the test cases you just built on the selected target, using GDB.

Ecosconfig on Windows and Linux Quick Start

30

As an alternative to using the graphical Configuration Tool, it is possible to configure and build a kernel by editing
a configuration file manually and using the ecosconfig command. Users with a Unix background may find this tool
more suitable than the GUI tool described in the previous section.

Manual configuration and the ecosconfig command are described in detail in Chapter 28.

To use the ecosconfig command you need to start a shell. In Windows you need to start a CygWin bash shell, not
a DOS command line.

The following instructions assume that the PATH and ECOS_REPOSITORY environment variables have been setup
correctly as described in Chapter 7. They also assume Linux usage but equally well apply to Windows running
Cygwin.

Before invoking ecosconfig you need to choose a directory in which to work. For the purposes of this tutorial, the
default path will be Basz_prr/ecos-work. Create this directory and change to it by typing:

$ mkdir BASE_DIR/ecos—-work
$ cd BASE_DIR/ecos—work

To see what options can be used with ecosconfig, type:

$ ecosconfig —--help

The available packages, targets and templates may be listed as follows:
$ ecosconfig list

Here is sample output from ecosconfig showing the usage message.

Example 11-1. Getting help from ecosconfig

$ ecosconfig —--help

Chapter 11. Configuring and Building eCos from Source

Usage: ecosconfig [qualifier ...] [command]
commands are:

list : list repository contents
new TARGET [TEMPLATE [VERSION]] : create a configuration
target TARGET : change the target hardware
template TEMPLATE [VERSION] : change the template
add PACKAGE [PACKAGE ...] : add package (s)
remove PACKAGE [PACKAGE ...] : remove package (s)
version VERSION PACKAGE [PACKAGE ...] : change version of package(s)
export FILE : export minimal config info
import FILE : import additional config info
check : check the configuration
resolve : resolve conflicts
tree : create a build tree

qualifiers are:

—-—config=FILE : the configuration file

——prefix=DIRECTORY : the install prefix

——srcdir=DIRECTORY : the source repository

——-no-resolve : disable conflict
resolution

—--version : show version and copyright

Example 11-2. ecosconfig output — list of available packages, targets and templates

$ ecosconfig list

Package CYGPKG_CYGMON (CygMon support via eCos):

aliases: cygmon

versions: <version>

Package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1742 (Wallclock driver for Dallas 1742):
aliases: devices_wallclock_dsl1742 device_wallclock_dsl1742

versions: <version>

Package CYGPKG_DEVICES_WALLCLOCK_SH3 (Wallclock driver for SH3 RTC module) :
aliases: devices_wallclock_sh3 device_wallclock_sh3

versions: <version>

Package CYGPKG_DEVICES_WATCHDOG_ARM_AEB (Watchdog driver for ARM/AEB board) :
aliases: devices_watchdog_aeb device_watchdog_aeb

versions: <version>

Package CYGPKG_DEVICES_WATCHDOG_ARM_EBSA285 (Watchdog driver for ARM/EBSA285 board):
aliases: devices_watchdog_ebsa285 device_watchdog_ebsa285

versions: <version>

Selecting a Target
To configure for a listed target, type:

$ ecosconfig new <target>

For example, to configure for the ARM PID development board, type:

$ ecosconfig new pid

31

Chapter 11. Configuring and Building eCos from Source

32

You can then edit the generated file, ecos.ecc, setting the options as required for the target (endianess, CPU
model, Startup type, etc.). For detailed information about how to edit the ecos.ecc file, see the CDL Writer’s
Guide and the Section called Editing an eCos Savefile in Chapter 28.

Create a build tree for the configured target by typing:

$ ecosconfig tree

If there are any problem with the configuration, ecosconfig will tell you. The most likely cause of this is mistakes
when editing the ecos.ecc file. You can check whether the configuration you have made is correct, without
building the tree with the following command:

$ ecosconfig check

If this reports any conflicts you can get ecosconfig to try and resolve them itself by typing:

$ ecosconfig resolve

See the Section called Conflicts and constraints in Chapter 28 for more details.

You can now run the command make or make tests, after which you will be at the same point you would be after
running the Configuration Tool — you can start developing your own applications, following the steps in Chapter
13.

The procedure shown above allows you to do very coarse-grained configuration of the eCos kernel: you can select
which packages to include in your kernel, and give target and start-up options. But you cannot select components
within a package, or set the very fine-grained options.

To select fine-grained configuration options you will need to edit the configuration file ecos.ecc in the current
directory and regenerate the build tree.

Caution

You should follow the manual configuration process described above very carefully, and you
should read the comments in each file to see when one option depends on other options or
packages being enabled or disabled. If you do not, you might end up with an inconsistently
configured kernel which could fail to build or might execute incorrectly.

Chapter 12. Running an eCos Test Case

In the Section called Configuration Tool on Windows and Linux Quick Start in Chapter 11 or the Section called
Ecosconfig on Windows and Linux Quick Start in Chapter 11 you created the eCos test cases as part of the build
process. Now it is time to try and run one.

Using the Configuration Tool

Test executables that have been linked using the Build->Tests operation against the current configuration can be
executed by selecting Tools->Run Tests.

When a test run is invoked, a property sheet is displayed, see Figure 12-1. Press the Uncheck All button and then
find and check just one test, bin_sem0 for example.

Figure 12-1. Run tests

]

Executables ‘ Qutput | Summary |

| Uncheck P.II| add.., |P.dd from Folder..| Remove

[<] Atmp/funtitled_install/tests/halfcommonfcurrent/tests fcache
[x] ftmp/funtitled_install/tests/halfcommon/current/tests fcontext
[Atmpfuntitled_install/tests/hal/commeon/current/testsfintr

[x] ftmp/funtitled_install/tests/halfcommon/current/tests fbasic
[Atmpfuntitled_install ftests/kernel/current/tests/bin_semo

[x] Atmpfuntitled_install/tests/kernel/current/tests/bin_sem1

[Atmpfuntitled_install ftests/kernel/current/tests/bin_sem?2

[x] ftmpfuntitled_install/tests/kernelfcurrent/tests/clockn

[Atmpfuntitled_install/tests/kernel/current/tests/clockt

[x] ftmp/funtitled_install/tests/kernel/current/tests /clockeny

[Atmpfuntitled_install ftests/kernel/current/tests/clocktruth

[] Atmpfuntitled_install ftests/kernel/current/tests/ont_semo

[« Atmpfuntitled_install /tests/kernel/current/testsfont_sem

[<] ftmp/funtitled_install/tests/kernel/current/tests fexnceptl

[<] ftmp/funtitled_install/tests/kernel/fcurrent/tests /flago

[x] ftmp/funtitled_install/tests/kernel/current/tests /flagt

[x] Atmpfuntitled_installftests/kernel/current/tests fintro

[x] ftmpfuntitled_install/tests/kernelfcurrent/tests fkclockn

[%] /tmpfuntitled_install/tests/k [titests/kelockl -

»
Run | Close | Properties...| ﬂ

Now press the Properties button to set up communications with the target. This will bring up a properties dialog
shown in Figure 12-2. If you have connected the target board via a serial cable, check the Serial radio button, and
select the serial port and baud rate for the board. If the target is connected via the network select the TCP/IP button
and enter the IP address that the board has been given, and the port number (usually 9000).

33

Chapter 12. Running an eCos Test Case

Figure 12-2. Properties dialog box

[
Dizplay | Viewers | Conflict Resolution Run Tests ‘
Platform: pc
Timeouts
Download | Specified ¥ | 120 ﬁ
A 2
Runtime: | Default - >
Connection
® Serial Port: | COM1 % | Baud: | 38400 *
TCRAP Address:

Ok | Cancel Help | ﬂ

Click OK on this dialog and go back to the Run Tests dialog. Press the Run button and the selected test will be
downloaded and run. The Output tab will show you how this is progressing. If it seems to stop for a long time,
check that the target board is correctly connected, and that eCos has been correctly configured -- especially the
start-up type.

When the program runs you should see a couple of line similar to this appear:

PASS:<Binary Semaphore 0 OK>
EXIT:<done>

This indicates that the test has run successfully.

See Chapter 22 for further details.

Using the command line

34

Start a command shell (such as a Cygwin shell window in Windows) with the environment variables set as described
in the toolchain documentation. Change to the directory in which you set up your build tree, and invoke GDB on
the test program.

To run the bin_semO test (which will test the kernel for the correct creation and destruction of binary semaphores)
type:

$ TARGET-gdb —-nw install/tests/kernel/<version>/tests/bin_sem0
You should see output similar to the following in the command window:

GNU gdb THIS-GDB-VERSION
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are

Chapter 12. Running an eCos Test Case

welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=THIS-HOST --target=THIS-TARGET".
(gdb)

If you are trying to run a synthetic target test on Linux, skip the following connection and download steps. Other-
wise, connect to the target by typing:

(gdb) set remotebaud 38400
(gdb) target remote /dev/ttySO

on Linux or

(gdb) set remotebaud 38400
(gdb) target remote coml

on Windows or
(gdb) target sim

to use a simulator in either host O/S.
Check the documentation for the target board for the actual baud rate to use when connecting to real targets.

You will see output similar to the following:

Remote debugging using /dev/ttySl
0x0000d50c in 2?2 ()
at BASE_DIR/kernel/<version>/src/common/kapi.cxx:345

Current language: auto; currently c++
(gdb)

Or if you are using the simulator:

Connected to the simulator.
(gdb)

Now download the program to the target with

(gdb) load

You should see output similar to the following on your screen:
Loading section .text, size 0x4b04 1lma 0x108000
Loading section .rodata, size 0x738 lma 0x10cb08
Loading section .data, size 0x1lcO lma 0x10d240
Start address 0x108000, load size 21500

Transfer rate: 24571 bits/sec, 311 bytes/write.
(gdb)

You are now ready to run your program. If you type:

(gdb) continue

35

Chapter 12. Running an eCos Test Case

you will see output similar to the following:

Continuing.
PASS:<Binary Semaphore 0 OK>
EXIT:<done>

Note: If you are using a simulator or the synthetic target rather than real hardware, you must use the GDB
command “run” rather than “continue” to start your program.

You can terminate your GDB session with Control+C, otherwise it will sit in the “idle” thread and use up CPU
time. This is not a problem with real targets, but may have undesirable effects in simulated or synthetic targets.
Type quit and you are done.

Testing Filters

36

While most test cases today run solely in the target environment, some packages may require external testing
infrastructure and/or feedback from the external environment to do complete testing.

The serial package is an example of this. The network package also contains some tests that require programs to
be run on a host. See the network Tests and Demonstrations section in the network documentation in the eCos
Reference Guide. Here we will concentrate on the serial tests since these are applicable to more targets.

Since the serial line is also used for communication with GDB, a filter is inserted in the communication pathway be-
tween GDB and the serial device which is connected to the hardware target. The filter forwards all communication
between the two, but also listens for special commands embedded in the data stream from the target.

When such a command is seen, the filter stops forwarding data to GDB from the target and enters a special mode.
In this mode the test case running on the target is able to control the filter, commanding it to run various tests.
While these tests run, GDB is isolated from the target.

As the test completes (or if the filter detects a target crash) the communication path between GDB and the hardware
target is re-established, allowing GDB to resume control.

In theory, it is possible to extend the filter to provide a generic framework for other target-external testing compo-
nents, thus decoupling the testing infrastructure from the (possibly limited) communication means provided by the
target (serial, JTAG, Ethernet, etc).

Another advantage is that the host tools do not need to know about the various testing environments required by
the eCos packages, since all contact with the target continues to happen via GDB.

Chapter 13. Building and Running Sample
Applications

The example programs in this tutorial are included, along with a Makefile, in the examples directory of the eCos
distribution. The first program you will run is a hello world-style application, then you will run a more complex
application that demonstrates the creation of threads and the use of cyg_thread_delay(), and finally you will run
one that uses clocks and alarm handlers.

The Makefile depends on an externally defined variable to find the eCos library and header files. This variable is
INSTALL_DIR and must be set to the pathname of the install directory created in the Section called Configuration
Tool on Windows and Linux Quick Start in Chapter 11.

INSTALL_DIR may be either be set in the shell environment or may be supplied on the command line. To set it in
the shell do the following in a bash shell:

$ export INSTALL_DIR=BASE_DIR/ecos-work/arm_install

You can then run make without any extra parameters to build the examples.

Alternatively, if you can do the following:

$ make INSTALL_DIR=BASE_DIR/ecos—-work/arm_install

eCos Hello World

The following code is found in the file hello.c in the examples directory:

eCos hello world program listing

/* this is a simple hello world program x/
#include <stdio.h>

int main (void)

{

printf ("Hello, eCos world!\n");

return 0;

}

To compile this or any other program that is not part of the eCos distribution, you can follow the procedures
described below. Type this explicit compilation command (assuming your current working directory is also where
you built the eCos kernel):

$ TARGET-gcc —g —1BASE DIR/ecos-work/install/include hello.c -LBASE DIR/ecos—-work/install/lib -Ttarge

The compilation command above contains some standard GCC options (for example, -g enables
debugging), as well as some mention of paths (-1Basz DIR/ecos-work/install/include allows files like
cyg/kernel/kapi.h to be found, and -LBase pIrR/ecos-work/install/lib allows the linker to find
-Ttarget.1d).

The executable program will be called a. out.

37

Chapter 13. Building and Running Sample Applications

Note: Some target systems require special options to be passed to gcc to compile correctly for that system.
Please examine the Makefile in the examples directory to see if this applies to your target.

You can now run the resulting program using GDB in exactly the same the way you ran the test case before. The
procedure will be the same, but this time run TARGET-gdb specifying -nw a.out on the command line:

$ TARGET-gdb —-nw a.out

For targets other than the synthetic linux target, you should now run the usual GDB commands described earlier.
Once this is done, typing the command "continue" at the (gdb) prompt ("run" for simulators) will allow the program
to execute and print the string "Hello, eCos world!" on your screen.

On the synthetic linux target, you may use the "run" command immediately - you do not need to connect to the
target, nor use the "load" command.

A Sample Program with Two Threads

38

Below is a program that uses some of eCos’ system calls. It creates two threads, each of which goes into an infinite
loop in which it sleeps for a while (using cyg_thread_delay()). This code is found in the file twothreads.c in the
examples directory.

eCos two-threaded program listing

#include <cyg/kernel/kapi.h>
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* now declare (and allocate space for) some kernel objects,
like the two threads we will use x/
cyg_thread thread_s([2]; /* space for two thread objects x/

char stack([2][4096]; /* space for two 4K stacks x/

/* now the handles for the threads =/
cyg_handle_t simple_threadA, simple_threadB;

/* and now variables for the procedure which is the thread */
cyg_thread_entry_t simple_program;

/* and now a mutex to protect calls to the C library =/
cyg_mutex_t cliblock;

/* we install our own startup routine which sets up threads =/
void cyg_user_start (void)
{

printf ("Entering twothreads’ cyg_user_start () function\n");

Chapter 13. Building and Running Sample Applications
cyg_mutex_init (&cliblock);

cyg_thread_create (4, simple_program, (cyg_addrword_t) O,
"Thread A", (void =) stack[0], 4096,

&simple_threadA, &thread_s[0]);

cyg_thread_create (4, simple_program, (cyg_addrword_t) 1,
"Thread B", (void =) stack[1l], 4096,

&simple_threadB, &thread_s[1l]);

cyg_thread_resume (simple_threadd);
cyg_thread_resume (simple_threadB);

}

/* this is a simple program which runs in a thread =/
void simple_program(cyg_addrword_t data)

{

int message = (int) data;

int delay;

printf ("Beginning execution; thread data is %d\n", message);
cyg_thread_delay (200);

for (;;) {
delay = 200 + (rand() % 50);

/+ note: printf () must be protected by a

call to cyg_mutex_lock() =/

cyg_mutex_lock (&cliblock); {

printf ("Thread %d: and now a delay of %d clock ticks\n",
message, delay);

}

cyg_mutex_unlock (&cliblock);

cyg_thread_delay (delay) ;

}

}

When you run the program (by typing continue at the (gdb) prompt) the output should look like this:

Starting program: BASE DIR/examples/twothreads.exe
Entering twothreads’ cyg_user_start ()

function

Beginning execution; thread data is O

Beginning execution; thread data is 1

Thread 0: and now a delay of 240 clock ticks

Thread 1: and now a delay of 225 clock ticks
Thread 1: and now a delay of 234 clock ticks
Thread 0: and now a delay of 231 clock ticks
Thread 1: and now a delay of 224 clock ticks
Thread 0: and now a delay of 249 clock ticks
Thread 1: and now a delay of 202 clock ticks
Thread 0: and now a delay of 235 clock ticks

39

Chapter 13. Building and Running Sample Applications

Note: When running in a simulator the delays might be quite long. On a hardware board (where the clock speed
is 100 ticks/second) the delays should average to about 2.25 seconds. In simulation, the delay will depend on
the speed of the host processor and will almost always be much slower than the actual board. You might want
to reduce the delay parameter when running in simulation.

Figure 13-1 shows how this multitasking program executes. Note that apart from the thread creation system calls,
this program also creates and uses a mutex for synchronization between the print£ () calls in the two threads.
This is because the C library standard I/O (by default) is configured not to be thread-safe, which means that if more
than one thread is using standard I/O they might corrupt each other. This is fixed by a mutual exclusion (or mutex)
lockout mechanism: the threads do not call print £ () until cyg_mutex_lock () has returned, which only happens
when the other thread calls cyg_mutex_unlock ().

You could avoid using the mutex by configuring the C library to be thread-safe (by selecting the component
CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS).

Figure 13-1. Two threads with simple print statements after random delays

maLin progrim

cyg_thread_create() N cyg_thread_create()

Thread A ‘ Thread B ‘

delay

delay
print message

L .
I's A time:

print message

L _ J

delay
delay
¥

— v

print message

L _ J

print message
delay

delay

-

¥

print message —

J

print message

L J

40

Chapter 14. More Features — Clocks and Alarm
Handlers

If a program wanted to execute a task at a given time, or periodically, it could do it in an inefficient way by sitting
in a loop and checking the real-time clock to see if the proper amount of time has elapsed. But operating systems
usually provide system calls which allow the program to be informed at the desired time.

eCos provides a rich timekeeping formalism, involving counters, clocks, alarms, and timers. The precise definition,
relationship, and motivation of these features is beyond the scope of this tutorial, but these examples illustrate how
to set up basic periodic tasks.

Alarms are events that happen at a given time, either once or periodically. A thread associates an alarm handling
function with the alarm, so that the function will be invoked every time the alarm “goes off”.

A Sample Program with Alarms

simple-alarm.c (in the examples directory) is a short program that creates a thread that creates an alarm. The
alarm is handled by the function test_alarm_func (), which sets a global variable. When the main thread of
execution sees that the variable has changed, it prints a message.

Example 14-1. A sample program that creates an alarm

/* this is a very simple program meant to demonstrate
a basic use of time, alarms and alarm-handling functions in eCos x/

#include <cyg/kernel/kapi.h>
#include <stdio.h>

#define NTHREADS 1
#define STACKSIZE 4096

static cyg_handle_t thread[NTHREADS];

static cyg_thread thread_obj[NTHREADS];
static char stack [NTHREADS] [STACKSIZE];

static void alarm_prog(cyg_addrword_t data);

/* we install our own startup routine which sets up
threads and starts the scheduler =/

void cyg_user_start (void)

{

cyg_thread_create (4, alarm_prog, (cyg_addrword_t) O,
"alarm_thread", (void =x) stack[O0],

STACKSIZE, &thread[0], &thread_obj[0]);
cyg_thread_resume (thread[0]);

}

/* we need to declare the alarm handling function (which is

41

Chapter 14. More Features — Clocks and Alarm Handlers

42

defined below), so that we can pass it to c¢yg_alarm_initialize() x/
cyg_alarm_t test_alarm_func;

/* alarm_prog() is a thread which sets up an alarm which is then
handled by test_alarm_func() =/

static void alarm_prog(cyg_addrword_t data)

{

cyg_handle_t test_counterH, system_clockH, test_alarmH;
cyg_tick_count_t ticks;

cyg_alarm test_alarm;

unsigned how_many_alarms = 0, prev_alarms = 0, tmp_how_many;

system_clockH = cyg_real_ time_clock();

cyg_clock_to_counter (system_clockH, &test_counterH);
cyg_alarm_create (test_counterH, test_alarm_ func,
(cyg_addrword_t) &how_many_alarms,

&test_alarmH, &test_alarm);

cyg_alarm_initialize(test_alarmH, cyg_current_time()+200, 200);

/+x get in a loop in which we read the current time and
print it out, just to have something scrolling by =*/
for (;;) |
ticks = cyg_current_time();
printf ("Time is %$1lul\n", ticks);
/* note that we must lock access to how_many_alarms, since the
alarm handler might change it. this involves using the
annoying temporary variable tmp_how_many so that I can keep the
critical region short =/
cyg_scheduler_lock();
tmp_how_many = how_many_alarms;
cyg_scheduler_unlock();

if (prev_alarms != tmp_how_many) {
printf (" --- alarm calls so far: %ul\n", tmp_how_many);
prev_alarms = tmp_how_many;

}
cyg_thread_delay (30);

/* test_alarm_func() is invoked as an alarm handler, so
it should be quick and simple. in this case it increments
the data that is passed to it. =/
void test_alarm_func(cyg_handle_t alarmH, cyg_addrword_t data)
{
+++% ((unsigned) data);
t

When you run this program (by typing continue at the (gdb) prompt) the output should look like this:

Starting program: BASE DIR/examples/simple-alarm.exe
Time is O

Time is 30

Time is 60

Time is 90

Time is 120

Time is
Time is
Time is

-—— alarm

Time is
Time is
Time is
Time is
Time is
Time is
Time is

——— alarm

Time is
Time is

150
180
210

240
270
300
330
360
390
420

450
480

calls so far:

calls so far:

1

2

Chapter 14. More Features — Clocks and Alarm Handlers

Note: When running in a simulator the delays might be quite long. On a hardware board (where the clock
speed is 100 ticks/second) the delays should average to about 0.3 seconds (and 2 seconds between alarms).
In simulation, the delay will depend on the speed of the host processor and will almost always be much slower

than the actual board. You might want to reduce the delay parameter when running in simulation.

Here are a few things you might notice about this program:

It used the cyg_real_time_clock () function; this always returns a handle to the default system real-time
clock.

Clocks are based on counters, so the function cyg_alarm_create () uses a counter handle. The program used
the function cyg_clock_to_counter () to strip the clock handle to the underlying counter handle.

Once the alarm is created it is initialized with cyg_alarm_initialize (), which sets the time at which the
alarm should go off, as well as the period for repeating alarms. It is set to go off at the current time and then to
repeat every 200 ticks.

The alarm handler function test_alarm_func () conforms to the guidelines for writing alarm handlers and
other delayed service routines: it does not invoke any functions which might lock the scheduler. This is discussed
in detail in the eCos Reference Manual, in the chapter The eCos Kernel.

There is a critical region in this program: the variable how_many_alarms is accessed in the main thread of
control and is also modified in the alarm handler. To prevent a possible (though unlikely) race condition on this
variable, access to how_many_alarms in the principal thread is protected by calls to cyg_scheduler_lock ()
and cyg_scheduler_unlock (). When the scheduler is locked, the alarm handler will not be invoked, so the
problem is averted.

43

Chapter 14. More Features — Clocks and Alarm Handlers

44

IV. The eCos Configuration Tool

Chapter 15. Getting Started

Introduction

The eCos Configuration Tool is used to tailor eCos at source level, prior to compilation or assembly, and provides
a configuration file and a set of files used to build user applications. The sources and other files used for build-
ing a configuration are provided in a component repository, which is loaded when the eCos Configuration Tool is
invoked. The component repository includes a set of files defining the structure of relationships between the Con-
figuration Tool and other components, and is written in a Component Definition Language (CDL). For a description
of the concepts underlying component configuration, see Chapter 24.

Invoking the eCos Configuration Tool

On Linux
Add the eCos Configuration Tool install directory to your PATH, for example:

export PATH=/opt/ecos/ecos<version>/bin:$PATH

You may run configtool with zero, one or two arguments. You can specify the eCos repository location, and/or an
eCos save file (extension .ecc) on the command line. The ordering of these two arguments is not significant. For
example:

configtool /opt/ecos/ecos<version>/packages myfile.ecc

The Configuration Tool will be displayed (see Figure 15-1).

On Windows

There are two ways in which to invoke the eCos Configuration Tool:

« from the desktop explorer or program set up at installation time (by default Start -> Programs -> eCos ->
Configuration Tool).

+ type (at a command prompt or in the Start menu’s Run item): <foldername>\ConfigTool.exe where
<foldername>> is the full path of the directory in which you installed the eCos Configuration Tool.

+ The Configuration Tool will be displayed (see Figure 15-1).

You may run configtool with zero, one or two arguments. You can specify the eCos repository location, and/or an
eCos save file (extension .ecc) on the command line. The ordering of these two arguments is not significant. For
example:

configtool "c:\Program Files\eCos\packages" myfile.ecc

If you invoke the configuration tool from the command line with --help, you will see this output:

47

Chapter 15. Getting Started

Usage: eCos Configuration Tool

-h —--help displays help on the command line parameters
-e ——edit-only edit save file only

-v —-version print version

-c¢ —-compile-help compile online help only

[-h] [-e] [-v] [-c]

[input file 1]

[input file 2]

This summarizes valid parameters and switches. Switches are shown with both short form and long form.

--help shows valid options and parameters, as above.

--edit-only runs the Configuration Tool in a mode that suppresses creation of a build tree, in case you only want to

create and edit save files.

--version shows version and build date information, and exits.

--compile-help compiles help contents files from the HTML documentation files that the tool finds in the eCos

repository, and exits.

Figure 15-1. Configuration Tool

= untitled - 2.0
File Edit View Build Tools Help

(=2 = R h? @
= [configuration Item Conflict |Property

@@ Redboot for SuperH eptions
= [Global bulld options
al command prefixs sh-elf
@ Clobal compiler flags -l -m32 -wall -w
[aB] Clobal linker flags
™ Build GDB stub ROM image
[T Build common GDE stub R

El

% eCos HAL current
170 sub-systam current
% Serial device drivers current
¥ Infrastructure current
Y eCos kernel current
& Dynamic memory allocation current
IS0 C and POSIY infrastructu current
150 C library current
& Math library current
% wallclock device current

current

CYGPKC_HAL_SH_SH77 Unsatisfied
CYGPKG_HAL SH_SH77 Unsatisfied
CYGPKC_HAL_SH_SH77 Unsatisfied
CYGPKC_HAL_SH_SHF? Unsatisfied
CYGIMT_HAL_SH_VARIA Unsatisfied

Requires CY¥GC
Requires CYG
Requires CYGC
Requires CYGF
Requires 1 ==

e
Property Value

LRL reflfecos-ref. html E
File Jtmp/untitled_install/include/p
Macre CYCBLD_GLOBAL_COMMAND_P
Value sh-elf

Default sh-alf

This aption specifies the command prefix used
when inveking the build tools,

CYGPKG_HAL_SH_7750, no radio buttons are set

Ready

|5 conflicts

The Component Repository

When you invoke the eCos Configuration Tool, it accesses the Component Repository, a read-only location of
configuration information. For an explanation of “Component Repository” see Chapter 24.

The eCos Configuration Tool will look for a component repository using (in descending order of preference):

48

Chapter 15. Getting Started

+ A location specified on the command line
« The component repository most recently used by the current user

+ An eCos distribution under /opt/ecos (under Linux) or a default location set by the installation procedure
(under Windows)

« User input

The final case above will normally only occur if the previous repository has been moved or (under Windows)
installation information stored in the Windows registry has been modified; it will result in a dialog box being
displayed that allows you to specify the repository location:

Figure 15-2. Repository relocation dialog box

i}

Please specify the root of the eCos repository tree.

Ok
_ Cancel |

Cancel

| Browise..,
il

|[/homefjuIianstocaIfeCosfecc

Note that in order to use the eCos Configuration Tool you are obliged to provide a valid repository location.

In the rare event that you subsequently wish to change the component location, select Build->Repository and the
above dialog box will then be displayed.

You can check the location of the current repository, the current save file path, and the current hardware template
and default package, by selecting Help->Repository Information.... A summary will be displayed.

eCos Configuration Tool Documents

Configuration Save File

eCos configuration settings and other information (such as disabled conflicts) that are set using the eCos Config-
uration Tool are saved to a file between sessions. By default, when the eCos Configuration Tool is first invoked,
it reads and displays information from the Component Registry and displays the information in an untitled blank
document. You can perform the following operations on a document:

Save the currently active document

Use the “File->Save” menu item or click the Save Document icon on the toolbar; if the current document is
unnamed, you will be prompted to supply a name for the configuration save file.

49

Chapter 15. Getting Started

Figure 15-3. Save As dialog box

of of of

Current directory: ftmpfecos

]

arm.ecc 019
* B o Show hidden files Cancel

Open an existing document

Select File->Open, or click the Open Document icon on the toolbar. You will be prompted to supply a name for
the configuration save file.

Figure 15-4. Open dialog box

o] of of

Current directory: fhome

[
[eces
]

Ok
Configtosl (*ecd hd Show hidden files Cancel

Open a document you have used recently

Click its name at the bottom of the File menu.

50

Chapter 15. Getting Started

Documents may also be opened by:

+ double-clicking a Configuration Save File in the desktop explorer (Windows only);

« invoking the eCos Configuration Tool with the name of a Configuration File as command-line argument, or by
creating a shortcut to the eCos Configuration Tool with such an argument (under Windows or a suitable Linux
desktop environment).

Create a new blank document based on the Component Registry

Select File->New, or click the New Document icon on the toolbar.

Save to a different file name

Select File->Save As. You will be prompted to supply a new name for the configuration save file.

Build and Install Trees

The location of the build and install trees are derived from the eCos save file name as illustrated in the following
example:

Save file name = “c:\My eCos\configl.ecc”

Install tree folder = “c:\My eCos\configl_install”

Build tree folder = “c:\My eCos\configl_build”

These names are automatically generated from the name of the save file.

See also Chapter 24.

51

Chapter 15. Getting Started

52

Chapter 16. Getting Help

The eCos Configuration Tool contains several methods for accessing online help.

Context-sensitive Help for Dialogs

Most dialogs displayed by the eCos Configuration Tool are supplied with context-sensitive help. You can then get
help relating to any control within the current dialog box by

+ Right-clicking the control (or pressing F1)

A “What’s This?” popup menu will be displayed. Click the menu to display a brief description of the function
of the selected control.

+ Clicking the question mark icon in the dialog caption bar (Windows) or the question mark button on the dialog
(Linux).

A question mark cursor will be displayed. Click on any control to display a brief description of its function.

Some dialogs may have a Help button. You can press this to display a more general description of the function of
the dialog box as a whole. This help will be in HTML form; for more information, see below.

Context-sensitive Help for Other Windows

In the Help menu, click Help On... and then click on a window (or click on the arrow/question mark button on the
toolbar, then click on a window). A small popup window page describing the window will be displayed. The same
thing can be achieved by right-clicking on a window and clicking on What’s This?.

Context-sensitive Help for Configuration ltems

In the configuration window, right-click on a configuration item (or use Shift+F10). A context menu will be dis-
played; select Visit Documentation to display the page in the eCos documentation that most closely corresponds to
the selected item.

Methods of Displaying HTML Help

1. Using the internal help system. This will show an internal viewer similar to Microsoft HTML Help, with a
contents hierarchy on the left and HTML pages on the right; see Figure 16-1. The index is regenerated for each
repository. If the documentation in the repository has changed but the contents does not reflect this, please use
the Tools Regenerate Help Index menu item.

2. Using the default HTML browser. On Unix, you will need a .mailcap entry similar to this:

53

Chapter 16. Getting Help

text/html; netscape -no-about-splash %s

3. Using the specified browser.

Figure 16-1. HTML Help viewer

~ Help: Real-time =] tio S 00
J Kallad ﬁ-lﬁlGlJJ |
Contents ‘ Index | Search | system. This value is affected by a number

of factors: how long interrupts might be H
(bookmarks) j j& masked, whether or not the function can b

interrupted, even very hardware-specific
= W eCos effects such as cache locality and pipeline
[0 Getting Started with aCos usage.llt is very diﬁiqult to measure the
= [eCos User's Guide determinacy of any given operation, but
that determinacy is fundamentally important

Decos to proper overall characterization of a
[0 Part I: The eCos Configu| | system,
3 Part Il eCos Prograrmimil
(23 Part 1 Configuration ar tIrr: thekdiscussion and rt1umbers thgiéfgllgr\,:‘,
ree key measurements are provided. The
= Qrartv: Spec'al TOD'CS first measurement is an estimate of the
interrupt latency: this is the length of time
Index from when a hardware interrupt occurs unti
RedBoot User's Guide its Interrupt Zervice Routine (13R) is called

3 eCos Component Writer's (|| The second measurement is an estimate o
[eCos Reference Manual overall interrupt overhead: this is the lengtl
- of time average interrupt processing takes,
eCosEL/IX Cor”pat'h'l'ty | as measured by the rea-time clock
GNUPro Toolkit Reference || interrupt (other interrupt sources will
[Z1 Packages certainly take a different amount of time, but

thls data cannot he easﬂy gathered). The
ement consists nf the timinns
»

-

If you wish, you may choose to have HTML Help displayed in a browser of your choice. To do this, select View-
>Settings and use the controls in the View Documentation group to select the replacement browser. Note that the
Navigation facilities of the built-in HTML Help system will be unavailable if you choose this method of displaying
help.

54

Chapter 17. Customization

The following visual aspects of the eCos Configuration Tool can be changed to suit individual preferences. These
aspects are saved on a per-user basis, so that when the eCos Configuration Tool is next invoked by the same user,
the appearance will be as set in the previous session.

Window Placement

The relative sizes of all windows in the eCos Configuration Tool may be adjusted by dragging the splitter bars that
separate the windows. The chosen sizes will be used the next time the eCos Configuration Tool is invoked by the
current user.

All windows except the Configuration Window may be shown or hidden by using the commands under the View
menu (for example, View->Output) or the corresponding keyboard accelerators (Alt+1 to Alt+4).

Your chosen set of windows (and their relative sizes) will be preserved between invocations of the eCos Configu-
ration Tool.

Settings

To change other visual aspects, select View->Settings and then select the Display and View tabs depending on the
settings you wish to alter.. The options are as follows:

Settings: Display tab

Figure 17-1. Settings dialog, Display tab

Dizplay ‘ Viewers | Conflict Resolution | Run Tests

Configuration Pane

Labels Integer items
~ Use macro names A Decimal
A se descriptive names v Hexadecimal

Font
Window: |Configuration w Change Font...

Miscellaneous

¥l Show initial splash screen

Ok | Cancel Help | ﬂ

55

Chapter 17. Customization

Labels

In the configuration window, you can choose to have either descriptive names (the default) or macro names dis-
played as tree item labels. Descriptive names are generally more comprehensible, but macro names are used in
some contexts such as conflict resolution and may be directly related to the source code of the configuration. Note
that it is possible to search for an item in the configuration view by selecting Find->Edit (see Chapter 20). Both
descriptive names and macro names can be searched.

Integer Items

You can choose to have integer items in the Configuration Window displayed in decimal or hexadecimal format.

Font

Change the font for a particular window by selecting the window name using the drop-down list, then clicking
on Change Font to select a font for that window. The changes will be applied when the press OK to dismiss the
Settings dialog. If you never make font changes, then the windows will take the default setting determined by your
current Windows or Unix environment.

Miscellaneous

If the Splash Screen checkbox is checked, a splash window will appear as the application is loading. Uncheck this
to eliminate the splash screen.

Settings: Viewers tab

Figure 17-2. Settings dialog, Viewers tab

Display VWiewers | Conflict Resolution | Run Tests |
View header files using

® Associated viewer

This viewer:

View documentation using

® Built-in viewer

fssociated browser Ahout..
This brewser

Ok | Cancel | Help | ﬂ

56

Chapter 17. Customization

View header files

You can change the viewer used to display header files.

View documentation

You can change the viewer used to display HTML files. See the Section called Methods of Displaying HTML Help
in Chapter 16.

57

Chapter 17. Customization

58

Chapter 18. Screen Layout

The following windows are available within the eCos Configuration Tool:

+ Configuration Window
+ Properties Window

« Short Description

+ Conflicts

+ Output

The layout of the windows may be adjusted to suit your preferences: see the Section called Sertings in Chapter 17.

Configuration Window

This is the principal window used to configure eCos. It takes the form of a tree-based representation of the config-

uration items within the currently loaded eCos packages.

In the case of items whose values may be changed, controls are available to set the item values. These either take
the form of check boxes or radio buttons within the tree itself or cells to the right of the thin vertical splitter bar.

Controls in the tree may be used in the usual way; cells, however, must first be activated.

To activate a cell, simply click on it: it will assume a sunken appearance and data can then be edited in the cell.
To terminate in-cell editing, click elsewhere in the configuration window or press ENTER. To discard the partial

results of in-cell editing and revert to the previous value, press ESCAPE.

= [configuration
[Z3 Global build options

)

3
2
Gl

3
2
Gl

s

448

[+

0EHEEEBEEBE
U, Oz O

eCos HAL
Y 1/0 sub-system
[T Debug 140 sub-system
¥ Basic support for file based 1/0
& PCI configuration library
A serial device drivers
A Infrastructure
A eCos kernel
A Dynamic memeory allocation
Z3 Memeory allocator implementatic
¥ Kernel C APl support for memor
[T malloco) returns NULL
¥ mallocd and supporting allocato

'3
[+

0EEEBE

Z3 Comron memory allocator pack
150 Cand POSIX infrastructure

Cells come in three varieties, according to the type of data they accept:

59

Chapter 18. Screen Layout

60

Table 18-1. Cell types

Cell Type Data Accepted

Integer Decimal or hexadecimal values
Floating Point Floating point values

String Any

In the case of string cells, you can double-click the cell to display a dialog box containing a larger region in which
to edit the string value. This is useful in the case of long strings, or those spanning multiple lines.

Disabled items

Some items will appear disabled. In this case the item label and any associated controls and cells will be grayed. It
is not be possible to change the values of disabled items.

Right-Clicking

You can right-click on an item in the configuration window item to display a pop-up menu which (depending on
the type of the item selected) allows you to:

Properties — information relating to the currently selected item is displayed. The information is equivalent to
that displayed in the Properties Window.

Restore Defaults - the default value of the currently selected item is restored.

Visit Documentation - causes the HTML page most closely relating to the currently selected item to be displayed.
This has the same effect as double-clicking the URL property in the Properties Window.

View Header File — this causes the file containing the items to be displayed. This is equivalent to double-clicking
on the File property in the Properties Window. The viewer used for this purpose may be changed using the View-
>Settings menu item (see the Section called Settings in Chapter 17). Note that this operation is only possible
when the current configuration is saved, in order to avoid the possibility of changing the source repository.

Unload Package - this is equivalent to using the Build->Packages menu item to select and unload the package
in question.

Conflicts Window

This window exists to display any configuration item conflicts. Conflicts are the result of failures to meet the
requirements between configuration items expressed in the CDL. See the Section called Conflicts in Chapter 24 .

Conflict Property

CYGPKG_KERMEL_SMP_SUPPORT Unsatisfied Requires CYGPKG_HAL_SMP_SUPPORT
CYGPRG_HAL_EXCEPTIONS Unsatisfied Requires CYGPKG_KERNEL_EXCEPTIONS

Chapter 18. Screen Layout

The window comprises three columns:

Item
This is the macro name of the first item involved in the conflict.
Conflict

9%

This is a description of the conflict type. The currently supported types are “unresolved”, “illegal value”, “eval-

EEINT3

uation exception”, “goal unsatisfied” and “bad data”.
Property
This contains a description of the configuration item’s property that caused the conflict.

Within the conflicts window you can right-click on any item to display a context menu which allows you to
choose from one of the following options:

To locate the item involved in the conflict, double-click in the first or third column, or right-click over the item and
choose Locate from the popup menu.

You can use the Tools->Resolve Conflicts menu item, or right-click over the item and select Resolve from the
popup menu, to resolve conflicts — the Section called Resolving conflicts in Chapter 19.

Output Window

This window displays any output generated by execution of external tools and any error messages that are not
suitable for display in other forms (for example, as message boxes).

Within the output window you can right-click to display a context menu which allows you to:

Save the contents of the window to a file

Clear the contents of the window

Properties Window

This window displays the CDL properties of the item currently selected in the configuration window. The same
information may be displayed by right-clicking the item and selecting “properties”.

Macro CYGPRG_HAL_IZEE

Value current

Default current

Parent CYGPRG_HAL

Hardware

IncludeDir cyg/hal

DefineHeader hal_i386.h

Compile hal_misc.c contexts i286_stub.c hal_syscall.c

Make <PREFI¥=/lib/target.|d: <PACKAGE> /srcfi386.1d $(CC) £ -P -
B

Property

a 5 ver-hal html
File Stmpfuntitled_install/include/pkaconf/hal _i386.h

61

Chapter 18. Screen Layout

62

Two properties may be double-clicked as follows:

« URL - double-clicking on a URL property causes the referenced HTML page to be displayed. This has the same
effect as right-clicking on the item and choosing “Visit Documentation”.

+ File — double-clicking on a File property in a saved configuration causes the File to be displayed. The viewer used
for this purpose may be changed using the View->Settings menu item. Note that this operation is only possible
when the current configuration is saved, in order to avoid the possibility of changing the source repository.

Short Description Window

This window displays a short description of the item currently selected in the configuration window. More extensive
documentation may be available by right-clicking on the item and choosing “Visit Documentation”.

Chapter 19. Updating the Configuration

Adding and Removing Packages

To add or remove packages from the configuration, select Build->Packages. The following dialog box will be
displayed:

Figure 19-1. Packages dialog box

]

Available packages: Use these packages:

C library -
Common error code support

Commaon ethernet support
CygMon support via eCos

DNS Dynamic memaory allocation
Dynamic loader 1/0 sub-system

FTP Client ISO C and POSI¥ infrastruct
File 10 ISO C library date/time func
FreeBSD Stack 150 C library general utility f
Generic FLASH memaory supp: 150 C library internationaliza
IFFS2 Filesystem 150 C library non-local jumps
Loop serial device drivers IS0 C library signals

MNetwork Autotesting - ibrary standard inputs| 4

Version:

Common ethernet support,
Aliases: net_drivers, eth_drivers, CYGPKG_MET_ETH_DRIVERS
Macror CYCGPRG_IO_ETH_DRIVERS

Platform independent ethernet support.

Keywords:

Clear

v| Omit hardware packages [vl Match exactly Ok | Cancel | ﬂ

The left-hand list shows those packages that are available to be loaded. The right-hand list shows those that are
currently loaded. In order to transfer packages from one list to another (that is, to load or unload packages) double-
click the selection or click the Add or Remove buttons.

The version drop-down list displays the versions of the selected packages. When loading packages, this control
may be used to load versions other than the most recent (current). Note that if more than one package is selected,
the version drop-down list will display only the versions common to all the selected packages.

The window under the version displays a brief description of the selected package. If more than one package is
selected, this window will be blank.

Under the description window there is a Keywords control into which you can type a string to be matched against
package names, macro names and descriptions. The lists are updated a second or so after typing has stopped. If
you type several separate words, all of these words must be associated with a given package for that package to be
displayed. If you select the Match exactly checkbox, then the string is taken to be a complete fragment and matched
against the beginning of a name, macro name or descriptions. All matches are done case-insensitively.

If you check Omit hardware packages, only non-hardware packages will be shown.

63

Chapter 19. Updating the Configuration

Platform Selection

64

To add, modify or remove entries in the list of platforms used for running tests, select Tools->Platforms. The
following dialog will be displayed:

Figure 19-2. Platforms dialog box

Modify... | Add... | Delete.. | Ok | Cancel |ﬂ 9

Target | Prefix |Commands | Inferior | Prompt |ServerSide|

| -

atlas_mips mipsisa32 set height O;set mipsisa32 (gdh)
atlas_mips mipsisaBd set height O;set mipsisagd (gdh)
brutus arm-elf set height O;set arm-elf-gd (gdb)
wq77E0 sh-elf set height O;set sh-elf-gdb (gdb)
e7t arm-elf set height O;set arm-elf-gd (gdb)
hs7729pci sh-elf set height O;set sh-elf-gdb (gdb)
ipag arm-elf set height O;set arm-elf-gd (gdb)

Q20310 wscale-elf set height O;set wscale-elf- (gdh)
malta_mip mipsisa22 set height 0:set mipsisa32 (gdh)
nano arm-elf set height O;set arm-elf-gd (gdb)
ocelot ripsisa3? set height O;set mipsisa32 (gdb)
sal100mn arm-elf set height O;set arm-elf-gd (gdb)
aeh arm-elf set height O;one arm-elf-gd (gdb)

LEEEEEEEEEEZEEZEEE

You may add, modify or remove platform entries as you wish, but in order to run tests, a platform must be defined
to correspond to the currently loaded hardware template. The information associated with each platform name is
used to run tests.

To modify a platform, click the Modify button with the appropriate platform selected, or double-click on an entry
in the list. A dialog will be displayed that allows you to change the command prefix, platform type and arguments
for GDB.

Figure 19-3. Platform Modify dialog box

Platform name: |

Command prefix: |arm-e|f j

Arguments for GDB: [sat height 0
set remotedebug 0
set remotebaud b
target remote %p
load
break cyg_test_exit
break cyg_assert_fail

cont
Inferior: |arm-e|f-gdh -nw -0 %e
Prompt: |(9dh)

oK | Cancel | ﬂ

Chapter 19. Updating the Configuration

To add a new platform, click the Add button. A similar dialog will be displayed that allows you to define a new
platform. To remove a platform, click the Delete button or press the DEL key with the appropriate platform selected.

The command prefix is used when running tests in order to determine the names of the executables (such as gdb)
to be used. For example, if the gdb executable name is “arm-elf-gdb.exe” the prefix should be set to “arm-elf”.

The platform type indicates the capabilities of the platform - whether it is hardware or a simulator, and whether
breakpoints are supported.

The arguments for the GDB field allow additional arguments to be passed to gdb when it is used to run a test. This
is typically used in the case of simulators linked to gdb in order to define memory layout.

Using Templates

To load a configuration based on a template, select Build->Templates.

The following dialog box will be displayed:

Figure 19-4. Templates dialog box

Hardware
1288 PC target =

]

The pc target provides the packages needed torun eCos
binaries on a standard i386 PC motherboard.

Packages

i3
default - -

Cancel

ik

This is a default eCos configuration, It
contains the infrastructure, kernel, C and

rnaths libraries, plus their support Details <<
packages.
il

Packages in selected template:

16x5x compatible serial device drivers
C library

Common error code support

Dynamic memaory allocation

1/0 sub-system

ISO C and POSI¥ infrastructure

IS0 C library date/time functions

B

Change the hardware template, the packages template, or both. To select a hardware template, choose from the first

drop-list. To choose a packages template, choose from the second. Brief descriptions of each kind of template are
provided in the corresponding edit boxes.

65

Chapter 19. Updating the Configuration

Resolving conflicts
During the process of configuring eCos it is possible that conflicts will be created. For more details of the meaning
of conflicts, see Chapter 24.

The Conflicts Window displays all conflicts in the current configuration. Additionally, a window in the status bar
displays a count of the conflicts. Because the resolution of conflicts can be time-consuming, a mechanism exists
whereby conflicts can be resolved automatically.

You can choose to have a conflicts resolution dialog box displayed by means of the View->Settings... menu item,
on the Conflict Resolution tab of the dialog.

Figure 19-5. Options

Display | Viewers Conflict Resolution ‘ Run Tests

Check for conflicts:

vl after any item changed
vl Before saving configuration

vl dutomatically suggest fixes

Ok | Cancel Help | ﬂ

You can choose to have conflicts checked under the following circumstances:

+ After any item is changed (in other words, as soon as the conflict is created)
+ Before saving the configuration (including building)

« Never

The method you chose depends on how much you need your configuration to be free of conflicts. You may want to
avoid having to clean up all the conflicts at once, or you may want to keep the configuration consistent at all times.
If you have major changes to implement, which may resolve the conflicts, then you might want to wait until after
you have completed these changes before you check for conflicts.

Note: If you choose to check conflicts after any item is changed, only newly arising conflicts are displayed. If
you choose to check for conflicts before saving the configuration, the complete set is displayed.

66

Chapter 19. Updating the Configuration

Automatic resolution

If you check the “Automatically suggest fixes” check box, a conflicts resolution dialog box will be displayed
whenever new conflicts are created. The same dialog box may be displayed at any stage by means of the Tools-
>Resolve Conflicts menu item.

The conflicts resolution dialog box contains two major windows.

Figure 19-6. Resolve conflicts window

I Continue| Cancel |l| e

Property

Conflict

CYGPKG_HAL_SMP_SUPPORT Unsatisfied Requires

|«

None | |

Proposed Solutions:

Item Value |
W CYGHWR_HAL_I386_FPU_SWITCH_LAZY Disabled

The upper contains the set of conflicts to be addressed; the format of the data being as that of the Conflicts Window.
The lower window contains a set of proposed resolutions — each entry is a suggested configuration item value
change that as a whole may be expected to lead to the currently selected conflict being resolved.

Note that there is no guarantee:

« that automatic resolutions will be determinable for every conflict.

+ that the resolutions for separate conflicts will be independent. In other words, the resolution of one conflict may
serve to prevent the resolution of another.

- that the resolution conflicts will not create further conflicts.

The above warnings are, however, conservative. In practice (so long as the number and extent of conflicts are
limited) automatic conflict resolution may be used to good effect to correct problems without undue amounts of
programmer intervention.

In order to select the conflicts to be applied, select or clear the check boxes against the resolutions for each proposed
resolution. By default all resolutions are selected; you can return to the default state (in other words, cause all check
boxes for each conflict to again become checked) by pressing the “Reset” button. Note that multiple selection may
be used in the resolutions control to allow ranges of check boxes to be toggled in one gesture.

When you are happy to apply the selected resolutions for each conflict displayed, click Apply; this will apply the
resolutions. Alternatively you may cancel from the dialog box without any resolutions being applied.

67

Chapter 19. Updating the Configuration

68

Chapter 20. Searching

Select Edit --> Find. You will be presented with a Find dialog box:

Figure 20-1. Find dialog box

@
Find what: |Startup Type Find Mext
’ . Close
Match whole word only Direction

Up # Down 2
Match case ¥ J

Search in: | Item names hd

Using this dialog box you can search for an exact text string in any one of three ways, as specified by your selection
in the “Search in” drop-list:

+ Macro names - the search is for a text match within configuration item macro names
+ Item names - the search is for a text match within configuration item descriptive names
+ Short descriptions - the search is for a text match within configuration item short descriptions

Note that to invoke Find you can also click the Find icon on the toolbar.

69

Chapter 20. Searching

70

Chapter 21. Building

When you have configured eCos, you may build the configuration.

On the Build menu, click:

+ Library (or click the Build Library icon on the toolbar) — this causes the eCos configuration to be built. The
result of a successful build will be (among other things) a library against which user code can be linked

« Tests — this causes the eCos configuration to be built, and additionally builds the relevant test cases linked against
the eCos library

+ Clean — this removes all intermediate files, thus causing a subsequent build/library or build/tests operation to
cause recompilation of all relevant files.

+ Stop — this causes a currently executing build (any of the above steps) to be interrupted

Build options may be displayed by using the Build->Options menu item. This displays a dialog box containing
a drop-list control and two windows. The drop-list control allows you to select the type of build option to be
displayed (for example “LDFLAGS” are the options applied at link-time. The left-hand window is a tree view of
the packages loaded in the current configuration. The right-hand window is a list of the build options that will be
used for the currently selected package.

Note that this dialog box currently affords only read-only access to the build options. In order to change build
options you must edit the relevant string configuration item.

A single level of inheritance is supported: each package’s build options are combined with the global options (these
are to be found in the “Global build options” folder in the configuration view).

]

Category: |CFLAGS W Close ﬂ

Packages: Flags:
=% Configuration & [-wall

-Wpointer-arith
“wWstrict-prototy pes
“winline

“wundef
“woverloaded-virtual
-9

-0Z2
-ffunction-sections
-fdata-sections
-fro-rtti

i)

448

S PC board ethernet driver
& eCos HAL

448

B /0 sub-system
A serial device drivers

40

S Infrastructure
A eCos kernel
3*3:: Dynamic memorylallocation Fro-exceptions
150 C and POSIX infrastructure = fytable-qc

4 150 C library “finit-priority
& Math library

B B

Selecting Build Tools

Normally the installation process will supply the information required for the eCosConfiguration Tool to locate the
build tools (compiler, linker, etc.) necessary to perform a build. However if this information is not registered, or

71

Chapter 21. Building

it is necessary to specify the location manually (for example, when a new toolchain installation has been made),
select Tools->Paths->Build Tools. The following dialog box will be displayed:

Figure 21-1. Build tools

[
Enter the location of the i386-elf build tools oK
folder, which should contain i386-elf-gcc You can
type in a path or use the Browse button to cancel
navigate to a folder.
Browise..,
|fusrfcygnusfecos-arm-01 1121 /H-I686-pc-linux-gnulibc2.2/bin j

This dialog box allows you to locate the folder containing the build tools.

Selecting User Tools

Normally the installation process will supply the information required for the eCosConfiguration Tool to locate
the user tools (cat, Is, etc.) necessary to perform a build. However if this information is not registered, or it is
necessary to specify the location manually (for example, when a new toolchain installation has been made), select
Tools->Paths->User Tools. The following dialog box will be displayed:

Figure 21-2. User tools

]

Enter the location of the user tools folder, oK
which should contain cat and Is. You can type in

a path or use the Browse button to navigate to a Cancel
folder.

[#bin JE|

72

Chapter 22. Execution

Test executables that have been linked using the Build/Tests operation against the current configuration can be
executed by selecting Tools->Run Tests.

When tests are run, the Configuration Tool looks for a platform name corresponding to the currently loaded hard-
ware template. If no such platform is found, a dialog will be displayed for you to define one; this dialog is similar
to that displayed by the Add function in the Tools-> Platforms dialog, but in this case the platform name cannot be
changed.

When a test run is invoked, a property sheet is displayed, comprising three tabs: Executables, Output and Summary.
Note that the property sheet is resizable.
Three buttons appear on the property sheet itself: Run/Stop, Close and Properties.

The Run button is used to initiate a test run. Those tests selected on the Executables tab are run, and the output
recorded on the Output and Summary tabs. During the course of a run, the Run button changes to “Stop”. The
button may be used to interrupt a test run at any point.

Properties

The Properties button is used to change the connectivity properties for the test run.

Figure 22-1. Properties dialog box

[
Dizplay | Viewers | Conflict Resolution Run Tests ‘
Platform: pc
Timeouts
Download | Specified ¥ | 120 ﬁ
A 2
Runtime: | Default - >
Connection
® Serial Port: | COM1 % | Baud: | 38400 *
TCRAP Address:

Ok | Cancel Help | ﬂ

Download Timeout

This group of controls serves to set the maximum time that is allowed for downloading a test to the target board. If
the time is exceeded, the test will be deemed to have failed for reason of “Download Timeout” and the execution

73

Chapter 22. Execution

74

of that particular test will be abandoned. This option only applies to tests run on hardware, not to those executed in
a simulator. Times are in units of elapsed seconds.

Three options are available using the drop-down list:

+ Calculated from file size - an estimate of the maximum time required for download is made using the (stripped)
executable size and the currently used baud rate

+ Specified - a user-specified value may be entered in the adjacent edit box

+ None - no maximum download time is to be applied.

Run time Timeout

This group of controls serves to set the maximum time that is allowed for executing a test on the target board or in a
simulator. If the time is exceeded, the test will be deemed to have failed for reason of “Timeout” and the execution
of that particular test will be abandoned. In the case of hardware, the time is measured in elapsed seconds: in the
case of a simulator it is in CPU seconds.

Three options are available using the drop-down list:

+ None - no maximum download time is to be applied.
+ Specified - a user-specified value may be entered in the adjacent edit box

« Default - a default value of 30 seconds is used

Connection

The Connection controls may be used to specify how the target board is to be accessed.

If the target board is connected using a serial cable, the Serial radio button should be checked. In this case you can
select a port (COM1, COM2, ...) and an appropriate baud rate using drop-list boxes.

If the target board is accessed remotely using GDB remote protocol, the “TCP/IP” radio button should be checked.
In this case you can select a host name and TCP/IP port number using edit boxes.

Executables Tab

This is used to adjust the set of tests available for execution. A check box against each executable name indicates
whether that executable will be included when the Run button is pressed. The Check All and Uncheck All buttons
may be used to check or uncheck all items.

When the property sheet is first displayed, it will be pre-populated with those test executables that have been linked
using the Build/Tests operation against the current configuration.

Chapter 22. Execution

Figure 22-2. Run tests

Executables | Qutput | Summary |

| Uncheck P.II| Add.. |P.dd from Folder...| Remaove |

[x] ftmp/funtitled_install/tests/halfcommon/current/tests fcontext
[Atmpfuntitled_install/tests/hal/commeon/current/testsfintr

[x] ftmp/funtitled_install/tests/halfcommon/current/tests fbasic
[Atmpfuntitled_install ftests/kernel/current/tests/bin_semo

[x] Atmpfuntitled_install/tests/kernel/current/tests/bin_sem1

[Atmpfuntitled_install ftests/kernel/current/tests/bin_sem?2

[x] ftmpfuntitled_install/tests/kernelfcurrent/tests/clockn

[Atmpfuntitled_install/tests/kernel/current/tests/clockt

[x] ftmp/funtitled_install/tests/kernel/current/tests /clockeny

[Atmpfuntitled_install ftests/kernel/current/tests/clocktruth

[] Atmpfuntitled_install ftests/kernel/current/tests/ont_semo

[« Atmpfuntitled_install /tests/kernel/current/testsfont_sem

[<] ftmp/funtitled_install/tests/kernel/current/tests fexnceptl

[<] ftmp/funtitled_install/tests/kernel/fcurrent/tests /flago

[x] ftmp/funtitled_install/tests/kernel/current/tests /flagt

[x] Atmpfuntitled_installftests/kernel/current/tests fintro

[#] /tmp/untitled_install/tests/kernel/current/tests /kclocko L
[%] /tmp/untitled_install/tests/kernel/current/tests/kclockl [l

D
Run || Close | Properties...| il

You can right-click in the window to display a context menu containing Add and Remove items. Clicking Remove
will remove those executables selected. Clicking Add will display a dialog box that allows you to add to the set of
items. Equivalently the Add button may be used to add executables, and the DEL key may be used to remove them.

You can use the Add from Folder button to add a number of executables in a specified folder (optionally including
subfolders, if you click on Yes when asked).

Figure 22-3. Add files from folder

[bin

(23 boot

[0 dev

et

A export
23 eygnus
3 julians

23 lost+found

= S

deld

—_ e " . P

0 B B M

Ifexportftmp

Ok | Cancel Hewi...

75

Chapter 22. Execution

76

Output Tab

This tab is used to display the output from running tests. The output can be saved to a file or cleared by means of
the popup menu displayed when you right-click in the window.

Summary Tab

This tab is used to display a record, in summary form, of those tests executed. For each execution, the following
information is displayed:

+ Time - the date and time of execution

+ Host - the host name of the machine from which the test was downloaded
+ Platform - the platform on which the test was executed

« Executable - the executable (file name) of the test executed

« Status - the result of executing the test. This will be one of the following:
+ Not started

+ No result

« Inapplicable

 Pass

+ DTimeout

+ Timeout

+ Cancelled

+ Fail

+ Assert fail

+ Size - the size [stripped/unstripped] of the test executed

+ Download - the download time [mm:ss/mm:ss] used. The first of the two times displayed represents the actual
time used: the second the limit time.

 Elapsed - the elapsed time [mm:ss] used.

+ Execution - the execution time [mm:ss/mm:ss] used. The first of the two times displayed represents the actual
time used: the second the limit time.

The output can be saved to a file or cleared by means of the popup menu displayed when you right-click in the
window.

Chapter 23. Creating a Shell

To call up a shell window, select Tools->Shell. Under Windows, you will get a Cygwin shell similar to the one
below. On Linux, you will get a standard Linux shell window.

E bash
"C:/Cyguinsbinsbhash.exe"-2.835 _

Keyboard Accelerators

The following table presents the list of keyboard accelerators that can be used with the Configuration Tool.

Table 23-1. Keyboard accelerators

Accelerator Action Remarks
Alt+1 hide/show properties window

Alt+2 hide/show output window

Alt+3 hide/show short description window

Alt+4 hide/show conflicts window

Ctrl+A select all output wind
Ctrl+C copy output wind
Ctri+F Edit->Find

Ctrl+N File->New

Ctrl+O File->Open

Ctrl+S File->Save

Ctrl+V Paste in-cell editir
Ctrl+X Cut in-cell-editir
Ctrl+Z Undo in-cell editir
Fl Context-sensitive help

F3 Find next

77

Chapter 23. Creating a Shell

Accelerator Action Remarks
F7 Build->Library

Shift+F7 Build->Tests

Alt+F6 View->Next window

Shift+Alt+0 View->Previous window

Shift+Ins Paste in-cell editir
Shift+F10 Display context menu Configuratic
Alt+Enter Display properties dialog box Configuratic
> Increment item value Configuratic
< Decrement item value Configuratic
Space Toggle item value Configuratic

78

V. eCos Programming Concepts and
Techniques

Programming with eCos is somewhat different from programming in more traditional environments. eCos is a
configurable open source system, and you are able to configure and build a system specifically to meet the needs
of your application.

Various different directory hierarchies are involved in configuring and building the system: the component reposi-
tory, the build tree, and the install tree. These directories exist in addition to the ones used to develop applications.

Chapter 24. CDL Concepts

About this chapter

This chapter serves as a brief introduction to the concepts involved in eCos (Embedded Configurable Operating
System). It describes the configuration architecture and the underlying technology to a level required for the em-
bedded systems developer to configure eCos. It does not describe in detail aspects such as how to write reusable
components for eCos: this information is given in the Component Writer’s Guide.

Background

Software solutions for the embedded space place particularly stringent demands on the developer, typically repre-
sented as requirements for small memory footprint, high performance and robustness. These demands are addressed
in eCos by providing the ability to perform compile-time specialization: the developer can tailor the operating sys-
tem to suit the needs of the application. In order to make this process manageable, eCos is built in the context of a
Configuration Infrastructure: a set of tools including a Configuration Tool and a formal description of the process
of configuration by means of a Component Definition Language.

Configurations

eCos is tailored at source level (that is, before compilation or assembly) in order to create an eCos configuration.
In concrete terms, an eCos configuration takes the form of a configuration save file (with extension .ecc) and set of
files used to build user applications (including, when built, a library file against which the application is linked).

Component Repository

eCos is shipped in source in the form of a component repository - a directory hierarchy that contains the sources
and other files which are used to build a configuration. The component repository can be added to by, for example,
downloading from the net.

Component Definition Language

Part of the component repository is a set of files containing a definition of its structure. The form used for this
purpose is the Component Definition Language (CDL). CDL defines the relationships between components and
other information used by tools such as the eCosConfiguration Tool. CDL is generally formulated by the writers
of components: it is not necessary to write or understand CDL in order for the embedded systems developer to
construct an eCos configuration.

81

Chapter 24. CDL Concepts

Packages

The building blocks of an eCos configuration are called packages. Packages are the units of software distribution.
A set of core packages (such as kernel, C library and math library) is provided by Red Hat: additional third-party
packages will be available in future.

A package may exist in one of a number of versions. The default version is the current version. Only one version
of a given package may be present in the component repository at any given time.

Packages are organized in a tree hierarchy. Each package is either at the top-level or is the child of another package.

The eCos Package Administration Tool can be used to add or remove packages from the component repository.
The eCos Configuration Tool can be used to include or exclude packages from the configuration being built.

Configuration Items

82

Configuration items are the individual entities that form a configuration. Each item corresponds to the setting of a
C pre-processor macro (for example, CYGHWR_HAL_ARM_PID_GDB_BAUD). The code of eCos itself is written to test
such pre-processor macros so as to tailor the code. User code can do likewise.

Configuration items come in the following flavors:

« None: such entities serve only as place holders in the hierarchy, allowing other entities to be grouped more easily.

+ Boolean entities are the most common flavor; they correspond to units of functionality that can be either enabled
or disabled. If the entity is enabled then there will be a #define; code will check the setting using, for example,
#ifdef

+ Data entities encapsulate some arbitrary data. Other properties such as a set or range of legal values can be used
to constrain the actual values, for example to an integer or floating point value within a certain range.

+ Booldata entities combine the attributes of Boolean and Data: they can be enabled or disabled and, if enabled,
will hold a data value.

Like packages, configuration items exist in a tree-based hierarchy: each configuration item has a parent which may
be another configuration item or a package. Under some conditions (such as when packages are added or removed
from a configuration), items may be “re-parented” such that their position in the tree changes.

Expressions

Expressions are relationships between CDL items. There are three types of expression in CDL:

Table 24-1. CDL Expressions

Expression Type Result Common Use (see Table 24-2)
Ordinary A single value legal_values property
List A range of values (for example “I to | legal_values property
107)
Goal True or False requires and active_if properties

Properties

Chapter 24. CDL Concepts

Each configuration item has a set of properties. The following table describes the most commonly used:

Table 24-2. Configuration properties

Property Use
Flavor The “type” of the item, as described above
Enabled Whether the item is enabled

Current_value

The current value of the item

Default_value

An ordinary expression defining the default value of
the item

Legal_values

A list expression defining the values the item may hold
(for example, 1 to10)

Active_if A goal expression denoting the requirement for this
item to be active (see below: Inactive Items)

Requires A goal expression denoting requirements this item
places on others (see below: Conflicts)

Calculated Whether the item as non-modifiable

Macro The corresponding C pre-processor macro

File The C header file in which the macro is defined

URL The URL of a documentation page describing the item

Hardware Indicates that a particular package is related to specific

hardware

A complete description of properties is contained in the Component Writer’s Guide.

Inactive ltems

Descendants of an item that is disabled are inactive: their values may not be changed. Items may also become
inactive if an active_if expression is used to make the item dependent on an expression involving other items.

Conflicts

Not all settings of configuration items will lead to a coherent configuration; for example, the use of a timeout facility
might require the existence of timer support, so if the one is required the other cannot be removed. Coherence is
policed by means of consistency rules (in particular, the goal expressions that appear as CDL items requires and
active_if attributes [see above]). A violation of consistency rules creates a conflict, which must be resolved in order
to ensure a consistent configuration. Conflict resolution can be performed manually or with the assistance of the

eCos tools. Conflicts come in the following flavors:

« An unresolved conflict means that there is a reference to an entity that is not yet in the current configuration

83

Chapter 24. CDL Concepts

« An illegal value conflict is caused when a configuration item is set to a value that is not permitted (that is, a
legal_values goal expression is failing)

« An evaluation exception conflict is caused when the evaluation of an expression would fail (for example, because
of a division by zero)

 An unsatisfied goal conflict is caused by a failing requires goal expression

« A bad data conflict arises only rarely, and corresponds to badly constructed CDL. Such a conflict can only be
resolved by reference to the CDL writer.

Templates

84

A template is a saved configuration - that is, a set of packages and configuration item settings. Templates are pro-
vided with eCos to allow you to get started quickly by instantiating (copying) a saved configuration corresponding
to one of a number of common scenarios; for example, a basic eCos configuration template is supplied that contains
the infrastructure, kernel, C and math libraries, plus their support packages.

Chapter 25. The Component Repository and
Working Directories

Each of the file trees involved in eCos development has a different role.

Component Repository

The eCos component repository contains directories for all the packages that are shipped with eCos or provided by
third parties.

The component repository should not be modified as part of application development.

85

Chapter 25. The Component Repository and Working Directories

Figure 25-1. Component repository

B3 eCos
EID doc
E| 3 quides
: D grupro-guides
D uzer-guides
23 ef
3 ecosref
F-E3 grupro-sf
E-E3 tutorials

D ecog-tutorial
B3 ecos-32r1pE
(23 examples
B3 lnaders
: 3 am-asb
23 am-pid
3 mn10300-stdevall
D powerpc-cogent
3 sparclite-sleb
3 13943904
223 packages
ED compat
¢ E-E3 uiton
E-E3 cygmon
L EE Vi3
EID devs
E-E3 wallchock
D watchdog
I'_—'ID error
E@ 3
=23 hal
-

D zenial
B2 kemel
CEE Vi3
EID language
BE3
-(Z3 pkgconf
F-23 templates
I'_—'ID prebuilt
: D zleb

Purpose

The component repository is the master copy of source code for all system and third party components. It also
contains some files needed to administer and build the system, such as ecosadmin.tcl.

How is it modified?

You modify it by importing new versions of packages from a distribution or removing existing packages. These

86

Build

Chapter 25. The Component Repository and Working Directories

activities are undertaken using the eCos Package Administration Tool.

When is it edited manually?

Files in the component repository should only be edited manually as determined by the component maintainer.

User Applications

User application source code should rot go into the component repository.

Examples of files in this hierarchy:

BASE_DIR/doc/ref/ecos—ref.html

The top level HTML file for the eCos Reference Manual.

BASE_DIR/prebuilt/pid/tests/kernel/<version>/tests/thread_gdb.exe

BASE_DIR/prebuilt/linux/tests/kernel/<version>/tests/thread_gdb.exe

Pre-built tests for the supported platforms, and the synthetic Linux target.

BASE_DIR/examples/twothreads.c

One of the example programs.

BASE_DIR/ecosadmin.tcl

The Tcl program which is used to import new versions of packages from a distribution or remove existing
packages.

BASE_DIR/packages/language/c/libm/<version>/src/double/portable—-api/s_tanh.c

Implementation of the hyperbolic tangent function in the standard math library.

BASE_DIR/pkgconf/rules.mak

A file with make rules, used by the makefile.

Tree

The build tree is the directory hierarchy in which all generated files are placed. Generated files consist of the
makefile, the compiled object files, and a dependency file (with a . d extension) for each source file.

87

Chapter 25. The Component Repository and Working Directories

Purpose

The build tree is where all intermediate object files are placed.

How is it modified?

Recompiling can modify the object files.

User applications

User application source or binary code should not go in the build tree.

Examples of files in this hierarchy

ecos-work/language/c/libc/<version>/src

The directory in which object files for the C library are built.

Install Tree

88

The install tree is the location for all files needed for application development. The 1ibtarget .a library, which
contains the custom-built eCos kernel and other components, is placed in the install tree, along with all packages’
public header files. If you build the tests, the test executable programs will also be placed in the install tree.

By default, the install tree is created by ecosconfig in a subdirectory of the build tree called instal1l. This can be
modified with the —-prefix option (see Chapter 28).

Purpose

The install tree is where the custom-built 1ibtarget . a library, which contains the eCos kernel and other compo-
nents, is located. The install tree is also the location for all the header files that are part of a published interface for
their component.

How is it modified?

Recompiling can replace 1ibtarget .a and the test executables.

When is it edited manually?

Where a memory layout requires modification without use of the eCos Configuration Tool, the memory layout files
must be edited directly in the install tree. These files are located at install/include/pkgconf/mlt_x.«. Note

Chapter 25. The Component Repository and Working Directories

that subsequent modification of the install tree using the Configuration Tool will result in such manual edits being
lost.

User applications

User application source or binary code should not go in the install tree.

Examples of files in this hierarchy

install/lib/libtarget.a

The library containing the kernel and other components.

install/include/cyg/kernel/kapi.h
The header file for the kernel C language APL

install/include/pkgconf/mlt_arm_pid_ram.ldi
The linker script fragment describing the memory layout for linking applications intended for execution on an
ARM PID development board using RAM startup.

install/include/stdio.h

The C library header file for standard I/O.

Application Build Tree

This tree is not part of eCos itself: it is the directory in which eCos end users write their own applications.

Example applications and their Makefile are located in the component repository, in the directory
BASE_DIR/examples.

There is no imposed format on this directory, but there are certain compiler and linker flags that must be used to
compile an eCos application. The basic set of flags is shown in the example Makefile, and additional details can
be found in Chapter 26.

89

Chapter 25. The Component Repository and Working Directories

90

Chapter 26. Compiler and Linker Options

eCos is built using the GNU C and C++ compilers. eCos relies on certain features of these tools such as constructor
priority ordering and selective linking which are not part of other toolchains.

Some GCC options are required for eCos, and others can be useful. This chapter gives a brief description of the
required options as well as some recommended eCos-specific options. All other GCC options (described in the
GCC manuals) are available.

Compiling a C Application

The following command lines demonstrate the minimum set of options required to compile and link an eCos
program written in C.

Note: Remember that when this manual shows rareer-gcc you should use the full name of the cross compiler,
e.g. i386-elf-gcc, arm-elf-gcc, or sh-elf-gcc. When compiling for the synthetic Linux target, use the native gcc
which must have the features required by eCos.

$ TARGET-gcc —c —IINSTALIL DIR/include file.c
$ TARGET-gcc —o program file.o -LINSTALIL_DIR/1lib -Ttarget.ld -nostdlib

Note: Certain targets may require extra options, for example the SPARClite architectures require the option
-mcpu=sparclite. Examine the Basg prr/examples/Makefile or the “Global compiler flags” option (CYG-
BLD_GLOBAL_CFLAGS) in your generated eCos configuration) to see if any extra options are required, and if
so, what they are.

The following command lines use some other options which are recommended because they use the selective
linking feature:

$ TARGET-gcc —c —IINSTALL DIR/include -I. -ffunction-sections -fdata-sections -g -02 file.c

$ TARGET-gcc -o program file.o -ffunction-sections -fdata-sections -Wl,--gc-sections —-g -02 \
-LINSTALL DIR/1ib -Ttarget.ld -nostdlib

Compiling a C++ Application

The following command lines demonstrate the minimum set of options required to compile and link an eCos
program written in C++.

Note: Remember that when this manual shows TareeET-g++ you should use the full name of the cross compiler,
e.g. i386-elf-g++, arm-elf-g++, or sh-elf-g++. When compiling for the synthetic Linux target, use the native g++
which must have the features required by eCos.

S TARGET-g++ —c —IINSTALL_DIR/include —-fno-rtti -fno-exceptions file.cxx

91

Chapter 26. Compiler and Linker Options

92

$ TARGET-g++ —o program file.o —-LINSTALL DIR/1ib -Ttarget.ld -nostdlib

Note: Certain targets may require extra options, for example the SPARCIite architectures require the op-
tion -mcpu=sparclite. Examine the BASE_DIR/packages/targets file or BASE_DIR/examples/Makefile OF the
“Global compiler flags” option (CYGBLD_GLOBAL_CFLAGS) in your generated eCos configuration) to see if
any extra options are required, and if so, what they are.

The following command lines use some other options which are recommended because they use the selective
linking feature:

$ TARGET-g++ —-c —-IINSTALL DIR/include -I. -ffunction-sections -fdata-sections —-fno-rtti \
—fno-exceptions -finit-priority -g -02 file.cxx
$ TARGET-g++ -0 program file.o -Wl,--gc-sections -g -02 -LINSTALL DIR/lib -Ttarget.ld -nostdlib

Chapter 27. Debugging Techniques

eCos applications and components can be debugged in traditional ways, with printing statements and debugger
single-stepping, but there are situations in which these techniques cannot be used. One example of this is when a
program is getting data at a high rate from a real-time source, and cannot be slowed down or interrupted.

eCos’s infrastructure module provides a tracing formalism, allowing the kernel’s tracing macros to be configured
in many useful ways. eCos’s kernel provides instrumentation buffers which also collect specific (configurable) data
about the system’s history and performance.

Tracing

To use eCos’s tracing facilities you must first configure your system to use fracing. You should enable
the Asserts and Tracing component (CYGPKG_INFRA_DEBUG) and the Use tracing component within it
(CYGDBG_USE_TRACING). These options can be enabled with the Configuration Tool or by editing the file
BUTLD_DIR/pkgconf/infra.h manually.

You should then examine all the tracing-related options in the Package: Infrastructure chapter of the eCos Ref-
erence Manual. One useful set of configuration options are: CYGDBG_INFRA_DEBUG_FUNCTION_REPORTS and
CYGDBG_INFRA_DEBUG_TRACE_MESSAGE, which are both enabled by default when tracing is enabled.

The following “Hello world with tracing” shows the output from running the hello world program (from the Section
called eCos Hello World in Chapter 13) that was built with tracing enabled:

Example 27-1. Hello world with tracing

$ mips-tx39-elf-run --board=jmr3904 hello
Hello, eCos world!
ASSERT FAIL: <2>cyg_trac.h [623] Cyg_TraceFunction_Report_::set_exitvoid()

TRACE: <1>mlqueue.cxx 395] Cyg_ThreadQueue_Implementation::enqueue ()
TRACE: <1>mlqueue.cxx 395] Cyg_ThreadQueue_Implementation::enqueue ()
TRACE: <1>mlqueue.cxx 126] Cyg_Scheduler_Implementation::add_thread()
TRACE: <1>thread.cxx 654] Cyg_Thread: :resume ()

TRACE: <1l>cstartup.cxx 160] cyg_iso_c_start ()

TRACE: <l>startup.cxx 142] cyg_package_start ()

TRACE: <l>startup.cxx 150] cyg_user_start ()

TRACE: <l>startup.cxx 150] cyg_user_start ()

TRACE: <l>startup.cxx 153] cyg_user_start ()

TRACE: <l>startup.cxx 157] cyg_user_start ()

TRACE: <1>sched.cxx 212] Cyg_Scheduler::start ()

Cyg_Scheduler_Implementation::schedule ()

[
[
[
[
[
[
[
[
[
[
[
TRACE: <1l>mlqueue.cxx [102
[
[
[
[
[
[
[
[
[
[

TRACE: <1>mlqueue.cxx 437] Cyg_ThreadQueue_Implementation::highpri ()
TRACE: <1l>mlqueue.cxx 437] Cyg_ThreadQueue_Implementation::highpri ()
TRACE: <1l>mlqueue.cxx 102] Cyg_Scheduler_Implementation::schedule ()
TRACE: <2>intr.cxx 450] Cyg_Interrupt::enable_interrupts/()

TRACE: <2>intr.cxx 450] Cyg_Interrupt::enable_interrupts/()

TRACE: <2>thread.cxx 69] Cyg_HardwareThread::thread_entry ()

TRACE: <2>cstartup.cxx 127] invoke_main ()

TRACE: <2>cstartup.cxx 127] invoke_main ()

TRACE: <2>dummyxxmain.cxx 60] __main()

TRACE: <2>dummyxxmain.cxx 60] __main ()

93

Chapter 27. Debugging Techniques

TRACE: <2>dummyxxmain.cxx [63] __main()
TRACE: <2>dummyxxmain.cxx [67] __main()
TRACE: <2>memcpy.cC [112] _memcpy ()
TRACE: <2>memcpy.cC [112] _memcpy ()
TRACE: <2>memcpy.cC [164] _memcpy ()
TRACE: <2>cstartup.cxx [137] invoke_main ()
TRACE: <2>exit.cxx [71] __libc_exit ()
TRACE: <2>exit.cxx [71] __libc_exit ()
TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handlers ()
TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handlers ()
Scheduler:
Lock: 0
Current Thread: <null>
Threads:
Idle Thread pri = 31 state = R id = 1
stack base = 800021F0 ptr = 80002510 size = 00000400
sleep reason NONE wake reason NONE
queue = 80000C54 wait info = 00000000
<null> pri = 0 state = R id = 2
stack base = 80002A48 ptr = 8000A968 size = 00008000
sleep reason NONE wake reason NONE

queue = 80000BD8 wait info = 00000000

Kernel Instrumentation

Instrument buffers can be used to find out how many events of a given type happened in the kernel during execution
of a program.

You can monitor a class of several types of events, or you can just look at individual events.

Examples of events that can be monitored are:

+ scheduler events

- thread operations

+ interrupts

+ mutex operations

+ binary semaphore operations
 counting semaphore operations
+ clock ticks and interrupts

Examples of fine-grained scheduler event types are:

« scheduler lock

94

Chapter 27. Debugging Techniques

« scheduler unlock

+ rescheduling

+ time slicing

Information about the events is stored in an event record. The structure that defines this record has type struct
Instrument_Record:

The list of records is stored in an array called instrument_buffer which you can let the kernel provide or you can
provide yourself by setting the configuration option CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER.

To write a program that examines the instrumentation buffers:

1. Enable instrumentation buffers in the eCos kernel configuration. The component macro is
CYGPKG_KERNEL_INSTRUMENT.

2. To allocate the buffers yourself, enable the configuration option
CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER.

3. Include the header file cyg/kernel/instrmnt.h.
#include <cyg/kernel/instrmnt.h>

4. The Instrumentation_Record structure is not published in the kernel header file. In the future there will be a
cleaner mechanism to access it, but for now you should paste into your code in the following lines:

struct Instrument_Record
{
CYG_WORD16 type; // record type
CYG_WORD16 thread; // current thread id
CYG_WORD timestamp; // 32 bit timestamp
CYG_WORD argl; // first arg
CYG_WORD arg2; // second arg
}i
5. Enable the events you want to record using cyg_instrument_enable () , and disable them later. Look at
cyg/kernel/instrmnt.h and the examples below to see what events can be enabled.

6. Place the code you want to debug between the matching functions cyg_instrument_enable() and

cyg_instrument_disable() .

7. Examine the buffer. For now you need to look at the data in there (the example program below shows how to
do that), and future versions of eCos will include a host-side tool to help you understand the data.

Example 27-2. Using instrument buffers

This program is also provided in the examples directory.

/* this is a program which uses eCos instrumentation buffers; it needs
to be linked with a kernel which was compiled with support for
instrumentation =*/

#include <stdio.h>

#include <pkgconf/kernel.h>
#include <cyg/kernel/instrmnt.h>
#include <cyg/kernel/kapi.h>

#ifndef CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER

95

Chapter 27. Debugging Techniques

error You must configure eCos with CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER
#endif

struct Instrument_Record

{

CYG_WORD16 type; // record type
CYG_WORD16 thread; // current thread id
CYG_WORD timestamp; // 32 bit timestamp
CYG_WORD argl; // first arg

CYG_WORD arg2; // second arg

bi

struct Instrument_Record instrument_buffer[20];
cyg_uint32 instrument_buffer_size = 20;

int main (void)
{

int i;

cyg_instrument_enable (CYG_INSTRUMENT_CLASS_CLOCK, 0)
cyg_instrument_enable (CYG_INSTRUMENT_CLASS_THREAD, O
cyg_instrument_enable (CYG_INSTRUMENT_CLASS_ALARM, O0)

)i

printf ("Program to play with instrumentation buffer\n");
cyg_thread_delay (2);
cyg_instrument_disable (CYG_INSTRUMENT_CLASS_CLOCK, O

)
cyg_instrument_disable (CYG_INSTRUMENT_CLASS_THREAD, 0
cyg_instrument_disable (CYG_INSTRUMENT_CLASS_ALARM, O0)

)i

’

for (1 = 0; i < instrument_buffer_size; ++1i) {

printf ("Record %02d: type 0x%04x, thread %d, ",

i, instrument_buffer[i].type, instrument_buffer[i].thread);
printf ("time %$5d, argl 0x%08x, arg2 0x%08x\n",
instrument_buffer[i].timestamp, instrument_buffer[i].argl,
instrument_buffer[i].arg2);

}

return 0;

Here is how you could compile and run this program in the examples directory, using (for example) the MN10300
simulator target:

$ make XCC=mnl0300-elf-gcc INSTALL_DIR=/tmp/ecos-work-mnl0300/install instrument-test

mnl10300-elf-gcc —-c¢ —o instrument-test.o —-g -Wall -I/tmp/ecos-work-mnl10300/install/include \
—-ffunction-sections -fdata-sections instrument-test.c

mnl10300-elf-gcc -nostartfiles -L/tmp/ecos-work-mnl0300/install/lib -Wl,--gc-sections -o \
instrument-test instrument-test.o -Ttarget.ld -nostdlib

$ mnl0300-elf-run --board=stdevall instrument-test

96

Example 27-3. Instrument buffer output

Chapter 27. Debugging Techniques

Here is the output of the instrument-test program. Notice that in little over 2 seconds, and with very little activity,
and with few event types enabled, it gathered 17 records. In larger programs it will be necessary to select very few
event types for debugging.

Program to
Record 00:
Record 01:
Record 02:
Record 03:
Record 04:
Record 05:
Record 06:
Record 07:
Record 08:
Record 09:
Record 10:
Record 11:
Record 12:
Record 13:
Record 14:
Record 15:
Record 16:
Record 17:
Record 18:
Record 19:

play
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

with instrumentation buffer

0x0207,
0x0202,
0x0904,
0x0905,
0x0906,
0x0901,
0x0201,
0x0803,
0x0801,
0x0802,
0x0803,
0x0801,
0x0903,
0x0208,
0x0203,
0x0802,
0x0201,
0x0000,
0x0000,
0x0000,

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

N

C OO R R REPRPRERERERRRRENDNDNDNDNDND
~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

6057,
6153,
6358,
6424,
6490,
6608,
6804,
94,
361,
548,
94,
361,
513,
588,
697,
946,
1083,
0,

0,

0,

argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl
argl

0x48001cd8,
0x48001cds,
0x48001d24,
0x00000002,
0x00000000,
0x48009d74,
0x48001cd8,
0x00000000,
0x00000000,
0x00000001,
0x00000000,
0x00000001,
0x48009d74,
0x00000000,
0x48001cd8,
0x00000002,
0x480013e0,
0x00000000,
0x00000000,
0x00000000,

arg2
arg2
arg2
arg2
argz2
arg2
arg2
argz2
arg2
arg2
arg2
arg2
arg2
arg2
arg2
arg2
arg2
arg2
arg2
arg2

0x00000002
0x00000000
0x00000000
0x00000000
0x00000000
0x48001d24
0x480013e0
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x48001d24
0x00000000
0x480013e0
0x00000000
0x48001cd8
0x00000000
0x00000000
0x00000000

97

Chapter 27. Debugging Techniques

98

VI. Configuration and the Package
Repository

The following chapters contain information on running ecosconfig (the command line tool that manipulates con-
figurations and constructs build trees) and on managing a source repository across multiple versions of eCos.

Chapter 28. Manual Configuration

eCos developers will generally use the graphical Configuration Tool for configuring an eCos system and building
the target library. However, some user prefer to use command line tools. These command line tools can also be
used for batch operations on all platforms, for example as part of a nightly rebuild and testing procedure.

In the current release of the system the command line tools do not provide exactly the same functionality as the
graphical tool. Most importantly, there is no facility to resolve configuration conflicts interactively.

The eCos configuration system, both graphical and command line tools, are under constant development and en-
hancement. Developers should note that the procedures described may change considerably in future releases.

Directory Tree Structure

When building eCos there are three main directory trees to consider: the source tree, the build tree, and the install
tree.

The source tree, also known as the component repository, is read-only. It is possible to use a single component
repository for any number of different configurations, and it is also possible to share a component repository
between multiple users by putting it on a network drive.

The build tree contains everything that is specific to a particular configuration, including header and other files that
contain configuration data, and the object files that result from compiling the system sources for this configuration.

The install tree is usually located in the install subdirectory of the build tree. Once an eCos system has been
built, the install tree contains all the files needed for application development including the header files and the
target library. By making copies of the install tree after a build it is possible to separate application development
and system configuration, which may be desirable for some organizations.

Creating the Build Tree

Generating a build tree is a non-trivial operation and should not be attempted manually. Instead, eCos is shipped
with a tool called ecosconfig that should be used to create a build tree.

Usually ecosconfig will be run inside the build tree itself. If you are creating a new build tree then typically you
will create a new empty directory using the mkdir command, cd into that directory, and then invoke ecosconfig
to create a configuration. By default, the configuration is stored in a file ecos.ecc in the current directory. The
configuration may be modified by editing this file directly. ecosconfig itself deals with a number of coarse-grained
configuration options such as the target platform and the packages that should be used.

The ecosconfig tool is also used subsequently to generate a build tree for a configuration. Once a build tree exists,
it is possible to run ecosconfig again inside the same build tree. This will be necessary if your wish to change some
of the configuration options.

ecosconfig does not generate the top-level directory of the build tree; you must do this yourself.

$ mkdir ecos-work
$ cd ecos-work

The next step is to run ecosconfig:

101

Chapter 28. Manual Configuration

102

$ ecosconfig <qualifiers> <command>

ecosconfig qualifiers

The available command line qualifiers for ecosconfig are as follows. Multiple qualifiers may be used on the com-
mand line:

——help

Provides basic usage guidelines for the available commands and qualifiers.

——config=<file>

Specifies an eCos configuration save file for use by the tool. By default, the file ecos.ecc in the current
directory is used. Developers may prefer to use a common location for all their eCos configurations rather
than keep the configuration information in the base of the build tree.

——prefix=<dir>

Specifies an alternative location for the install tree. By default, the install tree resides inside the install
directory in the build tree. Developers may prefer to locate the build tree in a temporary file hierarchy but
keep the install tree in a more permanent location.

——srcdir=<dir>

Specifies the location of the component repository. By default, the tool uses the location specified in the
ECOS_REPOSITORY environment variable. Developers may prefer to use of this qualifier if they are working
with more than one repository.

—-no-resolve

Disables the implicit resolution of conflicts while manipulating the configuration data. developers may prefer
to resolve conflicts by editing the eCos configuration save file manually.

—--ignore-errors

-i

By default, ecosconfig will exit with an error code if the current configuration contains any conflicts, and
it is not possible to generate or update a build tree for such configurations. This qualifier causes ecosconfig
to ignore such problems, and hence it is possible to generate a build tree even if there are still conflicts. Of
course, there are no guarantees that the resulting system will actually do anything.

—-verbose
-V
Display more information.
—-—quiet
g
Display less information.

The --config, ——prefix and —-srcdir qualifiers can also be written with two arguments, for example:

Chapter 28. Manual Configuration
ecosconfig —--srcdir <dir> ...

This simplifies filename completion with some shells.

ecosconfig commands

The available commands for ecosconfig are as follows:

list
Lists the available packages, targets and templates as installed in the eCos repository. Aliases and package
versions are also reported.

new <target> [<template> [<version>]]

Creates a new eCos configuration for the specified target hardware and saves it. A software template may also
be specified. By default, the template named ‘default’ is used. If the template version is not specified, the latest
version is used.

target <target>

Changes the target hardware selection for the eCos configuration. This has the effect of unloading packages
supporting the target selected previously and loading the packages which support the new hardware. This
command will be used typically when switching between a simulator and real hardware.

template <template> [<version>]
Changes the template selection for the eCos configuration. This has the effect of unloading packages specified
by the template selected previously and loading the packages specified by the new template. By default, the
latest version of the specified template is used.

remove <packages>
Removes the specified packages from the eCos configuration. This command will be used typically when the
template on which a configuration is based contains packages which are not required.

add <packages>

Adds the specified packages to the eCos configuration. This command will be used typically when the template
on which a configuration is based does not contain all the packages which are required.For example, add-on
packages provided by third parties will not be known to the standard templates, so they will have to be added
explicitly.

version <version> <packages>

Selects the specified version of a number of packages in the eCos configuration. By default, the most recent
version of each package is used. This command will be used typically when an older version of a package is
required.

check
Presents the following information concerning the current configuration:

1. the selected target hardware

103

Chapter 28. Manual Configuration

the selected template
additional packages

2.
3.
4. removed packages
5. the selected version of packages where this is not the most recent version
6.

conflicts in the current configuration

resolve

Resolves conflicts identified in the current eCos configuration by invoking an inference capability. Resolved
conflicts are reported, but not all conflicts may be resolvable. This command will be used typically following
manual editing of the configuration.

export <file>

Exports a minimal eCos configuration save file with the specified name. This file contains only those op-
tions which do not have their default value. Such files are used typically to transfer option values from one
configuration to another.

import <file>
Imports a minimal eCos configuration save file with the specified name. The values of those options specified
in the file are applied to the current configuration.

tree

Generates a build tree based on the current eCos configuration. This command will be used typically just
before building eCos.Normally a build tree can only be generated if if the configuration has no unresolved
conflicts, but —=—ignore-errors can be used to override this.

Conflicts and constraints

104

Configuration options are not completely independent. For example the C library’s strtod () and atof () func-
tions rely on the math library package to provide certain functionality. If the math library package is removed then
the C library can no longer provide these functions. Each package describes constraints like these in CDL "re-
quires" properties. If a constraint is not satisfied, then the configuration contains a conflict. For any given conflict
there can be several resolution options. For example, it would be possible to add the math library package back to
the configuration, or to disable the strtod () and atof () functions.

The eCos configuration tools will report any conflicts in the current configuration. If there are any such conflicts
then the configuration is usually unsafe and it makes no sense to build and run eCos in such circumstances. In fact,
any attempt at building eCos is likely to fail. In exceptional cases it is possible to override this by using e.g. the
—--ignore-errors qualifier with ecosconfig.

Many constraints are fairly simple in nature, and the configuration tools contain an inference engine which can re-
solve the associated conflicts automatically. For example, if the math library package is removed then the inference
engine can resolve the resulting conflict by disabling the configuration option for st rtod () and atof (). All such
changes will be reported. Sometimes the inference engine cannot resolve a conflict, for example it is not allowed

Chapter 28. Manual Configuration

to override a change that has been made explicitly by the user. Sometimes it will find a solution which does not

match the application’s requirements.

A typical session involving conflicts would look something like this:

$ ecosconfig new pid

This creates a new configuration with the default template. For most targets this will not result in any conflicts,

because the default settings for the various options meet the requirements of the default template.

For some targets there may be conflicts and the inference engine would come into play.

ecosconfig remove libm
CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, new inferred value 0
CYGFUN_LIBC_strtod, new inferred value 0
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, new inferred value 0

c c c»

ecosconfig reports that this change caused three conflicts, all in the C library. The inference engine was able to

resolve all the conflicts and update the relevant configuration options accordingly.

To suppress the inference engine ——no-resolve can be used:

ecosconfig new pid

ecosconfig —--no-resolve remove libm

CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, "requires" constraint not satisfied:
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, "requires" constraint not satisfied:
CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM

Q Q Q »

Three unresolved conflicts are reported.

CYGPKG_LIBM
CYGPKG_LIBM

The check command can be used to get the current state of the configuration, and the —-verbose qualifier will

provide additional information:

$ ecosconfig —--srcdir /home/bartv/ecc/ecc --verbose check
Target: pid
Template: default
Removed:
CYGPKG_LIBM
3 conflict (s):
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM
Possible solution:
CYGFUN_LIBC_strtod -> 0
CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT -> 0
C CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, "requires" constraint not satisfied:
Possible solution:
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT -> 0
C CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, "requires" constraint not satisfied:
Possible solution:
CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT -> 0

If the proposed solutions are acceptable, the resolve command can be used to apply them:

ecosconfig resolve

CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, new inferred value 0
CYGFUN_LIBC_strtod, new inferred value 0
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, new inferred value 0

o g v

CYGPKG_LIBM

CYGPKG_LIBM

105

Chapter 28. Manual Configuration

The current configuration is again conflict-free and it is possible to generate a build tree. The -—quiet qualifier
can be used to suppress the change messages, if desired.

When changing individual configuration options by editing the ecos.ecc file (as described below), the resulting sys-
tem should be checked and any problems should be resolved. For example, if CYGFUN_LIBC_strtod is explicitly
enabled in the savefile:

$ edit ecos.ecc
$ ecosconfig check
Target: pid
Template: default
Removed:
CYGPKG_LIBM
conflict (s):
CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM
ecosconfig resolve
CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM

Q v QR

In this case the inference engine cannot resolve the conflict automatically because that would involve changing a
user setting. Any attempt to generate a build tree will fail:

$ ecosconfig —--srcdir /home/bartv/ecc/ecc tree

C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM
Unable to generate build tree, this configuration still contains conflicts.
Either resolve the conflicts or use —--ignore-errors

It is still possible to generate a build tree:

$ ecosconfig —--srcdir /home/bartv/ecc/ecc —--ignore-errors tree
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM
$ make

In this case eCos will fail to build. In other cases of unresolved conflicts eCos may build, but may not run. In general
all conflicts should be resolved by editing the ecos.ecc file, by letting the inference engine make appropriate
changes, or by other means, before any attempt is made to build or run eCos.

Building the System

106

Once a build tree has been generated with ecosconfig, building eCos is straightforward:

$ make

The build tree contains the subdirectories, makefiles, and everything else that is needed to generate the default
configuration for the selected architecture and platform. The only requirement is that the tools needed for that
architecture, for example powerpc-eabi-g++, are available using the standard search path. If this is not the case
then the make will fail with an error message. If you have a multiprocessor system then it may be more efficient to
use:

$ make —-7J n

Chapter 28. Manual Configuration

where n is equal to the number of processors on your system.

Once the make process has completed, the install tree will contain the header files and the target library that are
needed for application development.

It is also possible to build the system’s test cases for the current configuration:

$ make tests

The resulting test executables will end up in a tests subdirectory of the install tree.

If disk space is scarce then it is possible to make the copy of the install tree for application development purposes,
and then use:

$ make clean

The build tree will now use up a minimum of disk space — the bulk of what is left consists of configuration header
files that you may have edited and hence should not be deleted automatically. However, it is possible to rebuild the
system at any time without re-invoking ecosconfig, just by running make again.

Under exceptional circumstances it may be necessary to run make clean for other reasons, such as when a new
release of the toolchain is installed. The toolchain includes a number of header files which are closely tied to
the compiler, for example 1imits.h, and these header files are not and should not be duplicated by eCos. The
makefiles perform header file dependency analysis, so that when a header file is changed all affected sources will
be rebuilt during the next make. This is very useful when the configuration header files are changed, but it also
means that a build tree containing information about the locations of header files must be rebuilt. If a new version
of the toolchain is installed and the old version is removed then this location information is no longer accurate, and
make will complain that certain dependencies cannot be satisfied. Under such circumstances it is necessary to do
a make clean first.

Packages

eCos is a component architecture. The system comes as a number of packages which can be enabled or disabled as
required, and new packages can be added as they become available. Unfortunately, the packages are not completely
independent: for example the fITRON compatibility package relies almost entirely on functionality provided by
the kernel package, and it would not make sense to try to build pITRON if the kernel was disabled. The C library
has fewer dependencies: some parts of the C library rely on kernel functionality, but it is possible to disable these
parts and thus build a system that has the C library but no kernel. The ecosconfig tool has the capability of checking
that all the dependencies are satisfied, but it may still be possible to produce configurations that will not build or
(conceivably) that will build but not run. Developers should be aware of this and take appropriate care.

By default, ecosconfig will include all packages that are appropriate for the specified hardware in the configuration.
The common HAL package and the eCos infrastructure must be present in every configuration. In addition, it is
always necessary to have one architectural HAL package and one platform HAL package. Other packages are
optional, and can be added or removed from a configuration as required.

The application may not require all of the packages; for example, it might not need the uITRON compatibility
package, or the floating point support provided by the math library. There is a slight overhead when eCos is built
because the packages will get compiled, and there is also a small disk space penalty. However, any unused facilities
will get stripped out at link-time, so having redundant packages will not affect the final executable.

107

Chapter 28. Manual Configuration

Coarse-grained Configuration

108

Coarse-grained configuration of an eCos system means making configuration changes using the ecosconfig tool.
These changes include:

1. switching to different target hardware
2. switching to a different template
3. adding or removing a package
4. changing the version of a package
Whenever ecosconfig generates or updates an eCos configuration, it generates a configuration save file.

Suppose that the configuration was first created using the following command line:

$ ecosconfig new stdevall

To change the target hardware to the Cogent CMA28x PowerPC board, the following command would be needed:
$ ecosconfig target cma28x

To switch to the PowerPC simulator instead:

$ ecosconfig target psim

As the hardware changes, hardware-related packages such as the HAL packages and device drivers will be added
to and removed from the configuration as appropriate.

To remove any package from the current configuration, use the remove command:

$ ecosconfig remove uitron

You can disable multiple packages using multiple arguments, for example:

$ ecosconfig remove uitron libm

If this turns out to have been a mistake then you can re-enable one or more packages with the add command:
$ ecosconfig add libm

Changing the desired version for a package is also straightforward:

$ ecosconfig version v2_1 kernel

It is necessary to regenerate the build tree and header files following any changes to the configuration before
rebuilding eCos:

$ ecosconfig tree

Chapter 28. Manual Configuration

Fine-grained Configuration

ecosconfig only provides coarse-grained control over the configuration: the hardware, the template and the pack-
ages that should be built. Unlike the Configuration Tool, ecosconfig does not provide any facilities for manipulating
finer-grained configuration options such as how many priority levels the scheduler should support. There are hun-
dreds of these options, and manipulating them by means of command line arguments would not be sensible.

In the current system fine-grained configuration options may be manipulated by manual editing of the configuration
file. When a file has been edited in this way, the ecosconfig tool should be used to check the configuration for any
conflicts which may have been introduced:

$ ecosconfig check

The check command will list all conflicts and will also rewrite the configuration file, propagating any changes
which affect other options. The user may choose to resolve the conflicts either by re-editing the configuration file
manually or by invoking the inference engine using the resolve command:

$ ecosconfig resolve
The resolve command will list all conflicts which can be resolved and save the resulting changes to the configura-
tion.

It is necessary to regenerate the build tree and header files following any changes to the configuration before
rebuilding eCos:

$ ecosconfig tree

All the configuration options and their descriptions are listed in the eCos Reference Manual.

Editing an eCos Savefile

The eCos configuration information is held in a single savefile, typically ecos.ecc, which can be generated by
either the GUI configuration tool or by the command line ecosconfig tool. The file normally exists at the top level
of the build tree. It is a text file, allowing the various configurations options to be edited inside a suitable text editor
or by other programs or scripts, as well as in the GUI config tool.

An eCos savefile is actually a script in the Tcl programming language, so any modifications to the file need to
preserve Tcl syntax. For most configuration options, any modifications will be trivial and there is no need to
worry about Tcl syntax. For example, changing a 1 to a O to disable an option. For more complicated options, for
example CYGDAT_UITRON_TASK_EXTERNS, which involves some lines of C code, more care has to be taken. If an
edited savefile is no longer a valid Tcl script then the configuration tools will be unable to read back the data for
further processing, for example to generate a build tree. An outline of Tcl syntax is given below. One point worth
noting here is that a line that begins with a “#” is usually a comment, and the bulk of an eCos savefile actually
consists of such comments, to make it easier to edit.

Header

An eCos savefile begins with a header, which typically looks something like this:

eCos saved configuration

109

Chapter 28. Manual Configuration

———— commands —— T T T
This section contains information about the savefile format.

It should not be edited. Any modifications made to this section

may make it impossible for the configuration tools to read

e

the savefile.

cdl_savefile_version 1;

cdl_savefile_command cdl_savefile_version {};

cdl_savefile_command cdl_savefile_command {};

cdl_savefile_command

cdl_configuration { description hardware template package };

cdl_savefile_command cdl_package { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_component { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_option { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_interface { value_source user_value wizard_value inferred_value };

This section of the savefile is intended for use by the configuration system, and should not be edited. If this section
is edited then the various configuration tools may no longer be able to read in the modified savefile.

Toplevel Section
The header is followed by a section that defines the configuration as a whole. A typical example would be:

———— toplevel ————————————
This section defines the toplevel configuration object. The only
values that can be changed are the name of the configuration and

the description field. It is not possible to modify the target,

the template or the set of packages simply by editing the lines

below because these changes have wide-ranging effects. Instead

o .

the appropriate tools should be used to make such modifications.

cdl_configuration eCos {

nn

description

These fields should not be modified.
hardware pid ;

template uitron ;

package -hardware CYGPKG_HAL_ARM current ;
package -hardware CYGPKG_HAL_ARM_PID current ;
package -hardware CYGPKG_IO_SERIAL current ;
package -template CYGPKG_HAL current ;

package —-template CYGPKG_IO current ;

package —-template CYGPKG_INFRA current ;
package —-template CYGPKG_KERNEL current ;
package —-template CYGPKG_UITRON current ;
package —-template CYGPKG_LIBC current ;
package —-template CYGPKG_LIBM current ;
package —-template CYGPKG_DEVICES_WALLCLOCK current ;
package —-template CYGPKG_ERROR current ;

}i

110

Chapter 28. Manual Configuration

This section allows the configuration tools to reload the various packages that make up the configuration. Most of
the information should not be edited. If it is necessary to add a new package or to remove an existing one then the
appropriate tools should be used for this, for example:

$ ecosconfig remove CYGPKG_LIBM

There are two fields which can be edited. Configurations have a name; in this case eCos. They can also have a
description, which is some arbitrary text. The configuration tools do not make use of these fields, they exist so that
users can store additional information about a configuration.

Conflicts Section
The toplevel section is followed by details of all the conflicts (if any) in the configuration, for example:

-——- conflicts ————————""—"""""""———— - ———
There are 2 conflicts.

option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET
Property LegalValues
Illegal current value 100000
Legal values are: -90000 to 90000

option CYGSEM_LIBC_TIME_CLOCK_WORKING
Property Requires
Requires constraint not satisfied: CYGFUN_KERNEL_THREADS_TIMER

EEE e

When editing a configuration you may end up with something that is invalid. Any problems in the
configuration will be reported in the conflicts section. In this case there are two conflicts. The option
CYGNUM_LIBC_TIME DST_DEFAULT_OFFSET has been given an illegal value: typically this would be fixed
by searching for the definition of that option later on in the savefile and modifying the value. The second
conflict is more interesting, an unsatisfied requires constraint. Configuration options are not independent:
disabling some functionality in, say, the kernel, can have an impact elsewhere; in this case the C library. The
various dependencies between the options are specified by the component developers and checked by the
configuration system. In this case there are two obvious ways in which the conflict could be resolved: re-enabling
CYGFUN_KERNEL_THREADS_TIMER, or disabling CYGSEM_LIBC_TIME_CLOCK_WORKING. Both of these options
will be listed later on in the file.

Some care has to be taken when modifying configuration options, to avoid introducing new conflict.
For instance it is possible that there might be other options in the system which have a dependency on
CYGSEM_LIBC_TIME_CLOCK_WORKING, so disabling that option may not be the best way to resolve the conflict.
Details of all such dependencies are provided in the appropriate places in the savefile.

It is not absolutely required that a configuration be conflict-free before generating a build tree and building eCos. It
is up to the developers of each component to decide what would happen if an attempt is made to build eCos while
there are still conflicts. In serious cases there is likely to be a compile-time failure, or possibly a link-time failure. In
less serious cases the system may build happily and the application can be linked with the resulting library, but the
component may not quite function as intended - although it may still be good enough for the specific needs of the
application. It is also possible that everything builds and links, but once in a while the system will unaccountably
crash. Using a configuration that still has conflicts is done entirely at the user’s risk.

111

Chapter 28. Manual Configuration

112

Data Section

The bulk of the savefile lists the various packages, components, and options, including their values and the various
dependencies. A number of global options come first, especially those related to the build process such as compiler
flags. These are followed by the various packages, and the components and options within those packages, in order.

Packages, components and options are organized in a hierarchy. If a particular component is disabled then all
options and sub-components below it will be inactive: any changes made to these will have no effect. The savefile
contains information about the hierarchy in the form of comments, for example:

cdl_package CYGPKG_KERNEL

>

cdl_component CYGPKG_KERNEL_EXCEPTIONS

>

cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE
cdl_option CYGSEM_KERNEL_EXCEPTIONS_GLOBAL
<

cdl_component CYGPKG_KERNEL_SCHED

>

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE
cdl_option CYGSEM_KERNEL_SCHED_BITMAP

<

<

This corresponds to the following hierarchy:

CYGPKG_KERNEL
CYGPKG_KERNEL_EXCEPTIONS
CYGSEM_KERNEL_EXCEPTIONS_DECODE
CYGSEM_KERNEL_EXCEPTIONS_GLOBAL
CYGPKG_KERNEL_SCHED
CYGSEM_KERNEL_SCHED_MLQUEUE
CYGSEM_KERNEL_SCHED_BITMAP

Providing the hierarchy information in this way allows programs or scripts to analyze the savefile and readily
determine the hierarchy. It could also be used by a sufficiently powerful editor to support structured editing of eCos
savefiles. The information is not used by the configuration tools themselves since they obtain the hierarchy from
the original CDL scripts.

Each configurable entity is preceded by a comment, of the following form:

Kernel schedulers

doc: ref/ecos-ref/ecos-kernel-overview.html#THE-SCHEDULER
The eCos kernel provides a choice of schedulers. In addition
there are a number of configuration options to control the
detailed behaviour of these schedulers.

cdl_component CYGPKG_KERNEL_SCHED {

L

}i

Chapter 28. Manual Configuration

This provides a short textual alias Kernel schedulers for the component. If online documentation is available
for the configurable entity then this will come next. Finally there is a short description of the entity as a whole. All
this information is provided by the component developers.

Each configurable entity takes the form:

<type> <name> {
<data>
bi

Configurable entities may not be active. This can be either because the parent is disabled or inactive, or because
there are one or more active_if properties. Modifying the value of an inactive entity has no effect on the configura-
tion, so this information is provided first:

cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE {
This option is not active
The parent CYGPKG_KERNEL_EXCEPTIONS is disabled

bi

cdl_option CYGIMP_IDLE_THREAD_YIELD {

This option is not active

ActiveIf constraint: (CYGNUM_KERNEL_SCHED_PRIORITIES == 1)
CYGNUM_KERNEL_SCHED_PRIORITIES == 32

-—> 0

}i
For cyGIMP_IDLE_THREAD_YIELD the savefile lists the expression that must be satisfied if the option is to be

active, followed by the current value of all entities that are referenced in the expression, and finally the result of
evaluating that expression.

Not all options are directly modifiable in the savefile. First, the value of packages (which is the version of that
package loaded into the configuration) cannot be modified here.

cdl_package CYGPKG_KERNEL {

Packages cannot be added or removed, nor can their version be changed,
simply by editing their value. Instead the appropriate configuration
should be used to perform these actions.

bi

The version of a package can be changed using e.g.:

$ ecosconfig version 1.3 CYGPKG_KERNEL

Even though a package’s value cannot be modified here, it is still important for the savefile to contain the details.
In particular packages may impose constraints on other configurable entities and may be referenced by other
configurable entities. Also it would be difficult to understand or extract the configuration’s hierarchy if the packages
were not listed in the appropriate places in the savefile.

113

Chapter 28. Manual Configuration

114

Some components (or, conceivably, options) do not have any associated data. Typically they serve only to introduce
another level in the hierarchy, which can be useful in the context of the GUI configuration tool.

cdl_component CYGPKG_HAL_COMMON_INTERRUPTS ({
There is no associated value.

}i

Other components or options have a calculated value. These are not user-modifiable, but typically the value will
depend on other options which can be modified. Such calculated options can be useful when controlling what gets
built or what ends up in the generated configuration header files. A calculated value may also effect other parts of
the configuration, for instance, via a requires constraint.

cdl_option BUFSIZ {

Calculated value: CYGSEM_LIBC_STDIO_WANT_BUFFERED_IO ? CYGNUM_LIBC_STDIO_BUFSIZE : O
CYGSEM_LIBC_STDIO_WANT_BUFFERED_IO ==

CYGNUM_LIBC_STDIO_BUFSIZE == 256

Current_value: 256

ti

A special type of calculated value is the inferface. The value of an interface is the number of active and enabled
options which implement that interface. Again the value of an interface cannot be modified directly; only by mod-
ifying the options which implement the interface. However, an interface can be referenced by other parts of the
configuration.

cdl_interface CYGINT_KERNEL_SCHEDULER {
Implemented by CYGSEM_KERNEL_SCHED_MLQUEUE, active, enabled
Implemented by CYGSEM_KERNEL_SCHED_BITMAP, active, disabled
This value cannot be modified here.
Current_value: 1
Requires: 1 == CYGINT_KERNEL_SCHEDULER
CYGINT_KERNEL_SCHEDULER == 1
-—> 1

o = = ==

The following properties are affected by this value
interface CYGINT_KERNEL_SCHEDULER
Requires: 1 == CYGINT_KERNEL_SCHEDULER

— o =

If the configurable entity is modifiable then there will be lines like the following:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {

Flavor: bool

No user value, uncomment the following line to provide one.
user_value 1

value_source default

S H W H

Default value: 1
}i
Configurable entities can have one of four different flavors: none, bool, data and booldata. Flavor none indicates

that there is no data associated with the entity, typically it just acts as a placeholder in the overall hierarchy. Flavor
bool is the most common, it is a simple yes-or-no choice. Flavor data is for more complicated configuration choices,

Chapter 28. Manual Configuration

for instance the size of an array or the name of a device. Flavor booldata is a combination of bool and data: the
option can be enabled or disabled, and there is some additional data associated with the option as well.

In the above example the user has not modified this particular option, as indicated by the comment and by the
commented-out user_value line. To disable this option the file should be edited to:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE ({

Flavor: bool

No user value, uncomment the following line to provide one.
user_value 0

value_source default

Default value: 1

The comment preceding the user_value 0 line can be removed if desired, otherwise it will be removed automat-
ically the next time the file is read and updated by the configuration tools.

Much the same process should be used for options with the data flavor, for example:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET {

Flavor: data

No user value, uncomment the following line to provide one.
user_value 3600

value_source default

Default value: 3600

Legal values: -90000 to 90000

— S S H o 4 =

can be changed to:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET {
Flavor: data

user_value 7200

value_source default

Default value: 3600

Legal values: -90000 to 90000 };

Note that the original text provides the default value in the user_value comment, on the assumption that the
desired new value is likely to be similar to the default value. The value_source comment does not need to be
updated, it will be fixed up if the savefile is fed back into the configuration system and regenerated.

For options with the booldata flavor, the user_value line needs take two arguments. The first argument is for the
boolean part, the second for the data part. For example:

cdl_component CYGNUM_LIBM_COMPATIBILITY ({

Flavor: booldata

No user value, uncomment the following line to provide one.
user_value 1 POSIX

value_source default

Default value: 1 POSIX

Legal values: “POSIX” “IEEE” “XOPEN” “SVID”

e

115

Chapter 28. Manual Configuration

ti

could be changed to:

cdl_component CYGNUM_LIBM_COMPATIBILITY ({

Flavor: booldata

user_value 1 IEEE

value_source default

Default value: 1 POSIX

Legal values: “POSIX” “IEEE” “XOPEN” “SVID”

bi

or alternatively, if the whole component should be disabled, to:

cdl_component CYGNUM_LIBM_COMPATIBILITY {

Flavor: booldata

user_value 0 POSIX

value_source default

Default value: 1 POSIX

Legal values: “POSIX” “IEEE” “XOPEN” “SVID”

}i
Some options take values that span multiple lines. An example would be:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_INITIALIZERS {
Flavor: data
No user value, uncomment the following line to provide one.
user_value \
“CYG_UIT_MEMPOOLVAR (vpooll, 2000), \\
CYG_UIT_MEMPOOLVAR (vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”
value_source default
Default value: \
“CYG_UIT_MEMPOOLVAR(vpooll, 2000), \\
CYG_UIT_MEMPOOLVAR (vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”

B T I e e .

Setting a user value for this option involves uncommenting and modifying all relevant lines, for example:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_INITIALIZERS {
Flavor: data

user_value \

“CYG_UIT_MEMPOOLVAR (vpooll, 4000), \\
CYG_UIT_MEMPOOLVAR (vpool2, 4000),”

value_source default

Default value: \

“CYG_UIT_MEMPOOLVAR (vpooll, 2000), \\
CYG_UIT_MEMPOOLVAR (vpool2, 2000), \\

#
CYG_UIT_MEMPOOLVAR (vpool3, 2000),”

116

Chapter 28. Manual Configuration
}i

In such cases appropriate care has to be taken to preserve Tcl syntax, as discussed below.

The configuration system has the ability to keep track of several different values for any given option. All options
start off with a default value, in other words their value source is set to default. If a configuration involves conflicts
and the configuration system’s inference engine is allowed to resolve these automatically then it may provide an
inferred value instead, for example:

cdl_option CYGMEN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {

Flavor: bool

No user value, uncomment the following line to provide one.
user_value 1

The inferred value should not be edited directly.
inferred_value 0

value_source inferred

Default value: 1

}i

Inferred values are calculated by the configuration system and should not be edited by the user. If the inferred value
is not correct then a user value should be substituted instead:

cdl_option CYGMEFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

value_source inferred

Default value: 1

}i
The inference engine will not override a user value with an inferred one. Making a change like this may well re-
introduce a conflict, since the inferred value was only calculated to resolve a conflict. Another run of the inference

engine may find a different and more acceptable way of resolving the conflict, but this is not guaranteed and it may
be up to the user to examine the various dependencies and work out an acceptable solution.

Inferred values are listed in the savefile because the exact inferred value may depend on the order in which changes
were made and conflicts were resolved. If the inferred values were absent then it is possible that reloading a savefile
would not exactly restore the configuration. Default values on the other hand are entirely deterministic so there is
no actual need for the values to be listed in the savefile. However, the default value can be very useful information
so it is provided in a comment.

Occasionally the user will want to do some experimentation, and temporarily switch an option from a user value
back to a default or inferred one to see what the effect would be. This could be achieved by simply commenting
out the user value. For instance, if the current savefile contains:

cdl_option CYGMEN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

117

Chapter 28. Manual Configuration

118

value_source user
Default value: 1

ti

then the inferred value could be restored by commenting out or removing the user_value line:

cdl_option CYGMEN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

value_source user

Default value: 1

bi
This is fine for simple values. However if the value is complicated then there is a problem: commenting out the
user_value line or lines means that the user value becomes invisible to the configuration system, so if the savefile

is loaded and then regenerated the information will be lost. An alternative approach is to keep the user_value but
explicitly set the value_source line, for example:

cdl_option CYGMEFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

value_source inferred

Default value: 1

}i
In this case the configuration system will use the inferred value for the purposes of dependency analysis etc., even
though a user value is present. To restore the user value the value_source line can be commented out again. If

there is no explicit value_source then the configuration system will just use the highest priority one: the user
value if it exists; otherwise the inferred value if it exists; otherwise the default value which always exists.

The default value for an option can be a simple constant, or it can be an expression involving other options. In the
latter case the expression will be listed, together with the values for all options referenced in the expression and
the current result of evaluating that expression. This is for informational purposes only, the default value is always
recalculated deterministically when loading in a savefile.

cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
Flavor: data
No user value, uncomment the following line to provide one.
user_value arm-elf
value_source default
Default value: CYGHWR_THUMB ? “thumb-elf” : “arm-elf”
CYGHWR_THUMB ==
-—> arm-elf

. R TRETSRET

Chapter 28. Manual Configuration

For options with the data or booldata flavor, there are likely to be constraints on the possible values. If the value
is supposed to be a number in a given range and a user value of “hello world” is provided instead then there
are likely to be compile-time failures. Component developers can specify constraints on the legal values, and these
will be listed in the savefile.

cdl_option X_TLOSS {

Flavor: data

No user value, uncomment the following line to provide one.
user_value 1.41484755040569E+16

value_source default

Default value: 1.41484755040569E+16

Legal values: 1 to 1e308

— S S H W 4 e

cdl_component CYGNUM_LIBM_COMPATIBILITY {

Flavor: booldata

No user value, uncomment the following line to provide one.
user_value 1 POSIX

value_source default

Default value: 1 POSIX

Legal values: “POSIX” “IEEE” “XOPEN” “SVID”

H o H W H e

}i
In some cases the legal values list may be an expression involving other options. If so then the current values of the

referenced options will be listed, together with the result of evaluating the list expression, just as for default value
expressions.

If an illegal value is provided then this will result in a conflict, listed in the conflicts section of the savefile. For
more complicated options a simple legal values list is not sufficient to allow the current value to be validated,
and the configuration system will be unable to flag conflicts. This issue will be addressed in future releases of the
configuration system.

Following the value-related fields for a given option, any requires constraints belonging to this option will be
listed. These constraints are only effective if the option is active and, for bool and booldata flavors, enabled. If
some aspect of eCos functionality is inactive or disabled then it cannot impose any constraints on the rest of the
system. As usual, the full expression will be listed followed by the current values of all options that are referenced
and the result of evaluating the expression:

cdl_option CYGSEM_LIBC_TIME_TIME_WORKING {
Requires: CYGPKG_DEVICES_WALLCLOCK

CYGPKG_DEVICES_WALLCLOCK == current
-—> 1

bi

When modifying the value of an option it is useful to know not only what constraints the option imposes on the
rest of the system but also what other options in the system depend in some way on this one. The savefile provides
this information:

cdl_option CYGFUN_KERNEL_THREADS_TIMER {

The following properties are affected by this value

119

Chapter 28. Manual Configuration

120

option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT
Requires: CYGFUN_KERNEL_THREADS_TIMER

option CYGIMP_UITRON_STRICT_CONFORMANCE

Requires: CYGFUN_KERNEL_THREADS_TIMER

option CYGSEM_LIBC_TIME_CLOCK_WORKING

Requires: CYGFUN_KERNEL_THREADS_TIMER

bi

Tcl Syntax

eCos savefiles are implemented as Tcl scripts, and are read in by running the data through a standard Tcl
interpreter that has been extended with a small number of additional commands such as cdl_option and
cdl_configuration. In many cases this is an implementation detail that can be safely ignored while editing a
savefile: simply replacing a 1 with a 0 to disable some functionality is not going to affect whether or not the
savefile is still a valid Tcl script and can be processed by a Tcl interpreter. However, there are more complicated
cases where an understanding of Tcl syntax is at least desirable, for example:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_EXTERNS {
Flavor: data
user_value \
“static char vpooll\[2000 \]1, \\
vpool2\[2000 \], \\
vpool3\[2000 \];”
value_source default
Default value: \

“static char vpooll\[2000 \], \\
vpool2\[2000 \1, \\
vpool3\[2000 \1;”

ti

The backslash at the end of the user_value line is processed by the Tcl interpreter as a line continuation character.
The quote marks around the user data are also interpreted by the Tcl interpreter and serve to turn the entire data
field into a single argument. The backslashes preceding the opening and closing square brackets prevent the Tcl
interpreter from treating these characters specially, otherwise there would be an attempt at command substitution
as described below. The double backslashes at the end of each line of the data will be turned into a single backslash
by the Tcl interpreter, rather than escaping the newline character, so that the actual data seen by the configuration
system is:

static char vpooll[2000 1, \
vpool2[2000], \
vpool3[2000 1;

This is of course the data that should end up in the uITRON configuration header file. The opening and closing
braces surrounding the entire body of the option data are also significant and cause this body to be passed as a
single argument to the cdl_option command. The closing semicolon is optional in this example, but provides a
small amount of additional robustness if the savefile is edited such that it is no longer a valid Tcl script. If the data
contained any $ characters then these would have to be treated specially as well, via a backslash escape.

In spite of what all the above might seem to suggest, Tcl is actually a very simple yet powerful scripting language:
the syntax is defined by just eleven rules. On occasion this simplicity means that Tcl’s behaviour is subtly different
from other languages, which can confuse newcomers.

Chapter 28. Manual Configuration

When the Tcl interpreter is passed some data such as puts Hello, it splits this data into a command and its
arguments. The command will be terminated by a newline or by a semicolon, unless one of the quoting mechanisms
is used. The command and each of its arguments are separated by white space. So in the following example:

puts Hello
set x 42

will result in two separate commands being executed. The first command is puts and is passed a single argument,
Hello. The second command is set and is passed two arguments, x and 42. The intervening newline character
serves to terminate the first command, and a semi-colon separator could be used instead:

puts Hello;set x 42

Any white space surrounding the semicolon is just ignored because it does not serve to separate arguments.

Now consider the following:

set x Hello world

This is not valid Tcl. It is an attempt to invoke the set command with three arguments: x, Hello, and world. The
set only takes two arguments, a variable name and a value, so it is necessary to combine the data into a single
argument by quoting:

set x “Hello world”

When the Tcl interpreter encounters the first quote character it treats all subsequent data up to but not including
the closing quote as part of the current argument. The quote marks are removed by the interpreter, so the second
argument passed to the set command is just Hello world without the quote characters. This can be significant in
the context of eCos savefiles. For instance, consider the following configuration option:

cdl_option CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE {

Flavor: data

No user value, uncomment the following line to provide one.
user_value “\”/dev/ttydiag\””

value_source default

Default value: “\”/dev/ttydiag\””

— S W

The desired value of the configuration option should be a valid C string, complete with quote characters. If the
savefile was edited to:

cdl_option CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE {
Flavor: data

user_value “/dev/ttydiag”

value_source default

Default value: “\”/dev/ttydiag\””

}i

then the Tcl interpreter would remove the quote marks when the savefile is read back in, so the option’s value
would not have any quote marks and would not be a valid C string. The configuration system is not yet able to
perform the required validation so the following #define would be generated in the configuration header file:

#define CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE /dev/ttydiag

121

Chapter 28. Manual Configuration

122

This is likely to cause a compile-time failure when building eCos.

A quoted argument continues until the closing quote character is encountered, which means that it can span multiple
lines. This can also be encountered in eCos savefiles, for instance, in the CYGDAT_UITRON_MEMPOOLVAR_EXTERNS
example mentioned earlier. Newline or semicolon characters do not terminate the current command in such cases.

The Tcl interpreter supports much the same forms of backslash substitution as other common programming lan-
guages. Some backslash sequences such as \n will be replaced by the appropriate character. The sequence \\ will
be replaced by a single backslash. A backslash at the very end of a line will cause that backslash, the newline
character, and any white space at the start of the next line to be replaced by a single space. Hence the following
two Tcl commands are equivalent:

puts “Hello\nworld\n”
puts \
“Hello
world

w

In addition to quote and backslash characters, the Tcl interpreter treats square brackets, the $ character, and braces
specially. Square brackets are used for command substitution, for example:

puts “The answer is [expr 6 * 91"

When the Tcl interpreter encounters the square brackets it will treat the contents as another command that should
be executed first, and the result of executing that is used when continuing to process the script. In this case the Tcl
interpreter will execute the command expr 6 » 9, yielding a result of 54, and then the Tcl interpreter will execute
puts “The answer is 54”. It should be noted that the interpreter contains only one level of substitution: if the
result of performing command substitution performs further special characters such as square brackets then these
will not be treated specially.

Command line substitution is very unlikely to prove useful in the context of an eCos savefile, but it is part of the
Tcl language and hence cannot be easily suppressed while reading in a savefile. As a result care has to be taken
when savefile data involves square brackets. Consider the following:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS ({

user_value \
“static char fpooll[2000 1],
fpool2[2000 1;”

bi

The Tcl interpreter will interpret the square brackets as an attempt at command substitution and hence it will
attempt to execute the command 2000 with no arguments. No such command is defined by the Tcl language or by
the savefile-related extensions provided by the configuration system, so this will result in an error when an attempt
is made to read back the savefile. Instead it is necessary to backslash-escape the square brackets and thus suppress
command substitution:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
user_value \

“static char fpooll\[2000 \],
fpool2\[2000 \1;”

Chapter 28. Manual Configuration

}i
Similarly the $ character is used in Tcl scripts to perform variable substitution:

set x [expr 6 x 9]
puts “The answer is $x”

Variable substitution, like command substitution, is very unlikely to prove useful in the context of an eCos savefile.
Should it be necessary to have a $ character in configuration data then again a backslash escape needs to be used.

cdl_option FOODAT_MONITOR_PROMPT ({
user_value “\$ ™
bi

Braces are used to collect a sequence of characters into a single argument, just like quotes. The difference is that
variable, command and backslash substitution do not occur inside braces (with the sole exception of backslash
substitution at the end of a line). So, for example, the CYGDAT_UITRON_MEMPOOL_EXTERNFIXED_EXTERNS value
could be written as:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS ({

user_value \
{static char fpooll[2000 17,
fpool2[2000];}

i
The configuration system does not use this when generating savefiles because for simple edits of a savefile by

inexperienced users the use of brace characters is likely to be a little bit more confusing than the use of quotes.

At this stage it is worth noting that the basic format of each configuration option in the savefile makes use of braces:

cdl_option <name> {
bi

The configuration system extends the Tcl language with a small number of additional commands such as
cdl_option. These commands take two arguments, a name and a body, where the body consists of all the text
between the braces. First a check is made that the specified option is actually present in the configuration. Then
the body is executed in a recursive invocation of the Tcl interpreter, this time with additional commands such as
user_value and value_source. If, after editing, the braces are not correctly matched up then the savefile will
no longer be a valid Tcl script and errors will be reported when the savefile is loaded again.

Comments in Tcl scripts are introduced by a hash character #. However, a hash character only introduces a comment
if it occurs where a command is expected. Consider the following:

This is a comment
puts “Hello” # world

The first line is a valid comment, since the hash character occurs right at the start where a command name is
expected. The second line does not contain a comment. Instead it is an attempt to invoke the puts command with

123

Chapter 28. Manual Configuration

three arguments: Hello, # and world. These are not valid arguments for the puts command so an error will be
raised.

If the second line was rewritten as:

puts “Hello”; # world

then this is a valid Tcl script. The semicolon identifies the end of the current command, so the hash character occurs
at a point where the next command would start and hence it is interpreted as the start of a comment.

This handling of comments can lead to subtle behaviour. Consider the following:

cdl_option WHATEVER {
This is a comment }
user_value 42

Consider the way the Tcl interpreter processes this. The command name and the first argument do not pose any
special difficulties. The opening brace is interpreted as the start of the next argument, which continues until a
closing brace is encountered. In this case the closing brace occurs on the second line, so the second argument passed
tocdl_optionis\n # This is a comment . This second argument is processed in a recursive invocation of the
Tcl interpreter and does not contain any commands, just a comment. Toplevel savefile processing then resumes, and
the next command that is encountered is user_value. Since the relevant savefile code is not currently processing
a configuration option this is an error. Later on the Tcl interpreter would encounter a closing brace by itself, which
is also an error. Fortunately this sequence of events is very unlikely to occur when editing generated savefiles.

This should be sufficient information about Tcl to allow for safe editing of eCos savefiles. Further information is
available from a wide variety of sources, for example the book Tcl and the Tk Toolkit by John K Ousterhout.

Editing the Sources

124

For many users, controlling the packages and manipulating the available configuration options will be sufficient to
create an embedded operating system that meets the application’s requirements. However, since eCos is shipped
entirely in source form, it is possible to go further when necessary: you can edit the eCos sources themselves. This
requires some understanding of the way the eCos build system works.

The most obvious place to edit the source code is directly in the component repository. For example, you could edit
the file kernel/<version>/src/sync/mutex. cxx to change the way kernel mutexes work, or possibly just to add
some extra diagnostics or assertions. Once the file has been edited, it is possible to invoke make at the top level
of the build tree and the target library will be rebuilt as required. A small optimization is possible: the build tree is
largely a mirror of the component repository, so it too will contain a subdirectory kernel/<version>; if make is
invoked in this directory then it will only check for changes to the kernel sources, which is a bit more efficient than
checking for changes throughout the component repository.

Editing a file in the component repository is fine if this tree is used for only one eCos configuration. If the repos-
itory is used for several different configurations, however, and especially if it is shared by multiple users, then
making what may be experimental changes to the master sources would be a bad idea. The build system provides
an alternative. It is possible to make a copy of the file in the build tree, in other words copy mutex.cxx from
the kernel/<version>/src/sync directory in the component repository to kernel/<version>/src/sync in the

Chapter 28. Manual Configuration

build tree, and edit the file in the build tree. When make is invoked it will pick up local copies of any of the
sources in preference to the master versions in the component repository. Once you have finished modifying the
eCos sources you can install the final version back in the component repository. If the changes were temporary in
nature and only served to aid the debugging process, then you can discard the modified version of the sources.

The situation is slightly more complicated for the header files that a package may export, such as the C library’s
stdio.h header file, which can be found in the directory language/c/libc/<version>/include. If such a
header file is changed, either directly in the component repository or after copying it to the build tree, then make
must be invoked at the top level of the build tree. In cases like this it is not safe to rebuild just the C library because
other packages may depend on the contents of stdio.h.

Modifying the Memory Layout

Each eCos platform package is supplied with linker script fragments which describe the location of memory regions
on the evaluation board and the location of memory sections within these regions. The correct linker script fragment
is selected and included in the eCos linker script target . 1d when eCos is built.

It is not necessary to modify the default memory layouts in order to start development with eCos. However, it
will be necessary to edit a linker script fragment when the memory map of the evaluation board is changed. For
example, if additional memory is added, the linker must be notified that the new memory is available for use. As
a minimum, this would involve modifying the length of the corresponding memory region. Where the available
memory is non-contiguous, it may be necessary to declare a new memory region and reassign certain linker output
sections to the new region.

Linker script fragments and memory layout header files should be edited within the eCos install tree. They are
located at include/pkgconf/mlt_x.*. Where multiple start-up types are in use, it will be necessary to edit
multiple linker script fragments and header files. The information provided in the header file and the corresponding
linker script fragment must always match. A typical linker script fragment is shown below:

Example 28-1. eCos linker script fragment

MEMORY
{
rom : ORIGIN
ram : ORIGIN
}

0x40000000, LENGTH 0x80000
0x48000000, LENGTH = 0x200000

SECTIONS

{

SECTIONS_BEGIN

SECTION_rom_vectors (rom, 0x40000000, LMA_EQ_VMA)
SECTION_text (rom, ALIGN (0Ox1l), LMA_EQ VMA)
SECTION_fini (rom, ALIGN (0xl), LMA_EQ_VMA)
SECTION_rodata (rom, ALIGN (0Ox1l), LMA_EQ VMA)
SECTION_rodatal (rom, ALIGN (0x1l), LMA_EQ VMA)
SECTION_fixup (rom, ALIGN (0x1l), LMA_EQ_VMA)
SECTION_gcc_except_table (rom, ALIGN (0xl), LMA_EQ VMA)
SECTION_data (ram, 0x48000000, FOLLOWING (.gcc_except_table))
SECTION_bss (ram, ALIGN (0x4), LMA_EQ VMA)

SECTIONS_END

125

Chapter 28. Manual Configuration

126

The file consists of two blocks, the MEMORY block contains lines describing the address (ORIGIN) and the size
(LENGTH) of each memory region. The MEMORY block is followed by the secTIONS block which contains lines
describing each of the linker output sections. Each section is represented by a macro call. The arguments of these
macros are ordered as follows:

1. The memory region in which the section will finally reside.

2. The final address (vMa) of the section. This is expressed using one of the following forms:

at the absolute address specified by the unsigned integer n

ALIGN (n)

following the final location of the previous section with alignment to the next n-byte boundary

3. The initial address (LM2) of the section. This is expressed using one of the following forms:

LMA_EQ_VMA
the LMA equals the vMA (no relocation)
AT (n)
at the absolute address specified by the unsigned integer n

FOLLOWING (.name)

following the initial location of section name

In order to maintain compatibility with linker script fragments and header files exported by the eCos Configuration
Tool, the use of other expressions within these files is not recommended.

Note that the names of the linker output sections will vary between target architectures. A description of these
sections can be found in the specific GCC documentation for your architecture.

Chapter 29. Managing the Package Repository

A source distribution of eCos consists of a number of packages, such as the kernel, the C library, and the fITRON
subsystems. These are individually versioned in the tree structure of the source code, to support distribution on
a per-package basis and to support third party packages whose versioning systems might be different. The eCos
Package Administration Tool is used to manage the installation and removal of packages from a variety of sources
with potentially multiple versions.

The presence of the version information in the source tree structure might be a hindrance to the use of a separate
source control system such as CVS or SourceSafe. To work in this way, you can rename all the version components
to some common name (such as “current”) thus unifying the structure of source trees from distinct eCos releases.

The eCos build system will treat any such name as just another version of the package(s), and support building
in exactly the same way. However, performing this rename invalidates any existing build trees that referred to the
versioned source tree, so do the rename first, before any other work, and do a complete rebuild afterwards.

Package Installation

Package installation and removal is performed using the eCos Package Administration Tool. This tool is a Tcl script
named ecosadmin.tcl which allows the user to add new eCos packages and new versions of existing packages to
an eCos repository. Such packages must be distributed as a single file in the eCos package distribution format.
Unwanted packages may also be removed from the repository using this tool. A graphical version of the tool is
provided as part of the eCos Configuration Tool.

Using the Administration Tool

The graphical version of the eCos Package Administration Tool, provided as part of the eCos Configuration Tool,
provides functions equivalent to the command-line version for those who prefer a Windows-based interface.

It may be invoked in one of two ways:

- from the start menu (by default Start->Programs-> eCos->Package Administration Tool)

+ from the eCos Configuration Tool via the Tools->Administration menu item

127

Chapter 29. Managing the Package Repository

128

eCosz Package Administration Tool

A Cirus Logic development board

+ 5 Cogent CMAZ30/222 board
w4 Cogent CMAZBE/257 board

5 Common eror code support
?I:l‘. Cyghon support via eCos

+ % eCos common HAL
o4 elos kemel
5 Fuitsu MBSEB00-MATT board

440

B 1/0 sub-system

440

By 1386 common HAL

A Infrastucture

5 Intel EBSA285 StongAFRM board
&40

By Linux synthetic target
-4y Math library

The main window of the tool displays the packages which are currently installed in the form of a tree. The installed
versions of each package may be examined by expanding the tree.

Packages may be added to the eCos repository by clicking on the Add button. The eCos package distribution file to
be added is then selected via a File Open dialog box.

Packages may be removed by selecting a package in the tree and then clicking on the Remove button. If a package
node is selected, all versions of the selected package will be removed. If a package version node is selected, only
the selected version of the package will be removed.

Using the command line

The ecosadmin.tcl script is located in the base of the eCos repository. Use a command of the following form under
versions of UNIX:

$ tclsh ecosadmin.tcl <command>
Under Windows, a command of the following form may be used at the Cygwin command line prompt:
$ cygtclsh80 ecosadmin.tcl <command>

The following commands are available:

add <file>
Adds the packages contained with the specified package distribution file to the eCos repository and updates
the package database accordingly. By convention, eCos package distribution files are given the . epk suffix.
remove <package> [--version=<version>]

Removes the specified package from the eCos repository and updates the package database accordingly.
Where the optional version qualifier is used, only the specified version of the package is removed.

Chapter 29. Managing the Package Repository

list

Produces a list of the packages which are currently installed and their versions. The available templates and
hardware targets are also listed.

Note that is is possible to remove critical packages such as the common HAL package using this tool. Users should
take care to avoid such errors since core eCos packages may only be re-installed in the context of a complete
re-installation of eCos.

Package Structure

The files in an installed eCos source tree are organized in a natural tree structure, grouping together files which
work together into Packages. For example, the kernel files are all together in:

BASE_DIR/kernel/<version>/include/
BASE_DIR/kernel/<version>/src/
BASE_DIR/kernel/<version>/tests/

and fITRON compatibility layer files are in:

BASE_DIR/compat/uitron/<version>/include/
BASE_DIR/compat/uitron/<version>/src/
BASE_DIR/compat/uitron/<version>/tests/

The feature of these names which is of interest here is the <version> near the end. It may seem odd to place a
version number deep in the path, rather than having something like Base_pIr/<version>/...everything... or
leaving it up to you to choose a different install-place when a new release of the system arrives.

There is a rationale for this organization: as indicated, the kernel and the ¢ITRON compatibility subsystem are
examples of software packages. For the first few releases of eCos, all the packages will move along in step, i.e.
Release 1.3.x will feature Version 1.3.x of every package, and so forth. But in future, especially when third party
packages become available, it is intended that the package be the unit of software distribution, so it will be possible
to build a system from a selection of packages with different version numbers, and even differing versioning
schemes. A Tcl script ecosadmin.tcl is provided in the eCos repository to manage the installation and removal of
packages in this way.

Many users will have their own source code control system, version control system or equivalent, and will want
to use it with eCos sources. In that case, since a new release of eCos comes with different pathnames for all the
source files, a bit of work is necessary to import a new release into your source repository.

One way of handling the import is to rename all the version parts to some common name, for example “current”,
and continue to work. “current” is suggested because ecosconfig recognizes it and places it first in any list of
versions. In the future, we may provide a tool to help with this, or an option in the install wizard. Alternatively, in
a POSIX shell environment (Linux or Cygwin on Windows) use the following command:

find . —-name <version> —type d -printf 'mv %p %h/current\n’ | sh
Having carried out such a renaming operation, your source tree will now look like this:

BASE_DIR/kernel/current/include/
BASE_DIR/kernel/current/src/

129

Chapter 29. Managing the Package Repository

130

BASE_DIR/kernel/current/tests/

BASE_DIR/compat/uitron/current/include/
BASE_DIR/compat/uitron/current/src/
BASE_DIR/compat/uitron/current/tests/

which is a suitable format for import into your own source code control system. When you get a subsequent release
of eCos, do the same thing and use your own source code control system to manage the new source base, by
importing the new version from

NEW_BASE_DIR/kernel/current/include/

and so on.

The eCos build tool will now offer only the “current” version of each package; select this for the packages you
wish to use.

Making such a change has implications for any build trees you already have in use. A configured build tree contains
information about the selected packages and their selected versions. Changing the name of the “versioning” folder
in the source tree invalidates this information, and in consequence it also invalidates any local configuration options
you have set up in this build tree. So if you want to change the version information in the source tree, do it first,
before investing any serious time in configuring and building your system. When you create a new build tree to
deal with the new source layout, it will contain default settings for all the configuration options, just like the old
build tree did before you configured it. You will need to redo that configuration work in the new tree.

Moving source code around also invalidates debugging information in any programs or libraries built from the old
tree; these will need to be rebuilt.

VIl. Appendixes

Appendix A. Target Setup

The following sections detail the setup of many of the targets supported by eCos.

Caution

This information is presented here only temporarily. It is intended that there will be separate
documents detailing this information for each target in future releases. Consequently not
much effort has been put into bringing the following documentation up to date -- much of it is
obsolete, bogus or just plain wrong.

MN10300 stdeval1 Hardware Setup

The eCos Developer’s Kit package comes with a pair of EPROMs which provide GDB support for the Matsushita
MN10300 (AM31) series evaluation board using CygMon, the Cygnus ROM monitor. Images of these EPROMs are
also provided at BASE_DIR/loaders/mn10300-stdevall/cygmon.bin. The LSB EPROM (LROM) is installed
to socket IC8 on the board and the MSB EPROM (UROM) is installed to socket IC9. Attention should be paid to
the correct orientation of these EPROMs during installation.

The CygMon stubs allows communication with GDB by way of the serial port at connector CN2. The commu-
nication parameters are fixed at 38400 baud, 8 data bits, no parity bit, and 1 stop bit (8-N-1). No flow control
is employed. Connection to the host computer should be made using a standard RS232C serial cable (not a null
modem cable). A gender changer may also be required.

MN10300 Architectural Simulator Setup

The MN10300 simulator is an architectural simulator for the Matsushita MN10300 that implements all features
of the microprocessor necessary to run eCos. The current implementation provides accurate simulation of the
instruction set, interrupt controller, timers, and serial I/O.

In this release, you can run the same eCos binaries in the simulator that can run on target hardware, if built for
ROM start-up, with the exception of those that use the watchdog timer.

However, note that AM33 devices required to run eCos are not simulated; therefore you cannot run eCos binaries
built for the AM33 under the simulator. For the AM33, the simulator is effectively an instruction-set only simulator.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

define msim
target sim —--board=stdevall --memory-region 0x34004000, 0x8

rbreak cyg_test_exit
rbreak cyg_assert_fail

end

You can then connect to the simulator by invoking the command

msim

133

Appendix A. Target Setup

on the command line:
(gdb) msim

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

AM33 STB Hardware Setup

134

The Matsushita AM33 STB System Reference Board may be used in two modes: via a JTAG debugger, or by
means of a GDB stub ROM.

Use with GDB Stub ROM

The eCos Developer’s Kit package comes with a ROM image which provides GDB support for the Matsushita(R)
AM33 STB System Reference Board. To install the GDB stub ROM requires the use of the JTAG debugger
and the Flash ROM programming code available from Matsushita. An image of this ROM is also provided at
loaders/am33-stb/gdbload.bin under the root of your eCos installation.

Ensure that there is a Flash ROM card in MAIN MEMORY SLOT <0>. Follow the directions for programming a
Flash ROM supplied with the programming software.

The final programming of the ROM will need to be done with a command similar to the following:
fdown "gdbload.bin", 0x80000000,16,1

Once the ROM has been programmed, close down the JTAG debugger, turn the STB off, and disconnect the JTAG
cable. Ensure that the hardware switches are in the following configuration:

UUDDDUDD

D = lower part of rocker switch pushed in
U

upper part of rocker switch pushed in

This is also the configuration required by the Flash programming code, so it should not be necessary to change
these.

Restart the STB and the stub ROM will now be able to communicate with GDB. eCos programs should be built
with RAM startup.

Programs can then be downloaded via a standard RS232 null modem serial cable connected to the SERIALI
connector on the STB front panel (the AM33"s serial port 0). This line is programmed to run at 38400 baud, 8
data bits, no parity and 1 stop bit (8-N-1) with no flow control. A gender changer may also be required. Diagnostic
output will be output to GDB using the same connection.

This procedure also applies for programming ROM startup eCos programs into ROM, given a binary format image
of the program from

mnl0300-elf-objcopy.

Appendix A. Target Setup

Use with the JTAG debugger

To use eCos from the JTAG debugger, executables must be built with ROM startup and then downloaded via the
JTAG debugger. For this to work there must be an SDRAM memory card in SUB MEMORY SLOT <0> and the
hardware switches on the front panel set to the following:

DUDDDUDD

D
U

lower part of rocker switch pushed in

upper part of rocker switch pushed in

Connect the JTAG unit and run the debugger as described in the documentation that comes with it.

eCos executables should be renamed to have a “.out” extension and may then be loaded using the debugger"s “I”
or “lp” commands.

Diagnostic output generated by the program will be sent out of the AM33"s serial port 0 which is connected to the
SERIALL1 connector on the STB front panel. This line is programmed to run at 38400 baud, 8 data bits, no parity,
and one stop bit (8-N-1) with no flow control. Connection to the host computer should be using a standard RS232
null modem serial cable. A gender changer may also be required.

Building the GDB stub ROM image

eCos comes with a pre-built GDB stub ROM image for the AM33-STB platform. This can be found at
loaders/am33-stb/gdbload.bin relative to the eCos installation directory.

If necessary, the ROM image can be re-built as follows:

1. On Windows hosts, open a Bash session using Start->Programs->Red Hat eCos->eCos Development Envi-
ronment

2. Create a build directory and cd into it

3. Run (all as one line):

cygtclsh80 BASE_DIR/packages/pkgconf.tcl \
—-—target=mnl0300_am33 --platform stb —--startup rom \
—--disable-kernel --disable-uitron --disable-libc --disable-libm \
——disable-io —--disable-io_serial —--disable-wallclock
—-—disable-watchdog

where BASE_DIR is the path to the eCos installation directory.
4. Edit the configuration file pkgconf/hal.h in the build directory tree by ensuring the following configuration
options are set as follows:

#define CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS

#define CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT

#undef CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT

#define CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT
#define CYG_HAL_ROM_MONITOR

5. Run: make

6. Run: make -C hal/common/current/current/src/stubrom

135

Appendix A. Target Setup

7. The file hal/common/current/src/stubrom will be an ELF format executable of the ROM image. Use
mn10300-elf-objcopy to convert this to the appropriate format for loading into the Matsushita FLASH ROM
programmer, mode “binary” in this case:

$ mnl0300-elf-objcopy —-O binary hal/common/current/src/stubrom/ \
stubrom stubrom.img

TX39 Hardware Setup

The eCos Developer’s Kit package comes with a pair of ROMs that provide GDB support for the Toshiba JMR-
TX3904 RISC processor reference board by way of CygMon.

Images of these ROMs are also provided at BASE_DIR/loaders/tx39-jmr3904/cygmon50.bin and
BASE_DIR/loaders/tx39-jmr3904/cygmoné6.bin for 50 MHz and 66 MHz boards respectively. The ROMs
are installed to sockets IC6 and IC7 on the memory daughterboard according to their labels. Attention should be
paid to the correct orientation of these ROMs during installation.

The GDB stub allows communication with GDB using the serial port (channel C) at connector PJ1. The commu-
nication parameters are fixed at 38400 baud, 8 data bits, no parity bit, and 1 stop bit (8-N-1). No handshaking is
employed. Connection to the host computer should be made using an RS232C null modem cable.

CygMon and eCos currently provide support for a 16Mbyte 60ns 72pin DRAM SIMM fitted to the PJ21
connector. Different size¢ DRAMs may require changes in the value stored in the DCCRO register. This value
may be found near line 211 in hal/mips/arch/<version>/src/vectors.S in eCos, and near line 99 in
libstub/mips/tx39jmr/tx39jmr-power.S in CygMon. eCos does not currently use the DRAM for any
purpose itself, so it is entirely available for application use.

TX39 Architectural Simulator Setup

136

The TX39 simulator is an architectural simulator which implements all the features of the Toshiba TX39 needed to
run eCos. The current implementation provides accurate simulation of the instruction set, interrupt controller, and
timers, as well as having generic support for diagnostic output, serial I/O, and exceptions.

In this release, you can run the same eCos binaries in the simulator that can run on target hardware, if it is built for
ROM start-up.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

define tsim

target sim —--board=jmr3904pal —--memory-region Oxffff8000,0x900 \
—--memory-region Oxffffe000,0x4 \
—--memory-region 0xb2100000, 0x4

rbreak cyg_test_exit

rbreak cyg_assert_fail

end

You can then connect to the simulator by invoking the command tsim on the command line:

(gdb) tsim

Appendix A. Target Setup

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

TX49 Hardware Setup

The eCos installation CD contains a copy of the eCos GDB stubs in SREC format which must be programmed into
the board’s FLASH memory.

Preparing the GDB stubs

These stub preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled stubs in the
directory loaders/tx49-ref4955 relative to the installation root.

Building the GDB stub image with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the TX49 REF4955 hardware.

3. While still displaying the Build->Templates dialog box, select the stubs package template to build a GDB stub.
Click OK.

4. Build eCos stubs using Build->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

Building the GDB stub image with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:
$ ecosconfig new refd4d955 stubs

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

Installing GDB stubs into FLASH

Boot into the board’s firmware in little-endian mode:

Set the switches like this:

137

Appendix A. Target Setup

SW1: 10000000 (first lever up, the rest down) SW2: 10000010
Connect serial cable on the lower connector, configure terminal emulator for 38400, 8-N-1.

When booting the board, you should get this prompt:

HCP5 rev 0.9B .
HCP5?

Select o (option), a (FLASH) and b (boot write). You should see this:

Boot ROM Write

ROM address-ffffffffbd000000, Boot Bus-[32bit]

ID2 0 4 ffffffffa002ad40

zzz SS—40000 IV-1 CS-20000 CC-2

Flash ROM-[28F640J5], [l6bit chip] * 2 = 1

Block size-00040000 count-64

ROM adr ffffffffbd000000-ffffffffbe000000 mask-00£c0000
Send Srecord file sa=00000000 size=ffffffffffffffff
ra=fffffffffe000000

Now send the stub SREC data down to the board using the terminal emulator’s ‘send ASCII’ (or similar) function-
ality.
Red Hat has experienced some sensitivity to how fast the data is written to the board. Under Windows you should

configure Minicom to use a line delay of 100 milliseconds. Under Linux, use the slow_cat.tcl script:

% cd BASE_DIR/packages/hal/mips/refd955/<version>/misc

% slow_cat.tcl < [path]/gdb_module.srec > /dev/ttyS0

Power off the board, and change it to boot the GDB stubs in big-endian mode by setting the switches like this:
SW1: 00000000 (all levers down) SW2: 10001010

The GDB stubs allow communication with GDB using the serial port at connector PJ7A (lower connector). The
communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control
is employed. Connection to the host computer should be made using a straight through serial cable.

VR4300 Hardware Setup

138

The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the NEC VRC4373
evaluation board. An image of this EPROM is also provided at 1oaders/vr4300-vrc4373/gdbload.bin under
the root of your eCos installation.

The EPROM is installed to socket U12 on the board. Attention should be paid to the correct orientation of the
EPROM during installation. Only replace the board"s existing ROM using a proper PLCC extraction tool, as the
socket would otherwise risk getting damaged.

The GDB stub in the EPROM allows communication with GDB using the serial port at connector J1. The com-
munication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is
employed. Connection to the host computer should be made using a straight-through serial cable.

Appendix A. Target Setup

VRC4375 Hardware Setup

For information about setting up the VRC4375 to run with RedBoot, consult the RedBoot User"s Guide. If using
serial debugging, the serial line runs at 38400 baud 8-N-1 and should be connected to the debug host using the
cable supplied with the board.

Atlas/Malta Hardware Setup

For information about setting up the Atlas and Malta boards to run with RedBoot, consult the RedBoot User"s
Guide.

PowerPC Cogent Hardware Setup

The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the Cogent evaluation
board. An image of this EPROM is also provided at 1oaders/powerpc-cogent/gdbload.bin under the root of
your eCos installation. The same EPROM and image can be used on all three supported daughterboards: CMA287-
23 (MPC823), CMA287-50 (MPC850), and CMA286-60 (MPC860).

The EPROM is installed to socket U4 on the board. Attention should be paid to the correct orientation of the
EPROM during installation.

If you are going to burn a new EPROM using the binary image, be careful to get the byte order correct. It needs
to be big-endian. If the EPROM burner software has a hex-editor, check that the first few bytes of the image look
like:

00000000: 3c60 fff0 6063 2000 7c68 03ab 4e80 0020 < .. c.|h..N..
If the byte order is wrong you will see 603c instead of 3¢c60 etc. Use the EPROM burner software to make a
byte-swap before you burn to image to the EPROM.

If the GDB stub EPROM you burn does not work, try reversing the byte-order, even if you think you have it the
right way around. At least one DOS-based EPROM burner program is known to have the byte-order upside down.

The GDB stub in the EPROM allows communication with GDB using the serial port at connector P12 (CMA101)
or P3 (CMA102). The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit
(8-N-1). No flow control is employed. Connection to the host computer should be made using a dedicated serial
cable as specified in the Cogent CMA manual.

Installing the Stubs into ROM

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory loaders/powerpc—-cogent relative to the installation root.

139

Appendix A. Target Setup

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the PowerPC CMA28x hardware.

3. While still displaying the Build->Templates dialog box, select the “stubs” package template to build a GDB
stub. Click OK.

4. Build eCos using Build->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new cma28x stubs
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Installing the Stubs into ROM or FLASH

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your ROM
programmer.

2. Plug the ROM/FLASH into socket U4 as described at the beginning of this Hardware Setup section.

PowerPC MBX860 Hardware Setup

140

The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the Motorola PowerPC
MBX860 evaluation board. An image of this EPROM is also provided at 1oaders/powerpc-mbx/gdbload.bin
under the root of your eCos installation.

The EPROM is installed to socket XU1 on the board. Attention should be paid to the correct orientation of the
EPROM during installation. Only replace the board"s existing ROM using a proper PLCC extraction tool, as the
socket would otherwise risk getting damaged.

Appendix A. Target Setup

The GDB stub in the EPROM allows communication with GDB using the serial port at connector SMC1/COMI.
The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (§8-N-1). No flow
control is employed. Connection to the host computer should be made using a suitable serial cable.

In order to make the board execute the EPROM that you just installed (rather than the on-board FLASH memory),
it may be necessary move some links on the board. Specifically, ensure that link J4 is in position 1-2. If in doubt,
refer to the MBX documentation from Motorola, ensuring that Boot Port Size=8 Bits/ROM for BOOT (CS#7), in
their terminology.

Installing the Stubs into FLASH

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory 1oaders/powerpc-mbx relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the PowerPC Motorola MBX860/821 hardware.

3. While still displaying the Build->Templates dialog box, select the “stubs” package template to build a GDB
stub. Click OK.

4. Build eCos using Build->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new mbx stubs
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

141

Appendix A. Target Setup

Installing the Stubs into ROM

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your ROM
programmer.

2. Plug the ROM/FLASH into socket XU1 as described near the beginning of this Hardware Setup section.

Installing the Stubs into FLASH

This assumes you have EPPC-Bug in the on-board FLASH. This can be determined by setting up the board ac-
cording to the below instructions and powering up the board. The EPPC-Bug prompt should appear on the SMC1
connector at 9600 baud, 8N1.

1. Set jumper 3 to 2-3 [allow XU2 FLASH to be programmed]
2. Set jumper 4 to 2-3 [boot EPPC-Bug]

Program FLASH

1. Prepare EPPC-Bug for download:
EPPC-Bug>lo 0
At this point the monitor is ready for input. It will not return the prompt until the file has been downloaded.

2. Use the terminal emulator’s ASCII download feature (or a simple clipboard copy/paste operation) to download
the gdb_module.srec data. Note that on Linux, Minicom’s ASCII download feature seems to be broken. A
workaround is to load the file into Emacs (or another editor) and copy the full contents to the clipboard. Then
press the mouse paste-button (usually the middle one) over the Minicom window.

3. Program the FLASH with the downloaded data:
EPPC-Bug>pflash 40000 60000 £c000000

4. Switch off the power, and change jumper 4 to 1-2. Turn on the power again. The board should now boot using
the newly programmed stubs.

PowerPC Architectural Simulator Setup

The PowerPC simulator is an architectural simulator which implements all the features of the PowerPC needed
to run eCos. The current implementation provides accurate simulation of the instruction set and timers, as well as
having generic support for diagnostic output and exceptions.

The simulator also allows devices to be simulated, but no device simulation support has been defined for the serial
device drivers in this release.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

142

Appendix A. Target Setup

define psim

target sim -o '’ /iobus/pal@0xf0001000/reg 0x£0001000 32’
rbreak cyg_test_exit

rbreak cyg_assert_fail

end

You can then connect to the simulator by invoking the command psim on the command line:
(gdb) psim

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

Note: The PowerPC simulator cannot execute binaries built for any of the supported hardware targets. You
must generate a configuration using the PowerPC simulator platform:

S ecosconfig new psim

or some such.

SPARCIite Hardware Setup

The eCos Developer’s Kit package comes with a ROM which provides GDB support for the Fujitsu SPARClite
Evaluation Board by way of CygMon.

An image of this ROM is also provided at BASE_DIR/loaders/sparclite-sleb/cygmon.bin. The ROM is
installed in socket IC9 on the evaluation board. Attention should be paid to the correct orientation of the ROM
during installation.

The GDB stub allows communication with GDB using a TCP channel via the ethernet port at connector J5.

Ethernet Setup

The ethernet setup is described in the board’s manual, but here is a recapitulation.

Set the board’s ethernet address using SW1 on the motherboard:

SW1-4 SW1-3 SWl-2 SWl-1 Ethernet Address
OFF OFF OFF OFF No ethernet, use serial
OFF OFF OFF ON 00:00:0E:31:00:01
OFF OFF ON OFF 00:00:0E:31:00:02
OFF OFF ON ON 00:00:0E:31:00:03
OFF ON OFF OFF 00:00:0E:31:00:04
OFF ON OFF ON 00:00:0E:31:00:05
OFF ON ON OFF 00:00:0E:31:00:06
OFF ON ON ON 00:00:0E:31:00:07
ON OFF OFF OFF 00:00:0E:31:00:08
ON OFF OFF ON 00:00:0E:31:00:09
ON OFF ON OFF 00:00:0E:31:00:0A
ON OFF ON ON 00:00:0E:31:00:0B

143

Appendix A. Target Setup

ON ON OFF OFF 00:00:0E:31:00:0C
ON ON OFF ON 00:00:0E:31:00:0D
ON ON ON OFF 00:00:0E:31:00:0E
ON ON ON ON 00:00:0E:31:00:0F

BOOTP/DHCP service on Linux

Configure the BOOTP or DHCP server on the network to recognize the evaluation board’s ethernet address
so it can assign the board an IP address. Below is a sample DHCP server configuration from a Linux system
(/etc/dhcpd.conf). It shows a setup for three evaluation boards.

#

DHCP server configuration.
#

allow bootp;

subnet 192.168.1.0 netmask 255.255.255.0 {

host mb83levb {
hardware ethernet 00:00:0e:31:00:01;
fixed-address mb83levb;

}

host mb832evb {
hardware ethernet 00:00:0e:31:00:02;
fixed-address mb832evb;

}

host mb833evb {
hardware ethernet 00:00:0e:31:00:03;
fixed-address mb833evb;

BOOTP/DHCP boot process

Even when configured to use a TCP channel, CygMon will still print a boot message to the serial channel. If the
BOOTP process was successful and an IP address was found, a message “BOOTP found xxx.xxx.xxx.xxx” will be
printed where xxx.xxx.xxx.xxx is the IP address assigned by the BOOTP or DHCP server. If the BOOTP process
fails, a message indicating failure will be printed and the serial port will be used as the debug channel.

Once the board finds an IP address it will respond to ICMP echo request packets (ping). This gives a simple means
to test the health of the board.

As described in “Ethernet Setup” on page 72, it should now be possible to connect to the SPARClite board from
within GDB by using the command:

(gdb) target remote <host>:1000

144

Appendix A. Target Setup

Serial Setup

The CygMon stubs also allow communication with GDB by way of the serial port at connector CON1. The com-
munication parameters are fixed at 19200 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is
employed. Connection to the host computer should be made using a null modem cable. A gender changer may also
be required.

SPARCIite Architectural Simulator Setup

The ESA SPARCIite simulator is an architectural simulator which implements all the features of the SPARClite
needed to run eCos. The current implementation provides accurate simulation of the instruction set, interrupt con-
troller, and timers, as well as having generic support for diagnostic output and exceptions.

Note that the ESA SPARClite simulator is unsupported, but is included in the release as a convenience.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

define ssim

target sim -nfp -sparclite —-dumbio
rbreak cyg_test_exit

rbreak cyg_assert_fail

end

You can then connect to the simulator by invoking the command ssim on the command line:
(gdb) ssim

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

ARM PID Hardware Setup

eCos comes with two ROM images that provide GDB support for the ARM PID board. The first ROM image
provides a port of the CygMon ROM monitor, which includes a command-line interface and a GDB remote stub.
The second ROM image provides a remote GDB stub only, which is a minimal environment for downloading and
debugging eCos programs solely using GDB.

eCos, CygMon and the GDB stubs all support the PID fitted with both ARM7T and ARM9 daughterboards. Cyg-
Mon and the stubs can be programmed into either the programmable ROM (U12) or the FLASH (U13). Pre-built
forms of both ROM images are provided in the directory loaders/arm-pid under the root of your eCos installation,
along with a tool that will program the stubs into the FLASH memory on the board. CygMon images are prefixed
with the name *cygmon’ and GDB stub ROM images are given the prefix *gdb_module’. Images may be provided
in a number of formats including ELF (.img extension), binary (.bin extension) and SREC (.srec extension). Note
that some unreliability has been experienced in downloading files using Angel 1.00. Angel 1.02 appears to be more
robust in this application.

145

Appendix A. Target Setup

146

Installing the Stubs into FLASH

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory loaders/arm-pid relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build -> Templates menu item, and then select the ARM PID hardware.

3. While still displaying the Build -> Templates dialog box, select either the "stubs" package template to build a
GDB stub image, or the "cygmon" template to build the CygMon ROM Monitor. Click OK.

4. Build eCos using Build -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:
$ ecosconfig new pid stubs
or to build a CygMon ROM monitor image, enter the command:
$ ecosconfig new pid cygmon
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

Building the FLASH Tool with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the ARM PID hardware.

3.Enable the "Build flash programming tool" option in the ARM PID HAL
(CYGBLD_BUILD_FLASH_TOOL) and resolve any resulting configuration conflicts.

4. Build eCos using Build -> Library

5.

Appendix A. Target Setup

When the build completes, the FLASH tool image file can be found in the bin/ subdirectory of the install tree,
with the prefix "prog_flash"

Building the FLASH Tool with ecosconfig

. Make an empty directory to contain the build tree, and cd into it

. Enter the command:

$ ecosconfig new pid

. Edit the file ecos.ecc and enable the option CYGBLD_BUILD_FLASH_TOOL by uncommenting its

user_value property and setting it to 1.

. Enter the commands:

$ ecosconfig resolve

[there will be some output]

$ ecosconfig tree
$ make

. When the build completes, the FLASH tool image file can be found in the bin/ subdirectory of the install tree,

with the prefix "prog_flash"

Prepare the Board for FLASH Programming

Each time a new image is to be programmed in the FLASH, the jumpers on the board must be set to allow Angel
to run:

wm A~ W

. Set jumper 7-8 on LK6 [using the Angel code in the 16 bit EPROM]
. Set jumper 5-6 on LK6 [select 8bit ROM mode]

. Set jumper LK 18 [ROM remap - this is also required for eCos]

. Set S1 to 0-0-1-1 [20MHz operation]

. Open jumper LK4 [enable little-endian operation] Attach a serial cable from Serial A on the PID board to

connector 1 on the development system. This is the cable through which the binaries will be downloaded.
Attach a serial cable from Serial B on the PID board to connector 2 on the development system (or any system
that will work as a terminal). Through this cable, the FLASH tool will write its instructions (at 38400 baud).

Program the FLASH

1.

Download the FLASH ROM image onto the PID board. For example. for the GDB stubs image:

bash$ arm-elf-gdb -nw gdb_module.img

GNU gdb 4.18-DEVTOOLSVERSION

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies

147

Appendix A. Target Setup

of it under certain conditions. "show copying" to see the conditions.

Type
"--host=1586-pc-cygwin32

Type

There is absolutely no warranty for GDB. "show warranty" for details.

This GDB was configured as —-—target=arm-elf".
(no debugging symbols found)...

(gdb) target rdi s=coml

Angel Debug Monitor for PID (Built with Serial(x1l), Parallel, DCC) 1.00
(Advanced RISC Machines SDT 2.10)
Angel Debug Monitor rebuilt on Jan 20 1997 at 02:33:43

Connected to ARM RDI target.

(gdb) load

Loading section .rom_vectors, size 0x44 1lma 0x60000
Loading section .text, size 0x1f3c lma 0x60044
Loading section .rodata, size Ox2c lma 0x61£80
Loading section .data, size 0x124 lma Ox6lfac

Start address 0x60044 , load size 8400
Transfer rate: 5169 bits/sec.
(gdb) g

The program is running.

Exit anyway? (y or n) y

Note: On a UNIX or Linux system, the serial port must be /dev/ttyS0 instead of COM1. You need to make sure
that the /dev/ttySO0 files have the right permissions:

$ su
Password:
chmod o+rw /dev/ttySOx
exit

If you are programming the GDB stub image, it will now be located at 0x60000..0x64000. If you are pro-
gramming the Cygmon ROM Monitor, it will be located at 0x60000..0x80000.

. Now download the FLASH programmer tool

bash$ arm-elf-gdb prog_flash.img

GNU gdb 4.18-DEVTOOLSVERSION

Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute

Type
There is absolutely no warranty for GDB.

copies of it under certain conditions. "show copying" to see

the conditions. Type "show

warranty" for details.

This GDB was configured as "--host=1i586-pc-cygwin32 --target=arm-elf".
(gdb) target rdi s=coml

Angel Debug Monitor for PID (Built with Serial(x1l), Parallel, DCC) 1.00
(Advanced RISC Machines SDT 2.10)

Angel Debug Monitor rebuilt on Jan 20 1997 at 02:33:43
Connected to ARM RDI target.

(gdb) load

size

0x44 1lma 0x40000

Loading section
Loading section
Loading section
Loading section

Transfer rate:
(gdb) c

.rom_vectors,
.text,
.rodata,
.data,
Start address 0x40044 ,
5596 bits/sec.

size 0x44ad4 1lma 0x40044
size 0x318 lma 0x444e8
size O0x1c8 lma 0x44800
load size 18888

Appendix A. Target Setup

3. The FLASH tool will output some text on the board serial port B at 38400 baud:

ARM
eCos

FLASH here!
manuf: 8, device: 40
Error: Wrong Manufaturer: 08
. Please change FLASH jumper

4. This text is repeated until you remove the jumper 7-8 on LK6. Then the output will be:

manuf: 1F, device: A4

AT29C040A recognised

About to program FLASH using data at 60000..64000
*%% Press RESET now to abort!

5. You have about 10 seconds to abort the operation by pressing reset. After this timeout, the FLASH program-
ming happens:

...Programming FLASH
All done!

6. Quit/kill the GDB process, which will hang.

7. Next time you reset the board, the stub will be in control, communicating on Serial A at 38400 baud.

Note: If you do not have two serial ports available on your host computer, you may still verify the FLASH
programming completed successfully by quitting/killing the GDB process after running "c" in step 2 above.
Then switch the serial cable on the PID from Serial A to Serial B and run a terminal emulator on the host
computer. In a few seconds you should see the the repeated text described in step 2 above and you may
continue the remaining steps as normal.

Programming the FLASH for big-endian mode

The process is almost identical to the previous instructions which apply to a PID board running in little-endian
mode only.

The only adjustments to make are that if programming a GDB stub ROM image (or CygMon ROM
monitor image), you must enable the option "Use Big-endian mode" in the eCos Configuration Tool
(CYGHWR_HAL_ARM_BIGENDIAN if using ecosconfig and editing ecos.ecc).

When programming the FLASH there are two options:

1. Program FLASH using the little-endian FLASH tool. After powering off, replace the ROM controller with the
special big-endian version which can be acquired from ARM. (This has not been tested by Red Hat).

2. Use a special big-endian version of the FLASH tool which byte-swaps all the words as they are written to the
FLASH.

Build this tool by enabling the "Build flash programming tool for BE images on LE boards" option (CYG-
BLD_BUILD_FLASH_TOOL_BE), resulting in a utility with the prefix "prog_flash_BE_image_LE_system"
which should be used instead of "prog_flash".

149

Appendix A. Target Setup

Note that there is a limitation to this method: no sub-word data can be read from the ROM. To work around this,
the .rodata section is folded into the .data section and thus copied to RAM before the system starts.

Given that Thumb instructions are 16 bit, it is not possible to run ROM-startup Thumb binaries on the PID board
using this method.

When the image has been programmed, power off the board, and set jumper LK4 to enable big-endian operation.

Installing the Stubs into ROM

1. Program the binary image file gdb_module.bin into ROM referring to the instructions of your ROM program-
mer.

2. Plug the ROM into socket U12 and install jumper LK6 pins 7-8 to enable the ROM.

ARM AEB-1 Hardware Setup

150

Overview

The ARM AEB-1 comes with tools in ROM. These include a simple FLASH management tool and the Angel®
monitor. eCos for the ARM AEB-1 comes with GDB stubs suitable for programming into the onboard FLASH.
GDB is the preferred debug environment for GDB, and while Angel provides a subset of the features in the eCos
GDB stub, Angel is unsupported.

Both eCos and the stubs support both Revision B and Revision C of the AEB-1 board. Stub ROM images for both
types of board can be found in the loaders/arm-aeb directory under the root of your eCos installation. You can
select which board you are using by selecting either the aeb or aebC platform by selecting the appropriate platform
HAL in the eCos Configuration Tool.

The GDB stub can be downloaded to the board for programming in the FLASH using the board’s on-board ROM
monitor:

1. talk to the AEB-1 board with a terminal emulator (or a real terminal!)

2. use the board’s rom menu to download a UU-encoded version of the GDB stubs which will act as a ROM
monitor

3. tell the board to use this new monitor, and then hook GDB up to it for real debugging

Talking to the Board

Connect a terminal or computer’s serial port to the ARM AEB-1. On a PC with a 9-pin serial port, you can use the
cable shipped by ARM with no modification.

Set the terminal or terminal emulator to 9600N1 (9600 baud, no parity, 1 stop bit).

Appendix A. Target Setup

Reset the board by pressing the little reset button on the top. You will see the following text:

ARM Evaluation Board Boot Monitor 0.01 (19 APR 1998)
Press ENTER within 2 seconds to stop autoboot

Press ENTER quickly, and you will get the boot prompt:

Boot:

Downloading the Stubs via the Rom Menu
Using the AEB-1 rom menu to download the GDB stubs from the provided ".UU" file.

Note: This is an annotated 'terminal’ session with the AEB-1 monitor:

+Boot: help
Module is BootStrap 1.00 (14 Aug 1998)

Help is available on:

Help Modules ROMModules UnPlug PlugIn
Kill SetEnv UnSetEnv PrintEnv DownLoad
Go GoS Boot PC FlashWrite
FlashLoad FlashErase

Boot: download c000
Ready to download. Use ’transmit’ option on terminal
emulator to download file.

at this point, download the ASCII file "loaders/arm—aeb/
gdb_module.img.UU". The details of this operation differ
depending on which terminal emulator is used. It may be
necessary to enter "”D" (control+D) when the download completes

to get the monitor to return to command mode.

Loaded file gdb_module.img.bin at address
0000c000, size = 19392

Activating the GDB Stubs
Commit the GDB stubs module to FLASH:

Boot: flashwrite 4018000 CO00 8000

Verify that the eCos/"GDB stubs" module is now added in the list of modules in the board:

Boot: rommodules

151

Appendix A. Target Setup

You should see output similar to the following:

Header Base Limit

04000004 04000000 040034a8 BootStrap 1.00 (14 Aug 1998)
04003a74 04003800 04003bcO0 Production Test 1.00 (13 Aug 1998)
0400e4f4 04004000 0400e60f Angel 1.02 (12 MAY 1998)
0401c810 04018000 0401cbcO eCos 1.3 (27 Jan 2000)
GDB stubs

Now make the eCos/"GDB stubs" module be the default monitor:

Boot: plugin eCos

Note: Since the GDB stubs are always linked at the same address (0x4018000), the operation of writing to the
FLASH and selecting the stubs as default monitor is an idempotent operation. You can download a new set of
stubs following the same procedure - you do not have to unregister or delete anything.

Building the GDB Stub FLASH ROM Images

Pre-built GDB stubs images are provided in the directory loaders/arm-aeb relative to the root of your eCos instal-
lation, but here are instructions on how to rebuild them if you should ever need to.

Building the GDB Stubs with the eCos Configuration Tool

1. Start with a new document - selecting the File -> New menu item if necessary to do this.
2. Choose the Build -> Templates menu item, and then select the ARM AEB-1 hardware.

3. While still displaying the Build->Templates dialog box, select the "stubs" package template to build a GDB
stub image. Click OK.

4. If applicable, set the "AEB board revision" option to "C" from "B" depending on the board revision being
used.

5. Build eCos using Build -> Library.

6. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Building the GDB Stub ROMs with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

152

Appendix A. Target Setup

$ ecosconfig new aeb stubs

3. If applicable, edit ecos.ecc and set the AEB board revision. (CYGHWR_HAL_ARM_AEB_REVISION) from
the default "B" to "C" by uncommenting the user_value property and setting it to "C".

4. Enter the commands

$ ecosconfig tree
$ make

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

ARM Cogent CMA230 Hardware Setup

The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the Cogent evaluation
board. An image of this EPROM is also provided at loaders/arm-cma230/gdbload.bin under the root of your eCos
installation.

The EPROM is installed to socket U3 on the board. Attention should be paid to the correct orientation of the
EPROM during installation.

If you are going to burn a new EPROM using the binary image, be careful to get the byte order correct. It needs to
be little-endian, which is usually the default in PC based programmer software.

If the GDB stub EPROM you burn does not work, try reversing the byte-order, even if you think you have it the
right way around. At least one DOS-based EPROM burner program is known to have the byte-order upside down.

The GDB stub in the EPROM allows communication with GDB using the serial port at connector P12 (CMA101)
or P3 (CMA102). The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit
(8-N-1). No flow control is employed. Connection to the host computer should be made using a dedicated serial
cable as specified in the Cogent CMA manual.

Building the GDB Stub FLASH ROM images

Pre-built GDB stubs images are provided in the directory loaders/arm-cma230 relative to the root of your eCos
installation, but here are instructions on how to rebuild them if you should ever need to.

CygMon images are prefixed with the name "cygmon’ and GDB stub ROM images

are given the prefix ’gdb_module’. Images may be provided in a number of formats including ELF (.img extension),
binary (.bin extension) and SREC (.srec extension).

Building the GDB Stubs with the eCos Configuration Tool

1. 1. Start with a new document - selecting the File->New menu item if necessary to do this.

2. Choose the Build->Templates menu item, and then select the ARM CMA230 hardware.

153

Appendix A. Target Setup

3. While still displaying the Build -> Templates dialog box, select the "stubs" package template to build a GDB
stub image. Click OK.

4. Build eCos using Build -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Building the GDB Stub ROMs with ecosconfig

1. 1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new cma230 stubs
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Cirrus Logic ARM EP7211 Development Board Hardware

Setup

154

eCos comes with two Flash ROM images that provide GDB support for the Cirrus Logic EP7211 Development
Board (also known as the EDB7211).. Note that on some board revisions, the board is silk-screened as EDB7111-2.
The first Flash ROM image provides a port of the CygMon ROM monitor, which includes a command-line interface
and a GDB remote stub. The second Flash ROM image provides a remote GDB stub only.

Both ROM images are provided in the directory loaders/arm-edb7211 under the root of your eCos installation.
CygMon images are prefixed with the name ’edb7211_cygmon’ and are provided in a number of formats
including binary (.bin extension) and SREC (.srec) extension. GDB stub ROM images are given the prefix
’edb7211_gdb_module’.

The ROM images provided for the EP7211 Development Board must be programmed into the FLASH. Please refer
to the section titled "Loading the ROM image into On-Board flash" on how to program the ROM onto the board.

Both Cygmon and GDB Stub ROMS allow communication with GDB via the serial connector labelled "UART 1°.
The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (§8-N-1). No flow
control is employed. Connection to the host computer should be made using a null modem cable. A gender changer
may also be required. Note that the GDB Configuration tool uses the serial port identifiers 0 and 1 to identify the
EB7211 serial ports UART1 and UART?2 respectively.

Both eCos and the ROM images assume the core clock is generated with a 3.6864 MHz PLL input. The CPU will
be configured to run at 73.728MHz.

Appendix A. Target Setup

Note: The EP7211 CPU needs a two step RESET process. After pressing the "URESET’ pushbutton, the
“"WAKEUP’ pushbutton must be pressed to complete the process.

Note: When an eCos program is run on an EDB7211 board fitted with either CygMon or a GDB stub ROM,
then the code in ROM loses control. This means that if you require the ability to remotely stop execution on the
target, or want thread debugging capabilities, you must include GDB stub support when configuring eCos.

Building programs for programming into FLASH

If your application is to be run directly from FLASH, you must configure eCos appropriately for "ROM" startup.
This can be done in the eCos Configuration Tool by setting the "Startup type" HAL option to "ROM". If using the
ecosconfig utility, set the user_value of the CYG_HAL_STARTUP option in ecos.ecc to "ROM".

When you have linked your application with eCos, you will then have an ELF executable. To convert this into a
format appropriate for the Cirrus Logic FLASH download utility, or the dl_7xxx utility on Linux, you can use the
utility arm-elf-objcopy, as in the following example:

$ arm-elf-objcopy -0 binary helloworld.exe helloworld.bin

This will produce a binary format image helloworld.bin which can be downloaded into FLASH.

Building the GDB Stub FLASH ROM images

Pre-built GDB stubs images are provided in the directory loaders/arm-edb7211 relative to the root of your eCos
installation, but here are instructions on how to rebuild them if you should ever need to.

CygMon images are prefixed with the name ’cygmon’ and GDB stub ROM images are given the prefix
’gdb_module’. Images may be provided in a number of formats including ELF (.img extension), binary (.bin
extension) and SREC (.srec extension).

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the "Cirrus Logic development board" hardware.

3. While still displaying the Build -> Templates dialog box, select either the "stubs" package template to build a
GDB stub image, or the "cygmon" template to build the CygMon ROM Monitor. Click OK.

4. Build eCos using Build -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

155

Appendix A. Target Setup

156

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:
$ ecosconfig new edb7xxx stubs
or to build a CygMon ROM monitor image, enter the command:
$ ecosconfig new edb7xxx cygmon
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

Loading the ROM Image into On-board Flash

Program images can be written into Flash memory by means of a bootstrap program which is built into the
EDB7211. This program communicates with a support program on your host to download and program an im-
age into the Flash memory.

Cirrus Logic provides such a program for use with Windows/DOS. eCos comes with a similar program which will
run under Linux. The basic operation of both programs is the same.

1. Connect a serial line to "UART 1°.
2. Power off the EDB7211.

3. Install jumper 'PROGRAM ENABLE’ which enables this special mode for downloading Flash images. Note
that some board revisions have this jumper labelled “BOOT ENABLE”.

4. Power on the EDB7211.

5. Execute the Flash writing program on your host. On Linux, this would be:
dl_edb7xxx <PATH>/gdb_module.bin
where *<PATH>’ is the path to the binary format version of the ROM image you wish to load, either as built in

the previous section or the "loaders/arm-edb7211/" subdirectory of your eCos installation. The download tool
defaults to 38400 baud and device /dev/ttyS1 for communication. To change these, specify them as parameters,

e.g.
dl_edb7xxx <PATH>/gdb_module.bin 9600 /dev/ttySO
6. The download program will indicate that it is waiting for the board to come alive. At this point, press 'RESET’

and then "'WAKEUP’ switches in order. There should be some indication of progress, first of the code being
downloaded, then of the programming process.

7. Upon completion of the programming, power off the EDB7211.
8. Remove the ’'PROGRAM ENABLE/BOOT ENABLE’ jumper.

Appendix A. Target Setup

9. Power on the EDB7211, press 'RESET’ and "'WAKEUP’. The new ROM image should now be running on the
board.

10. The GDB debugger will now be able to communicate with the board to download and debug RAM based
programs. This procedure also applies for loading ROM-startup eCos programs into the on-board FLASH
memory, given a binary format image of the program from arm-elf-objcopy. Loading a ROM-startup eCos
program into Flash will overwrite the GDB Stub ROM/CygMon in Flash, so you would have to reload the
GDB Stub ROM/CygMon to return to normal RAM-startup program development.

Building the Flash Downloader on Linux

eCos provides a Flash download program suitable for use with the EP7211 Development Board which will run on
Linux. Follow these steps to build this program. Note: at the time of the writing of these instructions, the download
program is built directly within the eCos source repository since it is not configuration specific.

cd <eCos install dir>/packages/hal/arm/edb7xxx/<version>/support

make

(where # ’ is your shell prompt)

Note: this program was adapted from the Cirrus Logic original DOS program and still contains some vestiges of
that environment.

Developing eCos Programs with the ARM Multi-ICE

The EP7211 Development Board supports use of the ARM Multi-processor EmbeddedICE(tm), also known as the
Multi-ICE. Full instructions on how to install and use the Multi-ICE in conjunction with GDB are provided in
the "GNUPro Toolkit Reference for eCos ARM/Thumb" manual. However, the following platform-specific details
should be noted.

You will need an ARM Multi-ICE Server configuration file for the EP7211 Development Board. Here is a suggested
configuration file to use:

======== File "720T.cfg" ========
;Total IR length = 4

[TITLE]

Multi-ICE configuration for EP7211

[TAP 0]
ARM720T

[TAPINFO]
YES

[Timing]
Low=0

High=0
Adaptive=0FF

157

Appendix A. Target Setup

You must ensure that the board has the appropriate soldered connections. For the EP7211 this involves connecting
TESTO and TEST1 of the EP7211 to ground. To do this you must solder a wire from ground at JP33 to TP8 and
TPO.

With respect to using multiple devices simultaneously, note that the EP7211 is not ID sensitive.

If you wish to view diagnostic output from your program that was downloaded via the Multi-ICE, you will note
that by default the output on the serial line (as viewed by a terminal such as Hyperterm in Windows, or cu in Unix)
is in the form of GDB packets.

To get legible output, the solution is to set the "GDB Serial port" to a different device from the "Diagnostic serial
port", and you should use the Diagnostic serial port to view the diagnostic output.

Warning: The multi-ice-gdb-server will fail on startup if the board has not been both reset and awakened before
running the server.

To resolve this, it is necessary to free up the connection from within the ARM Multi-ICE server itself. However
when this happens, the next time you use GDB to load the program into the board, you will see lots of "Readback
did not match original data" messages in the output of the multi-ice-gdb-server program. This indicates your pro-
gram did not load correctly, and you should restart the multi-ice-gdb-server program, taking care to reset the board
correctly before reconnecting.

As a reminder, you must specify --config-dialog to the multi-ice-gdb-server program to connect to the board cor-
rectly. If you do not, the multi-ice-gdb-server program will not be able to connect.

Cirrus Logic ARM EP7212 Development Board Hardware

Setup

158

The Cirrus Logic EP7212 Development Board is almost identical to the EP7211 Development Board from a hard-
ware setup viewpoint, and is based on the same port of eCos. Therefore the earlier documentation for the EP7211
Development Board can be considered equivalent, but with the following changes:

« The first serial port is silk screened as "UART 1" on the EP7211 Development Board, but is silk screened as
"Serial Port 0" on the EP7212 Development Board. Similarly "UART 2" is silk screened as "Serial Port 1" on
the EP7212 Development Board.

« JP2 (used to control reprogramming of the FLASH) is not silkscreened with "Boot Enable".

+ To setup the EP7212 Development Board for use with the ARM Multi-ICE JTAG debugging interface unit,
it is necessary to connect TESTO and TEST1 of the EP7212 to ground. On the Development Board, this is
accomplished by placing shorting blocks on JP47 and JP48. When the shorting blocks are fitted, the board can
only be operated through the Multi-ICE - debugging over a serial line is not possible.

+ Pre-built GDB stubs are provided in the directory loaders/arm-edb7212 relative to the root of your eCos
installation

« When rebuilding the GDB stub ROM image, change the "Cirrus Logic processor variant" option
(CYGHWR_HAL_ARM_EDB7XXX_VARIANT) from the EP7211 to the EP7212. This can be selected in the
eCos Configuration Tool , or if using ecosconfig, can be set by uncommenting the user_value property of this
option in ecos.ecc and setting it to "EP7212".

Appendix A. Target Setup

Cirrus Logic ARM EP7312 Development Board Hardware

Setup

The Cirrus Logic EP7312 Development Board is similar to the EP7212 Development Board from a hardware setup
viewpoint, and is based on the same port of eCos.

When rebuilding the RedBoot ROM image or an eCos application, change the "Cirrus Logic processor variant"
option (CYGHWR_HAL_ARM_EDB7XXX_VARIANT) from the EP7211 to the EP7312. This can be selected in
the eCos Configuration Tool , or if using ecosconfig, can be set by uncommenting the user_value property of this
option in ecos.ecc and setting it to "EP7312".

See the RedBoot documentation for building and installing RedBoot for this target. Only RedBoot is supported as
a boot image; ROMRAM startup is recommended.

90MHz Operation

The EP7xxx targets offer a choice of clock speeds, from 18MHz to a maximum, normally, of 72MHz. These are
described as kHz values 18432 36864 49152 and 73728 within the configuration tool. If you have a release which
supports it, you will also see 90317 as an available option here, for 90MHz operation.

This option only applies to certain EP7312 hardware, not all EP7312 boards support it. Do not select 90MHz when
building RedBoot or your eCos application unless you are absolutely sure that your board supports it.

If you do have a 90MHz board and wish to execute at 90MHz, it is in fact not necessary to build RedBoot specially,
if you build your eCos application configured for 90MHz. RedBoot will run at 72MHz and your application will
run at 90MHz. If you do install a 90MHz RedBoot, then you must build eCos for 90MHz or timing and baud rates
on serial I/O will be wrong.

In other words, code (either eCos app or RedBoot) built for 90MHz will “change up a gear” when it starts up; but
code built for 72MHz, because it needs to run correctly on boards without the “gearbox” does not change back
down, so if you mix the two, unexpected timing can result. To run a non-eCos application without any hardware
initialization code at 90MHz, you must install a specially-built RedBoot.

Cirrus Logic ARM EP7209 Development Board Hardware

Setup

Note: At time of writing, no EP7209 Development Board is available, and consequently eCos has not been verified
for use with the EP7209 Development Board.

The Cirrus Logic EP7209 Development Board is almost identical to the EP7212 Board in all respects, except that
it is not fitted with DRAM, nor has it a DRAM controller.

The only valid configuration for the EDB7209 is ROM based. The STUBS and RAM startup modes are not avail-
able as no DRAM is fitted.

159

Appendix A.

Target Setup

Cirrus Logic ARM CL-PS7111 Evaluation Board Hardware

Setup

The implementation of the port of eCos to the Cirrus Logic ARM CL-PS7111 Evaluation Board (also known as
EB7111) is based on the EP7211 Development Board port.

For that reason, the setup required is identical to the EP7211 Development Board as described above, with the
following exceptions:

+ The Cygmon ROM monitor is not supported

+ The ARM Multi-ICE is not supported

+ Pre-built GDB stubs are provided in the directory loaders/arm-eb7111 relative to the root of your eCos installa-
tion

« If rebuilding the GDB stub ROM image, change the "Cirrus Logic processor variant" option
(CYGHWR_HAL_ARM_EDB7XXX_VARIANT) from the EP7211 to the CL_PS7111. This can be selected
in the eCos Configuration Tool , or if using ecosconfig, can be set by uncommenting the user_value property of
this option in ecos.ecc and setting it to "CL_PS7111"

All remote serial communication is done with the serial I/O connector

/misc

% slow_cat.tcl < [path]/gdb_module.srec > /dev/ttyS0

Power off the board, and change it to boot the GDB stubs in big-endian mode by setting the switches like this:
SW1: 00000000 (all levers down) SW2: 10001010

The GDB stubs allow communication with GDB using the serial port at connector PJ7A (lower connector). The
communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control
is employed. Connection to the host computer should be made using a straight through serial cable.

StrongARM EBSA-285 Hardware Setup

160

The eCos Developer’s Kit package comes with a ROM image which provides GDB support for the Intel® Stron-
gARM® Evaluation Board EBSA-285. Both eCos and the Stub ROM image assume the clocks are: 3.6864 MHz
PLL input for generating the core clock, and 50MHz osc input for external clocks. An image of this ROM is also
provided at loaders/arm-ebsa285/gdbload.bin under the root of your eCos installation.

The ROM monitor image (an eCos GDB stub) provided for the EBSA-285 board must be programmed into the
flash, replacing the Angel monitor on the board. Please refer to the section titled "Loading the ROM Image into
On-Board flash" on how to program the ROM onto the board.

The Stub ROM allows communication with GDB via the serial connector on the bulkhead mounting bracket COMO.
The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow
control is employed.

Appendix A. Target Setup

Building the GDB Stub FLASH ROM images

Pre-built GDB stubs images are provided in the directory loaders/arm-ebsa285 relative to the root of your eCos
installation, but here are instructions on how to rebuild them if you should ever need to.

Building the GDB Stubs with the eCos Configuration Tool

1. Start with a new document - selecting the File -> New menu item if necessary to do this.
2. Choose the Build -> Templates menu item, and then select the StrongARM EBSA285 hardware.

3. While still displaying the Build -> Templates dialog box, select the "stubs" package template to build a GDB
stub image. Click OK.

4. Build eCos using Build -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Building the GDB Stub ROMs with ecosconfig

(See “Using ecosconfig on UNIX” on page 72)

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new ebsa285 stubs
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Loading the ROM Image into On-board Flash

There are several ways to install the eCos gdb stub ROM image in the EBSA board’s flash memory. Once installed,
the gdb stub ROM provides standard eCos download and debug via the EBSA board"s serial port. The options
available include the Linux based EBSA flash upgrade utility provided by Red Hat, direct writing of the flash via
MultilCE (JTAG) hardware debugger, and other flash management utilities from Intel (these only support DOS,
and proprietary ARM tools and image formats). Only the Red Hat flash upgrade tool is supported and tested in this
release.

The flash upgrade tool requires the EBSA board to be configured as a PCI slave (rather than a master, its normal
operating mode) and plugged into a Linux host computer"s PCI bus.

Configuring the board for flash loading: Follow the instructions in the EBSA-285 Reference Manual, pages A-2
and A-3 to configure the board as an add-in card, and enable flash blank programming. Briefly: assuming the board

161

Appendix A. Target Setup

162

was in the default setting to execute as a bus master ("Host Bridge") make jumper 9 (J9), move jumper 10 (J10) to
external reset (PCI_RST), and move jumper 15 (J15) link 4-6-5 to connect 5-6 instead of 4-6.

Configuring the board for execution of eCos programs: Follow the instructions in the EBSA-285 Reference Manual,
pages A-2 and A-3 to configure the board as a "Host Bridge" with "Central Function". Briefly: unset J9, move J10
to on-board reset (BRD_RST), and set J15 to make 4-6 instead of 5-6 (see page A-8 also). Plug the card into its
own PCI bus, not the Linux PC used for the flash-programming process.

Building the Linux software: the Linux software sources are in directory
<BASE_DIR>/packages/hal/arm/ebsa285/v1_3/support/linux/safl_util

in the eCos source repository. There are two parts to the system: a loadable kernel module and the flash utility. The

loadable kernel module is safl.o and the utility is sa_flash. To build:

cd to this directory, or a copy of it.

make

This builds safl.o and sa_flash. The kernel module must be installed, and a device file created for it. Both of these
operations require root permissions. Create the device file by:

% mknod /dev/safl ¢ 10 178

Programming the flash: switch off the EBSA-285, and remove the EBSA-285 board from its PCI bus. Take appro-
priate anti-static precautions. Configure it for flash loading as above, halt your Linux system and turn it off. Install
the EBSA-285 board in the PCI bus of the Linux system and boot it up. (Single user is good enough, assuming
your image and safl_util build dir are on a local disc partition.) Change directory to the safl_util directory, then, to
load the kernel module and flash an image onto the eval board (as root):

o°

insmod safl.o
% sa_flash <image_file>

Halt and turn off the Linux machine and remove the EBSA-285 card. Take appropriate anti-static precautions.
Configure it for execution of eCos programs as above, and plug it into its own PCI bus. Restart the Linux machine
however you wish.

This information is replicated in the README file within the safl_util directory and its parents, and in the EBSA-
285 Reference Manual from Intel, appendix A "Configuration Guide". If in doubt, please refer to those documents
also.

This procedure also applies for loading ROM-startup eCos programs into the on-board flash memory, given a
binary format image of the program from arm-elf-objcopy. Loading a ROM-startup eCos program into flash will
overwrite the StubROM in flash, so you would have to reload the StubROM to return to normal RAM-startup
program development.

Running your eCos Program Using GDB and the StubROM

Note: You must first load the StubROM image into the flash memory on the EBSA-285 board before doing this.
See “Loading the ROM Image into On-board Flash”, page 93 for details.

Appendix A. Target Setup
Connect to the StubROM in the board and run your eCos program <PROGRAM> as
follows:

$ arm-elf-gdb -nw <PROGRAM>
(gdb) set remotebaud 38400
(gdb) target remote <DEVICE>

Where <DEVICE> is /dev/ttySO or COM1: or similar, depending on your environment and how you connected
your serial line to the host computer. Expect some output here, for example:

Remote debugging using /dev/ttyS0
0x410026a4 in 2?2 ()

then, to load the program

(gdb) load

which will report locations and sizes of sections as they load, then begin execution using
(gdb) continue

If you have no eCos program yet, but you want to connect to the board just to verify serial communications, tell gdb
"set endian little" before anything else, so that it understands the board (GDB normally infers this from information
within the eCos program).

Note: When an eCos program is run on the EBSA-285 board, the GDB stub in ROM loses control. This means
that if you require the ability to stop execution on the target remotely, or want thread debugging capabilities,
you must include GDB stub support when configuring eCos.

Compaq iPAQ PocketPC Hardware Setup

For setting up the iPAQ to run with RedBoot, see the the RedBoot User’s Guide. Connections may be made using the
Compact Flash Ethernet interface. A serial cable may be connected directly, or via the cradle. Serial communication
uses the parameters 38400,8,N,1. The LCD/Touchscreen may also be used as an interface to RedBoot and eCos
applications.

Arm Industrial Module AIM 711 Hardware Setup

The Arm Industrial Module AIM 711 comes with RedBoot installed as the default boot loader.

For developing without having a finished custom board, a starter-kit with a minimally configured board is available.
It offers all the connectors needed for development, including serial device, Ethernet, power supply and an extra
connector for the external bus.

163

Appendix A. Target Setup

164

Setup Hardware

Power supply
A 6V - 7.5V power supply must be connected to J2 or TB1. At J2 the inner pin is V+ and at TB1 it is pin 1.

Serial devices

The AIM 711 has 3 serial devices, which are the debug and diagnostic channel COMO (/dev/ser0), the high perfor-
mance 16550 UART COMI1 (/dev/serl) and the second internal device COM2 (/dev/ser2).

To use the debug channel, which is also the default for RedBoot, the supplied DB9-male cable must be connected
to CN4. If the also available service board is used, the above connector must be disabled by setting JP1.

COM1 is available over the RJ45 connector CN2. This device can be configured as a RS232, RS422, RS485 or
TTL level

COM2 is only available with TTL level at CNS.

Ethernet
The RJ45 connector CN1 is for Ethernet.

Installing RedBoot into FLASH

Using RedBoot
In order that Redboot can overwrite itself, Redboot is built as a ROMRAM image.
Load the RedBoot binary to the next free space:

RedBoot> load -m tftp -h 192.168.1.36 -r -b 0x40000 redboot.bin
Raw file loaded 0x00040000-0x00063233, assumed entry at 0x00040000

Store it in FLASH:

RedBoot> fis create RedBoot
An image named ’RedBoot’ exists - continue (y/n)? y
. Erase from 0x02000000-0x02025000: ..ttt ittt enneeneneneeeneneennns
. Program from 0x00040000-0x00063234 at 0x02000000: .. ittt i eeeeeeenns
. Erase from 0x021ff000-0x02200000:
. Program from 0x007f££f000-0x00800000 at 0x021ff000:

Restart the AIM 711:

RedBoot> reset
. Resetting.

Appendix A. Target Setup

Using JTAG

To rewrite the FLASH using JTAG the service board must be used, which includes a JTAG connector.

More documentation

For more information please look at http://www.visionsystems.de/arm7.html.

SH3/EDK7708 Hardware Setup

The eCos Developer’s Kit package comes with a ROM which provides GDB support for the Hitachi
EDK7708 board (a big-endian and a little-endian version). Images of these ROMs are also provided at
loaders/sh-edk7708/gdbload.bin and loaders/sh-edk77081e/gdbload.bin under the root of your eCos
installation.

The ROM is installed to socket U6 on the board. When using the big-endian ROM, jumper 9 must be set to 2-3.
When using the little-endian ROM, jumper 9 must be set to 1-2. Attention should be paid to the correct orientation
of the ROM during installation. Only replace the board"s existing ROM using a proper PLCC extraction tool, as
the socket would otherwise risk being damaged.

If you are going to program a new ROM or FLASH using the binary image, you may have to experiment to get the
right byte-order in the device. Depending on the programming software you use, it might be necessary to enable
byte-swapping. If the GDB stub ROM/FLASH you program does not work, try reversing the byte-order.

The GDB stub in the EPROM allows communication with GDB using the serial port at connector J1. The com-
munication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is
employed. Connection to the host computer should be made using the dedicated serial cable included in the EDK
package.

Installing the Stubs into FLASH

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory loaders/sh-edk7708 and loaders/sh-edk7708]le relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.

2. Choose the Build->Templates menu item, and then select the SH EDK7708 hardware.

165

Appendix A. Target Setup

3. While still displaying the Build->Templates dialog box, select the “stubs” package template to build a GDB
stub. Click OK.

4.If building a little-endian image, disable the “Use big-endian mode” option in the SH EDK7708 HAL
(CYGHWR_HAL_SH_BIGENDIAN).

5. Build eCos using Build->Library.

6. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:
$ ecosconfig new edk7708 stubs

3.If building a little-endian image, uncomment the wuser value in ecos.ecc for
CYGHWR_HAL_SH_BIGENDIAN and change it to 0.

4. Enter the commands:

$ ecosconfig tree
$ make

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Installing the Stubs into ROM or FLASH

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your ROM
programmer.

2. Plug the ROM/FLASH into socket U6. If the image is little-endian set jumper 9 to 1-2. If the image is big-
endian set jumper 9 to 2-3.

SH3/CQ7708 Hardware Setup

166

Preparing the board
Make sure the DIP switches on the board are set as follows:

SW1l-1 ON
SW1l-2 OFF
SW1-3 ON
SW1l-4 OFF

Appendix A. Target Setup

SW2-1 ON
SW2-2 ON
SW2-3 OFF
SW2-4 OFF

If you are using a straight through serial cable which has flow control lines, you will also need to cut JP12 (5-6) as
the flow control lines can cause NMlIs.

eCos GDB Stubs

The eCos installation CD contains a copy of the eCos GDB stubs in binary format which must be programmed into
an EPROM or FLASH and installed on the board.

Preparing the GDB stubs

These stub preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled stubs in the
directory loaders/sh3-cq7708 relative to the installation root.

Building the GDB stub image with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the SH3 cq7708 hardware.

3. While still displaying the Build->Templates dialog box, select the stubs package template to build a GDB stub.
Click OK.

4. Build eCos stubs using Build->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

Building the GDB stub image with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new cg7708 stubs
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

167

Appendix A. Target Setup

Programming the stubs in EPROM/FLASH

The board can use different sizes of ROMs. Use this table to adjust the board’s jumpers to the ROM sizes you are

using.

size (kbit) JP7 JP9 JP10 JpP11
256 2-3 2-3 open open
512 1-2 2-3 open open
1000 1-2 open open 2-3

2000 1-2 1-2 open 2-3

4000 1-2 1-2 short 2-3

8000 1-2 1-2 short 1-2

There are two ways to program the stubs. We advise you to use method 1, since it is simpler. Method 2 is unsup-
ported and requires a bit of fiddling.

Method 1:

Program the binary stub image into two EPROMs, E and O. EPROM E should contain the even bytes, and O the
odd bytes (your EPROM programmer should have the ability to split the image).

EPROM E should be installed in socket IC8, and EPROM O should be installed in socket IC4.
Set JP6 to 16 bit mode (1-2 soldered, 2-3 cut) Set SW1-4 to ON and SW2-1 to OFF.

Method?2:
Assuming that the stub binary is smaller than 32 KB, you can install it in a single EPROM.
Compile the mkcqgrom. c program found in the misc directory.

Use it to convert the binary image to the required format. See the mkcgrom. c source for a description of what is
done, and why it is necessary.

)

% mkcqrom gdb_module.bin gdb_mangled.bin

Program the gdb_mangled.bin file into an EPROM and install it in socket IC4
Set JP6 to 8 bit mode (cut 1-2, solder 2-3)

The GDB stubs allow communication with GDB using the serial port at connector CN7. The communication
parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is employed.
Connection to the host computer should be made using a straight through serial cable.

SH3/HS7729PCI Hardware Setup

Please see the RedBoot manual for instructions on how to prepare the board for use with eCos.

SH3/SE77x9 Hardware Setup

Please see the RedBoot manual for instructions on how to prepare the board for use with eCos.

168

Appendix A. Target Setup

SH4/CQ7750 Hardware Setup

Preparing the board

Make sure the DIP switches on the board are set as follows:

SWl-1 ON
SW1l-2 OFF
SW1-3 ON
SW1l-4 OFF

SW2-1 ON
SW2-2 ON
SW2-3 OFF
SW2-4 OFF

If you are using a straight through serial cable which has flow control lines, you will also need to cut JP12 (5-6) as
the flow control lines can cause NMlIs.

eCos GDB Stubs

The eCos installation CD contains a copy of the eCos GDB stubs in binary format which must be programmed into
an EPROM or FLASH and installed on the board.

Preparing the GDB stubs

These stub preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled stubs in the
directory loaders/sh3-cq7708 relative to the installation root.

Building the GDB stub image with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the SH3 cq7708 hardware.

3. While still displaying the Build->Templates dialog box, select the stubs package template to build a GDB stub.
Click OK.

4. Build eCos stubs using Build->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

Building the GDB stub image with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

169

Appendix A. Target Setup

170

$ ecosconfig new cg7708 stubs

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

Programming the stubs in EPROM/FLASH

The board can use different sizes of ROMs. Use this table to adjust the board’s jumpers to the ROM sizes you are
using.

size (kbit) Jp7 JP9 JP10 Jp11
256 2-3 2-3 open open
512 1-2 2-3 open open
1000 1-2 open open 2-3
2000 1-2 1-2 open 2-3
4000 1-2 1-2 short 2-3
8000 1-2 1-2 short 1-2

There are two ways to program the stubs. We advise you to use method 1, since it is simpler. Method 2 is unsup-
ported and requires a bit of fiddling.

Method 1:

Program the binary stub image into two EPROMs, E and O. EPROM E should contain the even bytes, and O the
odd bytes (your EPROM programmer should have the ability to split the image).

EPROM E should be installed in socket IC8, and EPROM O should be installed in socket IC4.
Set JP6 to 16 bit mode (1-2 soldered, 2-3 cut) Set SW1-4 to ON and SW2-1 to OFF.

Method?2:
Assuming that the stub binary is smaller than 32 KB, you can install it in a single EPROM.
Compile the mkcqgrom. c program found in the misc directory.

Use it to convert the binary image to the required format. See the mkcqgrom. c source for a description of what is
done, and why it is necessary.

)

% mkcgrom gdb_module.bin gdb_mangled.bin

Program the gdb_mangled.bin file into an EPROM and install it in socket IC4
Set JP6 to 8 bit mode (cut 1-2, solder 2-3)

The GDB stubs allow communication with GDB using the serial port at connector CN7. The communication
parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is employed.
Connection to the host computer should be made using a straight through serial cable.

Appendix A. Target Setup

SH4/SE7751 Hardware Setup

Please see the RedBoot manual for instructions on how to prepare the board for use with eCos.

NEC CEB-V850/SA1 Hardware Setup

The CEB-V850 board is fitted with a socketed EPROM. The internal Flash of the V850 supplied with the CEB-
V850 boards defaults to vectoring into this EPROM. A GDB stub image should be programmed into an EPROM
fitted to this board, and a pre-built image is provided at loaders/v850-ceb_v850/v850sal/gdb_module.bin
under the root of your eCos installation.

The EPROM is installed to the socket labelled U7 on the board. Attention should be paid to the correct orientation
of the EPROM during installation.

When programming an EPROM using the binary image, be careful to get the byte order correct. It needs to be little-
endian. If the EPROM burner software has a hex-editor, check that the first few bytes of the image look similar
to:

00000000: 0018 8007 5e02 0000 0000 0000 0000 0000
If the byte order is wrong you will see 1800 instead of 0018 etc. Use the EPROM burner software to make a
byte-swap before you burn to image to the EPROM.

If the GDB stub EPROM you burn does not work, try reversing the byte-order, even if you think you have it the
right way around. At least one DOS-based EPROM burner program is known to have the byte-order upside down.

The GDB stub in the EPROM allows communication with GDB using the serial port. The communication pa-
rameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is employed.
Connection to the host computer should be made using a dedicated serial cable as specified in the CEB-V850/SA1
manual.

Installing the Stubs into ROM

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory loaders/v850-ceb_v850 relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting the File->New menu item if necessary to do this.
2. Choose the Build->Templates menu item, and then select the NEC CEB-V850/SA1 hardware.

3. While still displaying the Build->Templates dialog box, select the “stubs” package template to build a GDB
stub. Click OK.

4. Build eCos using Build->Library.

171

Appendix A. Target Setup

172

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.
2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new ceb-v850 stubs
3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Installing the Stubs into ROM or FLASH

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your ROM
programmer.

2. Plug the ROM/FLASH into the socket as described at the beginning of this section.

Debugging with the NEC V850 I.C.E.

eCos applications may be debugged using the NEC V850 In Circuit Emulator (I.C.E.) A PC running Microsoft
Windows is required in order to run the NEC ICE software and drivers. In addition Red Hat have developed a
“libremote” server application named v850ice.exe which is used on the PC connected to the I.C.E. in order to
allow connections from GDB.

The I.C.E. must be physically connected to a Windows NT system through NEC"s PCI or PC Card interface. A
driver, DLLs, and application are provided by NEC to control the I.C.E.

v850ice is a Cygwin based server that runs on the NT system and provides an interface between the gdb client
and the I.C.E. software. v850-elf-gdb may be run on the Windows NT system or on a remote system. v850-
elf-gdb communicates with the libremote server using the gdb remote protocol over a TCP/IP socket. v850ice
communicates with the I.C.E. by calling functions in the NECMSG.DLL provided by NEC.

INITIAL SETUP

1. Configure the hardware including the I.C.E., SA1 or SB1 Option Module, and target board. Install the interface
card in the Windows NT system. Reference NEC"s documentation for interface installation, jumper settings,
etc.

2. Install the Windows NT device driver provided by NEC.

Appendix A. Target Setup

3. Copy the NEC DLLs, MDI application, and other support files to a directory on the Windows NT system.
The standard location is C:\NecTools32. This directory will be referred to as the "libremote server directory"”
in this document. v850ice.exe must also be copied to this directory after being built. The required files are:
cpu.cfg, Nec.cfg, MDL.EXE, NECMSG.DLL, EX85032.DLL, V850E.DLL, IE850.MON, IES50E.MON, and
D3037A.800.

4. Make certain the file cpu.cfg contains the line:
CpuOption=sAl
if using a V850/SA1 module, or:
CpuOption=5B1
if using a V850/SB1 module.
5. Set the environment variable IEPATH to point to the libremote server

directory.

BUILD PROCEDURES

A pre-built v850ice.exe executable is supplied in the loaders/v850-ceb_v850 directory relative to the root of the
eCos installation. However the following process will allow the rebuilding of this executable if required:

For this example assume the v850ice libremote tree has been copied to a directory named "server". The directory
structure will be similar to the following diagram:

server
|
devo
/ N\
config libremote
/ \
1lib v850ice

Build the v850ice source as follows. Be sure to use the native Cygwin compiler tools that were supplied alongside
eCos.

cd server mkdir build cd build ../devo/configure --target=v850-elf --host=1686-pc-cygwin make

The resultant libremote server image (v850ice.exe) can be found in build/libremote/v850ice. Copy v850ice.exe to
the lib remote server directory.

V850ICE.EXE EXECUTION
The v850ice command line syntax is:
v850ice [-d] [-t addr] [port number]

The optional -d option enables debug output. The -t option is associated with thread debugging - see the "eCos
thread debugging" section below for details. By default v850ice listens on port 2345 for an attach request from a
gdb client. A different port number may be specified on the command line.

173

Appendix A. Target Setup

174

To run the libremote server:

1. Power on the I.C.E. and target board.
2. Open a Cygwin window.
3. Run v850ice.

4. You will see the MDI interface window appear. In this window you should see the "Connected to In-Circuit
Emulator" message. In the Cygwin window, the libremote server will indicate it is ready to accept a gdb client
connection with the message "v850ice: listening on port 2345."

V850-ELF-GDB EXECUTION

Run the v850-elf-gdb client to debug the V850 target. It is necessary to issue certain configuration commands to
the I.C.E. software. These commands may be issued directly in the MDI window or they may be issued from the
gdb client through the "monitor" command.

On the Cosmo CEB-V850 board, on-chip Flash is mapped at address 0x0, the on-board EPROM at 0x100000 and
the on-board RAM at 0xfc0000. Since a stand alone V850 will start executing from address 0x0 on reset, it is
normal to load either an application or a bootstrap loader for Flash at this address. eCos programs may be built to
boot from Flash or the on-board EPROM. If building for the on-board EPROM, it would be expected that the Flash
will contain the default CEB-V850 flash contents. An ELF format version of the default contents may be found in
the eCos distribution with the name v850flash.img.

In stand alone operation, normally the code in this flash image would have been programmed into the V850 on the
Cosmo board, and this would cause it to vector into the on-board EPROM to run the application located there. In
the case of eCos, this application may be a GDB stub ROM application, allowing the further download to RAM
over serial of actual applications to debug.

As an example, we shall demonstrate how to use the I.C.E. to download the v850flash.img and GDB stub EPROM
image using I.C.E. emulator memory only, and not requiring any actual programming of devices.

v850-elf-gdb -nw (gdb) file v850flash.img (gdb) target remote localhost:2345 (gdb) monitor reset (gdb) monitor
cpu r=256 a=16 (gdb) monitor map r=0x100000-L 0x80000 (gdb) monitor map u=0xfc0000-L 0x40000 (gdb)
monitor pinmask k (gdb) monitor step (gdb) monitor step (gdb) monitor step (gdb) monitor step (gdb) load (gdb)
detach (gdb) file gdb_module.img (gdb) target remote localhost:2345 (gdb) load (gdb) continue

NOTE: The four "monitor step" commands are only required the first time the board is connected to the I.C.E.,
otherwise the program will fail.

This is because of a limitation of the I.C.E. hardware that means that the first time it is used, the "map" commands
are not acted on and the addresses "0x100000" and "Oxfc0000" are not mapped. This can be observed using the
command "td e-20" in the MDI application"s console to display the trace buffer, which will show that the contents
of address 0x100000 are not valid. Subsequent runs do not require the "monitor step" commands.

It is unusual to load two executable images to a target through gdb. From the example above notice that this is
accomplished by attaching to the libremote server, loading the flash image, detaching, reattaching, and loading the
ROM/RAM image. It is more normal to build an executable image that can be executed directly. In eCos this is
achieved by selecting either the ROM or ROMRAM startup type, and optionally enable building for the internal
FLASH. The 1.C.E. emulator memory can emulate both the internal FLASH and the EPROM, so real hardware
programming is not required.

Appendix A. Target Setup

Upon running this example you will notice that the libremote server does not exit upon detecting a detach request,
but simply begins listening for the next attach request. To cause v850ice to terminate, issue the "monitor quit" or
"monitor exit" command from the gdb client. v850ice will then terminate with the next detach request. (You can
also enter control-c in the Cygwin/DOS window where v850ice is running.)

MDI INTERFACE VS. GDB INTERFACE

If a filename is referenced in an MDI command, whether the command is entered in the MDI window or issued
from the gdb client with the monitor command, the file must reside on the Windows NT libremote server system.
When specifying a filename when entering a command in the MDI window it is obvious that a server local file is
being referenced. When issuing an MDI command from the gdb client, the user must remember that the command
line is simply passed to the I.C.E. software on the server system. The command is executed by the I.C.E. software
as though it were entered locally.

Executable images may be loaded into the V850 target by entering the "load" command in the MDI window or
with the gdb "load" command. If the MDI load command is used, the executable image must be located on the
server system and must be in S Record format. If the gdb load command is used, the executable image must be
located on the client system and must be in ELF format.

Be aware that the gdb client is not aware of debugger commands issued from the MDI window. It is possible to
cause the gdb client and the I.C.E. software to get out of sync by issuing commands from both interfaces during
the same debugging session.

eCos THREAD DEBUGGING

eCos and the V850 I.C.E. libremote server have been written to work together to allow debugging of eCos threads.
This is an optional feature, disabled by default because of the overheads trying to detect a threaded program
involves.

Obviously thread debugging is not possible for programs with "RAM" startup type, as they are expected to operate
underneath a separate ROM monitor (such as a GDB stub ROM), that itself would provide its own thread debugging
capabilities over the serial line. Thread debugging is relevant only for programs built for Flash, ROM, or ROMRAM
startup.

To configure the libremote server to support thread debugging, use the command:

(gdb) monitor syscallinfo ADDRESS

at the GDB console prompt, where ADDRESS is the address of the syscall information structure included in the
applications. In eCos this has been designed to be located at a consistent address for each CPU model (V850/SA1
or V850/SB1). It may be determined from an eCos executable using the following command at a cygwin bash
prompt:

v850-elf-nm EXECUTABLE | grep hal_v85x_ice_syscall_info

At the current time, this address is 0xfc0400 for a Cosmo board fitted with a V850/SA1, or 0xfc0540 for a Cosmo
board fitted with a V850/SB1.

175

Appendix A. Target Setup

So for example, the GDB command for the SB1 would be:

(gdb) monitor syscallinfo 0xfc0540

Given that the syscallinfo address is fixed over all eCos executables for a given target, it is possible to define it on
the libremote command line as well using the "-t" option, for example:

bash$ v850ice -t 0xfc0400
v850ice: listening on port 2345

NEC CEB-V850/SB1 Hardware Setup

The instructions for setting up the CEB-V850/SB1 are virtually identical to those of the CEB-V850/SA1 above.
The only significant differences are that pre-built loaders are available at loaders/v850-ceb_v850/v850sb1 within
the eCos installation. Binaries supporting boards with both 16MHz and 8MHz clock speeds are supplied. Also
when building applications, or rebuilding the stubs for a V850/SB1 target, then the V850 CPU variant must be
changed in the CEB-V850 HAL to the SB1.

i386 PC Hardware Setup

176

eCos application on the PC can be run in three ways: via RedBoot, loaded directly from a floppy disk, or loaded
by the GRUB bootloader.

RedBoot Support

For information about setting up the PC to run with RedBoot, consult the RedBoot User"s Guide. If using serial
debugging, the serial line runs at 38400 baud 8-N-1 and should be connected to the debug host using a null modem
cable. If ethernet debugging is required, an 182559 compatible network interface card, such as an Intel EtherExpress
Pro 10/100, should be installed on the target PC and connected to the development PC running GDB. When
RedBoot is configured appropriately to have an IP address set, then GDB will be able to debug directly over
TCP/IP to the target PC.

Floppy Disk Support

If an application is built with a startup type of FLOPPY, then it is configured to be a self-booting image that must
be written onto a formatted floppy disk. This will erase any existing file system or data that is already on the disk,
so proceed with caution.

Appendix A. Target Setup

To write an application to floppy disk, it must first be converted to a pure binary format. This is done with the
following command:

$ i386-elf-objcopy -O binary app.elf app.bin

Here app.elf is the final linked application executable, in ELF format (it may not have a .elf extension). The
file app .bin is the resulting pure binary file. This must be written to the floppy disk with the following command:

$ dd conv=sync if=app.bin of=/dev/£d0

For NT Cygwin users, this can be done by first ensuring that the raw floppy device is mounted as /dev/£d0.
To check if this is the case, type the command mount at the Cygwin bash prompt. If the floppy drive is already
mounted, it will be listed as something similar to the following line:

\\.\a: /dev/fd0 user binmode

If this line is not listed, then mount the floppy drive using the command:

$ mount -f -b //./a: /dev/£d0

To actually install the boot image on the floppy, use the command:

$ dd conv=sync if=app.bin of=/dev/£d0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot
from A: by default. On reset, the PC will boot from the floppy and the eCos application will load itself and execute
immediately.

NOTE: Unreliable floppy media may cause the write to silently fail. This can be determined if the RedBoot
image does not correctly boot. In such cases, the floppy should be (unconditionally) reformatted using the
fdformat command on Linux, or format a: /u on DOS/Windows. If this fails, try a different disk.

GRUB Bootloader Support

If an application is built with the GRUB startup type, it is configured to be loaded by the GRUB bootloader.

GRUB is an open source boot loader that supports many different operating systems. It is available from
http://www.gnu.org/software/grub. The latest version of GRUB should be downloaded from there and installed. In
Red Hat Linux version 7.2 and later it is the default bootloader for Linux and therefore is already installed.

To install GRUB on a floppy disk from Linux you need to execute the following commands:

S mformat a:

$ mount /mnt/floppy

$ grub-install --root-directory=/mnt/floppy ' (£d40)’

Probing devices to guess BIOS drives. This may take a long time.
Installation finished. No error reported.

This is the contents of the device map /mnt/floppy/boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,

177

Appendix A. Target Setup

fix it and re-run the script ‘grub-install’.

(£d0) /dev/£d0
S cp $ECOS_REPOSITORY/packages/hal/i386/pc/current/misc/menu.lst /mnt/floppy/boot/grub
$ umount /mnt/floppy

The file menu.1st is an example GRUB menu configuration file. It contains menu items to load some of the
standard eCos tests from floppy or from partition zero of the first hard disk. You should, of course, customize
this file to load your own application. Alternatively you can use the command-line interface of GRUB to input
commands yourself.

Applications can be installed, or updated simply by copying them to the floppy disk at the location expected by the
menu. 1st file. For booting from floppy disks it is recommended that the executable be stripped of all debug and
symbol table information before copying. This reduces the size of the file and can make booting faster.

To install GRUB on a hard disk, refer to the GRUB documentation. Be warned, however, that if you get this wrong
it may compromise any existing bootloader that exists on the hard disk and may make any other operating systems
unbootable. Practice on floppy disks or sacrificial hard disks first. On machines running Red Hat Linux version 7.2
and later, you can just add your own menu items to the /boot/grub/menu. 1st file that already exists.

Debugging FLOPPY and GRUB Applications

When RedBoot loads an application it also provides debugging services in the form of GDB remote protocol stubs.
When an application is loaded stand-alone from a floppy disk, or by GRUB, these services are not present. To allow
these application to be debugged, it is possible to include GDB stubs into the application.

To do this, set the "Support for GDB stubs" (CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS) configuration option.
Following this any application built will allow GDB to connect to the debug serial port (by default serial device 0,
also known as COM1) whenever the application takes an exception, or if a Control-C is typed to the debug port.
Ethernet debugging is not supported.

The option "Enable initial breakpoint” (CYGDBG_HAL_DEBUG_GDB_INITIAL_BREAK) causes the HAL to take a
breakpoint immediately before calling cyg_start(). This gives the developer a chance to set any breakpoints or
inspect the system state before it proceeds. The configuration sets this option by default if GDB stubs are included,
and this is not a RedBoot build. To make the application execute immediately either disable this option, or disable
CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS.

i386/Linux Synthetic Target Setup

178

When building for the synthetic Linux target, the resulting binaries are native Linux applications with the HAL
providing suitable bindings between the eCos kernel and the Linux kernel.

Note: Please be aware that the current implementation of the Linux synthetic target does not allow thread-

aware debugging.

These Linux applications cannot be run on a Windows system. However, it is possible to write a similar HAL
emulation for the Windows kernel if such a testing target is desired.

Appendix A. Target Setup

Tools

For the synthetic target, eCos relies on features not available in native compilers earlier than gcc-2.95.1. It also
requires version 2.9.5 or later of the GNU linker. If you have gcc-2.95.1 or later and 1d version 2.9.5 or later, then
you do not need to build new tools. eCos does not support earlier versions. You can check the compiler version
using gec -v and the linker version using Id -v.

If you have native tools that are sufficiently recent for use with eCos, you should be aware that by default
eCos assumes that the tools i686-pc-linux-gnu-gee, i686-pc-linux-gnu-ar, i686-pc-linux-gnu-ld, and
1686-pc-linux-gnu-objcopy are on your system and are the correct versions for use with eCos. But instead,
you can tell eCos to use your native tools by editing the configuration value "Global command prefix"
(CYGBLD_GLOBAL_COMMAND_PREFIX) in your eCos configuration. If left empty (i.e. set to the empty
string) eCos will use your native tools when building.

If you have any difficulties, it is almost certainly easiest overall to rebuild the tools as described on:
http://ecos.sourceware.org/getstart.html

179

Appendix A. Target Setup

180

Appendix B. Real-time characterization

For a discussion of real-time performance measurement for eCos, see the kernel documentation in the eCos Refer-
ence Manual.

Caution

As with the target setup descriptions in the previous appendix, this information will eventually
be merged into per-target documents.

Sample numbers:

Board: ARM AEB-1 Revision B Evaluation Board

Board: ARM AEB-1 Revision B Evaluation Board

CPU : Sharp LH77790A 24MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 128 size 2048
Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 13 ’ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 193.49 microseconds (290 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 7
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function

.26 42% 28% Create thread

.00 100% 100% Yield thread [all suspended]
.00 100% 100% Suspend [suspended] thread
.33 57% 42% Resume thread

.27 71% 28% Set priority

110.19 104.67 116.00
34.00 34.00 34.00
24.67 24.67 24.67
25.05 24.67 25.33
37.14 36.67 37.33

O O O O W

181

Appendix B. Real-time characterization

3.81 3.33 4.00 0.27 71% 28% Get priority
80.00 80.00 80.00 0.00 100% 100% Kill [suspended] thread
33.90 33.33 34.00 0.16 85% 14% Yield [no other] thread
45.90 44.00 46.67 0.54 57% 14% Resume [suspended low prio] thread
24 .57 24.00 24.67 0.16 85% 14% Resume [runnable low prio] thread
42.29 36.67 43.33 1.61 85% 14% Suspend [runnable] thread
33.90 33.33 34.00 0.16 85% 14% Yield [only low prio] thread
24.67 24.67 24.67 0.00 100% 100% Suspend [runnable->not runnable]
80.00 80.00 80.00 0.00 100% 100% Kill [runnable] thread
43.33 43.33 43.33 0.00 100% 100% Destroy [dead] thread
106.29 101.33 107.33 1.41 85% 14% Destroy [runnable] thread
144.95 141.33 166.00 6.01 85% 85% Resume [high priority] thread
78.31 76.67 254.67 2.75 99% 99% Thread switch
4.00 4.00 4.00 0.00 100% 100% Scheduler lock
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [0 threads]
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [l suspended]
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [many suspended]
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [many low prio]
10.67 10.67 10.67 0.00 100% 100% Init mutex
28.67 28.67 28.67 0.00 100% 100% Lock [unlocked] mutex
30.44 30.00 31.33 0.33 59% 37% Unlock [locked] mutex
25.42 25.33 26.00 0.15 87% 87% Trylock [unlocked] mutex
22.50 22.00 22.67 0.25 75% 25% Trylock [locked] mutex
5.75 5.33 6.00 0.31 62% 37% Destroy mutex
185.33 185.33 185.33 0.00 100% 100% Unlock/Lock mutex
20.17 20.00 20.67 0.25 75% 75% Create mbox
2.92 2.67 3.33 0.31 62% 62% Peek [empty] mbox
32.42 32.00 32.67 0.31 62% 37% Put [first] mbox
3.00 2.67 3.33 0.33 100% 50% Peek [l msg] mbox
32.50 32.00 32.67 0.25 75% 25% Put [second] mbox
2.92 2.67 3.33 0.31 62% 62% Peek [2 msgs] mbox
32.83 32.67 33.33 0.25 75% 75% Get [first] mbox
32.67 32.67 32.67 0.00 100% 100% Get [second] mbox
31.33 31.33 31.33 0.00 100% 100% Tryput [first] mbox
27.58 27.33 28.00 0.31 62% 62% Peek item [non-empty] mbox
32.83 32.67 33.33 0.25 75% 75% Tryget [non—-empty] mbox
26.50 26.00 26.67 0.25 75% 25% Peek item [empty] mbox
28.00 28.00 28.00 0.00 100% 100% Tryget [empty] mbox
3.25 2.67 3.33 0.15 87% 12% Waiting to get mbox
3.25 2.67 3.33 0.15 87% 12% Waiting to put mbox
30.83 30.67 31.33 0.25 75% 75% Delete mbox
101.08 100.67 101.33 0.31 62% 37% Put/Get mbox
11.17 10.67 11.33 0.25 75% 25% Init semaphore
24 .17 24.00 24 .67 0.25 75% 75% Post [0] semaphore
27.08 26.67 27.33 0.31 62% 37% Wait [1] semaphore
22.75 22.67 23.33 0.15 87% 87% Trywait [0] semaphore
22.21 22.00 22.67 0.29 68% 68% Trywait [1] semaphore
7.33 7.33 7.33 0.00 100% 100% Peek semaphore
5.92 5.33 6.00 0.15 87% 12% Destroy semaphore
110.04 110.00 110.67 0.08 93% 93% Post/Wait semaphore

182

9.54 9.33 10.00 0.29 68%
3.92 3.33 4.00 0.15 87%
4.00 4.00 4.00 0.00 100%
30.92 30.67 31.33 0.31 62%
5.75 5.33 6.00 0.31 62%
13.83 13.33 14.00 0.25 75%
46.67 46.67 46.67 0.00 100%
3.67 3.33 4.00 0.33 100%
45.67 45.33 46.00 0.33 100%
8.33 8.00 8.67 0.33 100%
36.33 36.00 36.67 0.33 100%
214.67 214.67 214.67 0.00 100%
62.67 62.67 62.67 0.00 100%
1087.04 1075.33 1278.67 21.91 93%
246.35 240.67 412.00 10.35 96%
168.01 167.33 237.33 1.08 99%
187.36 168.00 234.67 3.60 86%
187.37 167.33 235.33 3.59 85%
303.12 280.00 508.67 3.21 98%
36.65 36.00 38.67 0.00
65.79 52.00 152.67 0.00
316 316 316 (main stack: 7
All done, main stack stack
All done Interrupt stack
All done Idlethread stack

Timing complete - 30390 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: Atmel AT91/EB40

Board: Atmel AT91/EB40

CPU AT91R40807 (ARM7TDMI core), 32MHz
512KB RAM, 64K Flash

Startup, main stack stack
Startup Interrupt stack
Startup Idlethread stack

eCos Kernel Timings

Notes: all times are in microseconds

Reading the hardware clock takes 3

68%
12%
100%
62%
37%

25%
100%
50%
50%
50%
50%
100%
100%
93%
96%
99%

©

)
©

52)
used
used
used

used
used
used

(.000001)

"ticks’ o

Appendix B. Real-time characterization

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Create alarm
Initialize alarm
Disable alarm
Enable alarm
Delete alarm
Tick
Tick
Tick
Tick
Tick
Alarm

counter [1 alarm]

counter [many alarms]
& fire counter [1 alarm]

[>1 together]
[>1 separately]
[0 threads]

[2 threads]

[many threads]

& fire counters
& fire counters
latency
Alarm latency
Alarm latency
Alarm -> thread resume latency
Clock/interrupt latency

Clock DSR latency

Thread stack
752
280
268

used (1120 total)
2400
2048

2048

size
size
size

420 size
144 size

2400
4096

84 size 2048

unless otherwise stated

verhead

this value will be factored out of all other measurements

183

Appendix B. Real-time characterization

Clock interrupt took 127.53 microseconds (130 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 25
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function

86.48 71.29 101.56 7.99 48% 28% Create thread
20.70 20.51 21.48 0.31 80% 80% Yield thread [all suspended]
17.15 16.60 17.58 0.48 56% 44% Suspend [suspended] thread
17.07 16.60 17.58 0.49 52% 52% Resume thread
25.51 25.39 26.37 0.21 88% 88% Set priority
3.16 2.93 3.91 0.36 76% 76% Get priority
52.34 51.76 52.73 0.47 60% 40% Kill [suspended] thread
20.70 20.51 21.48 0.31 80% 80% Yield [no other] thread
28.98 28.32 30.27 0.48 60% 36% Resume [suspended low prio] thread
17.11 16.60 17.58 0.49 52% 48% Resume [runnable low prio] thread
27.85 26.37 28.32 0.52 96% 4% Suspend [runnable] thread
20.70 20.51 21.48 0.31 80% 80% Yield [only low prio] thread
17.23 16.60 17.58 0.45 64% 36% Suspend [runnable->not runnable]
52.34 51.76 52.73 0.47 60% 40% Kill [runnable] thread
33.01 32.23 33.20 0.31 80% 20% Destroy [dead] thread
72.03 70.31 72.27 0.38 80% 4% Destroy [runnable] thread
96.99 95.70 112.30 1.22 64% 96% Resume [high priority] thread
51.48 49.80 164.06 1.76 99% 99% Thread switch
2.78 1.95 2.93 0.26 84% 15% Scheduler lock
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [0 threads]
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [l suspended]
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [many suspended]
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [many low prio]
5.49 4.88 5.86 0.46 62% 37% Init mutex
20.20 19.53 20.51 0.42 68% 31% Lock [unlocked] mutex
24 .44 24 .41 25.39 0.06 96% 96% Unlock [locked] mutex
18.25 17.58 18.55 0.42 68% 31% Trylock [unlocked] mutex
16.11 15.63 16.60 0.49 100% 50% Trylock [locked] mutex
6.10 5.86 6.84 0.37 75% 75% Destroy mutex
124.21 124.02 125.00 0.30 81% 81% Unlock/Lock mutex
9.28 8.79 9.77 0.49 100% 50% Create mbox
2.93 2.93 2.93 0.00 100% 100% Peek [empty] mbox
22.58 22.46 23.44 0.21 87% 87% Put [first] mbox
2.44 1.95 2.93 0.49 100% 50% Peek [1 msg] mbox
22.58 22.46 23.44 0.21 87% 87% Put [second] mbox

184

Appendix B. Real-time characterization

2.44 1.95 2.93 0.49 100% 50% Peek [2 msgs] mbox

22.71 22.46 23.44 0.37 75% 75% Get [first] mbox

22.71 22.46 23.44 0.37 75% 75% Get [second] mbox

21.18 20.51 21.48 0.42 68% 31% Tryput [first] mbox

18.98 18.55 19.53 0.48 56% 56% Peek item [non-empty] mbox

22.46 22.46 22.46 0.00 100% 100% Tryget [non-empty] mbox

18.31 17.58 18.55 0.37 75% 25% Peek item [empty] mbox

19.53 19.53 19.53 0.00 100% 100% Tryget [empty] mbox

2.69 1.95 2.93 0.37 75% 25% Waiting to get mbox
2.93 2.93 2.93 0.00 100% 100% Waiting to put mbox
23.86 23.44 24.41 0.48 56% 56% Delete mbox

67.60 67.38 68.36 0.33 78% 78% Put/Get mbox

5.37 4.88 5.86 0.49 100% 50% Init semaphore

16.97 16.60 17.58 0.46 62% 62% Post [0] semaphore

18.98 18.55 19.53 0.48 56% 56% Wait [1] semaphore

15.81 15.63 16.60 0.30 81% 81% Trywait [0] semaphore

15.29 14.65 15.63 0.44 65% 34% Trywait [1] semaphore

5.62 4.88 5.86 0.37 75% 25% Peek semaphore
6.35 5.86 6.84 0.49 100% ©50% Destroy semaphore
72.36 72.27 73.24 0.17 90% 90% Post/Wait semaphore
7.08 6.84 7.81 0.37 75% 75% Create counter
3.17 2.93 3.91 0.37 75% 75% Get counter value
3.05 2.93 3.91 0.21 87% 87% Set counter value
24.11 23.44 24.41 0.42 68% 31% Tick counter

5.49 4.88 5.86 0.46 62% 37% Delete counter
10.92 10.74 11.72 0.30 81% 81% Create alarm
31.46 31.25 32.23 0.33 78% 78% Initialize alarm
3.05 2.93 3.91 0.21 87% 87% Disable alarm
31.49 31.25 32.23 0.37 75% 75% Enable alarm

7.02 6.84 7.81 0.30 81% 81% Delete alarm

31.16 30.27 31.25 0.17 90% 9% Tick counter [1 alarm]
309.26 304.69 425.78 7.28 96% 96% Tick counter [many alarms]

44 .83 43.95 44 .92 0.17 90% % Tick & fire counter [1 alarm]
781.68 774.41 893.55 13.62 93% 93% Tick & fire counters [>1 together]
324.16 320.31 433.59 6.84 96% 96% Tick & fire counters [>]1 separately]
114.26 113.28 167.97 0.84 57% 42% Alarm latency [0 threads]
126.91 113.28 159.18 8.20 50% 31% Alarm latency [2 threads]
127.11 113.28 158.20 8.09 51% 28% Alarm latency [many threads]
196.49 189.45 331.05 2.10 98% % Alarm —-> thread resume latency

23.50 23.44 25.39 0.00 Clock/interrupt latency

40.31 33.20 514.65 0.00 Clock DSR latency
300 271 312 (main stack: 832) Thread stack used (1120 total)

All done, main stack : stack used 832 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 272 size 2048

Timing complete - 30350 ms total

PASS:<Basic timing OK>

185

Appendix B. Real-time characterization

EXIT:<done>

Board: Intel StrongARM EBSA-285 Evaluation Board

Board: Intel StrongARM EBSA-285 Evaluation Board

CPU : Intel StrongARM SA-110 228MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 ’'ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 4.61 microseconds (16 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
4.97 3.26 7.34 0.60 50% 4% Create thread
0.73 0.54 2.17 0.14 60% 37% Yield thread [all suspended]
0.98 0.82 2.99 0.23 81l% 68% Suspend [suspended] thread
0.54 0.27 1.63 0.03 92% 6% Resume thread
0.83 0.54 1.90 0.10 73% 14% Set priority
0.21 0.00 0.54 0.21 25% 48% Get priority
2.25 1.90 10.05 0.37 96% 67% Kill [suspended] thread
0.70 0.54 1.09 0.14 53% 45% Yield [no other] thread
0.96 0.82 1.36 0.14 50% 48% Resume [suspended low prio] thread
0.53 0.27 0.82 0.03 92% 6% Resume [runnable low prio] thread
0.90 0.82 1.63 0.13 70% 70% Suspend [runnable] thread
0.70 0.54 0.82 0.13 57% 42% Yield [only low prio] thread
0.55 0.54 0.82 0.01 98% 98% Suspend [runnable->not runnable]
1.64 1.63 2.17 0.02 98% 98% Kill [runnable] thread
0.97 0.82 4.62 0.20 98% 64% Destroy [dead] thread
2.17 1.90 2.17 0.01 98% % Destroy [runnable] thread

186

=

o O O O O

N O O O O o o O N OO O O O O O OO OO O O o o O w o O O O O O

o O O O O

o B O - O

.06
.69

.14
.37
.38
.37
.37

.34
.88
.79
.59
.50
.18
.85

.64
.61
.87
.08
.71
.08
.89
.76
.76
.65
.76
.58
.61
.10
.10
77
.10

.34
.60
.59
.59
.48
.24
.19
.28

.43
.40
.13
.71
.16

.47
.58
.12
.01
.21

5.16

=

o O O O O

N OO O O o o O P O O O O O O O O O O oo o o o o w o O O O O O

o O O O O

o O O+ O

.63

.00
.27
.27
.27
.27

.00
.54
.54
.27
.27
.00
.80

.27
.27
.54
.00
.54
.00
.54
.54
.54
.54
.54
.54
.54
.00
.00
.54
.90

.27
.27
.54
.54
.27
.00
.00
.17

.00
.00
.00
.54
.00

.27
.09
.00
.82
.00

ul

o O O O+

s O O O N O - O W O O O O NN WRE D O O U W g O O N D B

O B O KN

o N J

.60
.98

.36
.54
.54
.54
.54

.90
.62
.35
.17
.82
.54
.16

.53
.17
.16
.54
.09
.27
.89
.09
.26
.45
.72
.82
.82
.54
.54
.26
.25

.09
.09
.82
.17
.82
.82
.54
.08

.72
.63
.82
.63
.54

.36
.07
.09
.45
.27

o

o O O O O

O O O O O O o o O O O O O O O O O O O o o o o o o O O O O O O O

o O O O O

o O O O O

.53
.11

.14
.13
.13
.13
.13

.15
.37
.26
.10
.09
.13
.08

.24
.21
.31
.12
.14
.12
.31
.17
.21
.17
.19
.06
.10
.13
.13
.20
.30

11
.12
.08
.10
11
.09
.13
.18

.23
.25
.15
.16
.14

.15
.44
.16
.17
.09

78%
93%
93%
93%
78%
59%
96%

81%
68%
59%
71%
56%
68%
62%
43%
96%
81%
53%
87%
75%
65%
65%
53%
93%

81%
68%
81%
96%
71%
78%
62%
93%

90%
68%
96%
50%
53%

59%
71%
96%
53%
78%

15%
18%
87%
71%
40%
68%
81%
37%
50%
81%
43%
87%
75%
65%
65%
43%
93%

81%

6%
81%
96%
25%
18%
34%
90%

Appendix B. Real-time characterization

Resume [high priority] thread

Thread switch

5 Scheduler lock

Scheduler unlock [0 threads]

Scheduler unlock

[

Scheduler unlock [1 suspended]
[
[

Scheduler unlock

Init mutex

% Lock [unlocked] mutex
% Unlock [locked] mutex

Trylock [unlocked] mutex
Trylock [locked] mutex
Destroy mutex
Unlock/Lock mutex

Create mbox

Peek [empty] mbox

Put [first] mbox

Peek [1 msg] mbox

Put [second] mbox

Peek [2 msgs] mbox

Get [first] mbox

Get [second] mbox
Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

Init semaphore

Post [0] semaphore
Wait [1] semaphore
Trywait [0] semaphore
Trywait [1] semaphore
Peek semaphore
Destroy semaphore
Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

% Create alarm

% Initialize alarm
% Disable alarm

% Enable alarm

% Delete alarm

many suspended]
many low prio]

187

Appendix B. Real-time characterization

0.78 0.54 1.90 0.12 71% 25% Tick counter [1 alarm]
3.90 3.80 4.35 0.13 68% 68% Tick counter [many alarms]
1.25 1.09 1.63 0.14 53% 43% Tick & fire counter [l alarm]
19.88 19.84 20.11 0.07 84% 84% Tick & fire counters [>1 together]
4.37 4.35 4.62 0.05 90% 90% Tick & fire counters [>1 separately]
3.83 3.80 7.61 0.06 99% 99% Alarm latency [0 threads]
4.46 3.80 7.88 0.27 71% 24% Alarm latency [2 threads]
16.06 13.59 26.36 1.05 54% 10% Alarm latency [many threads]
6.67 6.52 22.83 0.29 98% 98% Alarm -> thread resume latency
1.89 0.82 9.78 0.00 Clock/interrupt latency
2.17 1.09 7.34 0.00 Clock DSR latency
11 0 316 (main stack: 744) Thread stack used (1120 total)

All done, main stack : stack used 744 size 2400

All done : Interrupt stack used 288 size 4096

All done : Idlethread stack used 268 size 2048

Timing complete - 30210 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: Cirrus Logic EDB7111-2 Development Board

188

CPU : Cirrus Logic EP7211 73MHz

Board: Cirrus Logic EDB7111-2 Development Board

CPU : Cirrus Logic EP7211 73MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ’ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 356.69 microseconds (182 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32

Appendix B. Real-time characterization

Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
22.71 17.58 37.11 3.07 46% 34% Create thread
4.36 3.91 5.86 0.70 76% 76% Yield thread [all suspended]
4.24 3.91 7.81 0.56 84% 84% Suspend [suspended] thread
4.09 1.95 7.81 0.45 85% 3% Resume thread
5.31 3.91 11.72 0.92 65% 32% Set priority
2.11 1.95 3.91 0.28 92% 92% Get priority
11.54 9.77 25.39 0.99 62% 28% Kill [suspended] thread
4.46 3.91 9.77 0.82 75% 75% Yield [no other] thread
7.57 5.86 13.67 0.69 75% 20% Resume [suspended low prio] thread
3.94 1.95 5.86 0.18 92% 3% Resume [runnable low prio] thread
7.02 5.86 13.67 1.05 53% 45% Suspend [runnable] thread
4.42 3.91 9.77 0.79 76% 76% Yield [only low prio] thread
4.24 1.95 5.86 0.61 79% 1% Suspend [runnable->not runnable]
11.29 9.77 27.34 1.14 57% 37% Kill [runnable] thread
6.29 3.91 11.72 0.84 71% 4% Destroy [dead] thread
13.52 11.72 31.25 0.90 70% 25% Destroy [runnable] thread
24.50 21.48 42.97 1.69 79% 12% Resume [high priority] thread
8.79 7.81 19.53 1.05 99% 53% Thread switch
1.66 0.00 3.91 0.52 83% 15% Scheduler lock
2.59 1.95 3.91 0.86 67% 67% Scheduler unlock [0 threads]
2.62 1.95 3.91 0.88 65% 65% Scheduler unlock [1 suspended]
2.61 1.95 3.91 0.87 66% 66% Scheduler unlock [many suspended]
2.58 1.95 3.91 0.85 67% 67% Scheduler unlock [many low prio]
2.69 1.95 5.86 0.96 65% 65% Init mutex
4.88 3.91 9.77 1.10 96% 56% Lock [unlocked] mutex
4.64 3.91 11.72 1.05 71% 71% Unlock [locked] mutex
3.97 1.95 7.81 0.47 81% % Trylock [unlocked] mutex
3.48 1.95 3.91 0.67 78% 21% Trylock [locked] mutex
1.77 0.00 3.91 0.44 84% 12% Destroy mutex
31.92 29.30 42.97 1.65 71% 18% Unlock/Lock mutex
4.09 3.91 9.77 0.35 96% 96% Create mbox
1.83 0.00 3.91 0.34 87% % Peek [empty] mbox
5.31 3.91 9.77 0.96 62% 34% Put [first] mbox
1.59 0.00 1.95 0.60 81% 18% Peek [1 msg] mbox
5.19 3.91 9.77 1.04 56% 40% Put [second] mbox
1.65 0.00 3.91 0.62 78% 18% Peek [2 msgs] mbox
5.43 3.91 9.77 0.86 68% 28% Get [first] mbox
5.31 3.91 7.81 0.96 59% 34% Get [second] mbox
4.76 3.91 9.77 1.07 62% 62% Tryput [first] mbox
4.82 1.95 9.77 1.15 93% % Peek item [non-empty] mbox
5.55 3.91 11.72 0.82 71% 25% Tryget [non-empty] mbox
3.97 1.95 7.81 0.59 75% 12% Peek item [empty] mbox

189

Appendix B. Real-time characterization

4.33 3.91 7
1.59 0.00 3
1.71 0.00 3
5.25 3.91 9
17.82 15.63 29
2.69 1.95 5
3.78 1.95 7
4.27 3.91 7
3.72 1.95 7
3.29 1.95 5
2.32 1.95 3
1.89 0.00 3
15.75 13.67 29
2.69 1.95 5
1.83 0.00 1
1.53 0.00 3
4.82 3.91 5
1.89 0.00 1
3.78 1.95 7.
7.99 5.86 15.
1.71 0.00 1.
7.14 5.86 11.
2.50 1.95 3.
4.94 3.91 7.
19.47 17.58 23.
7.63 5.86 11.
99.06 97.66 105.
22.15 21.48 27.
359.16 357.42 378.
364.03 357.42 402.
408.25 402.34 4le.
381.16 376.95 492.
9.79 5.86 19.
12.13 5.86 31.
12 0 316
All done, main stack
All done
All done

.81
.91
.91
77
.30

.86
.81
.81
.81
.86
.91
.91
.30

.86
.95
.91
.86
.95

81
63
95
72
91
81
44
72
47
34
91
34
02
19

53

25

(main stack:

= O O O O O O O P P O O O

o O O O O

NN WO O OORKr OF OO O

0.

.69
.79
.53
.01
.14

.96
.46
.62
.66
.92
.59
.24
.07

.96
.23
.76
.97
.12

.46
.70
.43
.04
.79
.04
.36
.55
.05
.96
.87
.03
.89
.48

.00

00

Timing complete - 30450 ms total

PASS:<Basic timing OK>

EXIT:<done>

190

81%
68%
81%
59%
65%

65%
84%
84%
75%
62%
81%
90%
68%

65%
93%
71%
53%
96%

84%
81%
87%
56%
71%
96%
87%
81%
59%
71%
71%
58%
53%
95%

81%
25%
15%
37%
18%

65%
12%
84%
18%
34%
81%

<)
)

21%

71%
50%

9%
15%
37%
71%
25%
15%
24%
46%

752)

stack used
Interrupt stack used
Idlethread stack used

Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

Init semaphore

Post [0] semaphore
Wait [1] semaphore
Trywait [0] semaphore
Trywait [1] semaphore

Peek semaphore
Destroy semaphore
Post/Wait semaphore

Create counter
Get counter value
Set counter value

% Tick counter
% Delete counter

Create alarm
Initialize alarm
Disable alarm
Enable alarm
Delete alarm
Tick
Tick
Tick
Tick
Tick
Alarm

counter [1 alarm]

counter [many alarms]
& fire counter [1 alarm]

[>1 together]
[>1 separately]
[0 threads]

[2 threads]

[many threads]

& fire counters
& fire counters
latency
Alarm latency
Alarm latency
Alarm —> thread resume latency
Clock/interrupt latency

Clock DSR latency

Thread stack used (1120 total)
752 size 2400
288 size 4096
276 size 2048

Appendix B. Real-time characterization

CPU : Cirrus Logic EP7212 73MHz

Board: Cirrus Logic EDB7111-2 Development Board

CPU : Cirrus Logic EP7212 73MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ’'ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 356.32 microseconds (182 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
22.43 15.63 33.20 3.02 68% 18% Create thread
4.48 3.91 5.86 0.81 70% 70% Yield thread [all suspended]
4.42 3.91 7.81 0.78 75% 75% Suspend [suspended] thread
4.12 1.95 5.86 0.49 82% 3% Resume thread
5.62 3.91 11.72 0.64 78% 18% Set priority
2.17 1.95 3.91 0.38 89% 89% Get priority
11.54 9.77 27.34 0.88 70% 25% Kill [suspended] thread
4.64 3.91 9.77 0.96 65% 65% Yield [no other] thread
7.51 5.86 15.63 0.72 76% 21% Resume [suspended low prio] thread
3.88 1.95 9.77 0.42 82% 10% Resume [runnable low prio] thread
7.14 5.86 13.67 1.00 59% 39% Suspend [runnable] thread
4.52 3.91 7.81 0.86 70% 70% Yield [only low prio] thread
4.15 1.95 7.81 0.49 85% 1% Suspend [runnable->not runnable]
11.26 9.77 27.34 1.17 56% 39% Kill [runnable] thread
6.22 3.91 13.67 0.88 70% 7% Destroy [dead] thread
13.64 11.72 33.20 1.02 64% 26% Destroy [runnable] thread
24.17 21.48 41.02 1.49 82% 12% Resume [high priority] thread
8.80 7.81 21.48 1.08 98% 54% Thread switch
1.60 0.00 1.95 0.58 % 17% Scheduler lock
2.61 1.95 3.91 0.87 66% 66% Scheduler unlock [0 threads]

191

Appendix B. Real-time characterization

2.59 1.95 3.
2.61 1.95 3
2.59 1.95 3
2.62 1.95 3
4.82 3.91 9
4.39 3.91 9
3.84 1.95 7
3.54 1.95 5
1.83 0.00 3
34.61 31.25 46
3.97 1.95 7
1.83 0.00 3
4.76 3.91 9
1.71 0.00 3
5.00 3.91 9
1.65 0.00 1
5.31 3.91 11
5.13 3.91 7
4.76 3.91 11
4.46 3.91 7
5.55 3.91 9
4.03 1.95 7
4.27 3.91 5
1.77 0.00 3
1.59 0.00 1
5.37 3.91 9
16.66 13.67 27
2.62 1.95 5
3.84 1.95 7
4.21 3.91 7
3.48 1.95 5
3.60 1.95 5
2.26 1.95 5
1.89 0.00 1
16.05 13.67 29
2.38 1.95 3
2.01 0.00 3
1.89 0.00 3
4.58 3.91 5
1.71 0.00 1
3.84 1.95 7.
7.99 5.86 15.
2.01 0.00 3.
6.53 5.86 13.
2.32 1.95 3.
4.76 3.91 7.
19.53 17.58 23.
7.57 5.86 13.
98.57 97.66 105.
22.15 21.48 27.

192

91

.91
.91

.91
77
77
.81
.86
.91
.88

.81
.91
L7
.91
.77
.95
.72
.81
.72
.81
77
.81
.86
.91
.95
77
.34

.86
.81
.81
.86
.86
.86
.95
.30

.91
.91
.91
.86
.95

81
63
91
67
91
81
44
67
47
34

o

P O O OO O O oOkr OFr OF OF OO P O O O O O

o O O O O R O O O O O O O

O OO OFr O o O

.86
.87
.86

.88
.09
.79
.36
.69
.34
.68

.24
.34
.07
.64
.10
.52
.05
.99
.12
.82
.82
.58
.59
.44
.60
.91
.42

.92
.47
.53
.76
.62
.53
.12
.40

.67
.35
.24
.88
.43

.36
.47
.35
.01
.59
.01
.24
.75
.14
.96

65%
96%
81l%
87%
75%
87%
78%

93%
87%
62%
75%
96%
84%
59%
56%
96%
75%
68%
78%
81%
84%
81%
65%
90%

68%
81%
87%
71%
78%
87%
96%
59%

78%
84%
90%
65%
87%

87%
93%
84%
75%
81%
59%
90%
75%
96%
71%

68%
12%
87%
25%
18%
87%

3%
18%

3 Trylock

% Tick

5 Tick

Scheduler unlock [1 suspended]

Scheduler unlock [many suspended]

Scheduler unlock [many low prio]

% Init mutex

Lock
Unlock
Trylock

[unlocked]
[locked]
[unlocked]

mutex
mutex
mutex
[locked] mutex

s Destroy mutex

Unlock/Lock mutex

Create mbox
Peek [empty]
Put [first]
Peek [1 msg]
Put
Peek
Get
Get
Tryput

mbox
mbox
mbox
[second] mbox
[2 msgs] mbox
[first]
[second] mbox
[first]
Peek item

mbox

mbox

[non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty]
Tryget [empty] mbox

Waiting to get mbox

mbox

Waiting to put mbox
Delete mbox
Put/Get mbox

Init semaphore
Post [0]
Wait [1]
Trywait [0]

semaphore
semaphore
semaphore
Trywait [1] semaphore
Peek semaphore
Destroy semaphore

Post/Wait semaphore

s Create counter

> Get counter value
% Set counter value
¥ Tick counter

Delete counter

Create alarm
Initialize alarm
Disable alarm
Enable alarm
Delete alarm
Tick

counter [1 alarm]

counter [many alarms]

Tick & fire counter [l alarm]
[>1 together]

[>1 separately]

& fire counters

Tick & fire counters

eCos Kernel Timings

Notes: all times are in microseconds

Reading the hardware clock takes 6 "ticks’

(.000001)

Appendix B. Real-time characterization

359.18 357.42 384.77 1.10 65% 31% Alarm latency [0 threads]
362.63 357.42 396.48 2.55 43% 27% Alarm latency [2 threads]
408.22 402.34 416.02 2.73 55% 21% Alarm latency [many threads]
378.63 375.00 494.14 2.56 93% 71% Alarm -> thread resume latency
9.78 5.86 19.53 0.00 Clock/interrupt latency
12.21 5.86 31.25 0.00 Clock DSR latency
12 0 316 (main stack: 752) Thread stack used (1120 total)
All done, main stack stack used 752 size 2400
All done Interrupt stack used 288 size 4096
All done Idlethread stack used 276 size 2048
Timing complete - 30550 ms total
PASS:<Basic timing OK>
EXIT:<done>
Board: ARM PID Evaluation Board
CPU : ARM 7TDMI 20 MHz
Board: ARM PID Evaluation Board
CPU : ARM 7TDMI 20 MHz
Startup, main stack stack used 404 size 2400
Startup Interrupt stack used 136 size 4096
Startup Idlethread stack used 84 size 2048

unless otherwise stated

overhead

this value will be factored out of all other measurements

Clock interrupt took 120.74 microseconds

Testing parameters:

Clock samples: 32
Threads: 50
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128

(150 raw clock ticks)

193

Appendix B. Real-time characterization

Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
99.01 68.00 129.60 5.62 50% 26% Create thread
21.60 21.60 21.60 0.00 100% 100% Yield thread [all suspended]
15.65 15.20 16.00 0.39 56% 44% Suspend [suspended] thread
15.79 15.20 16.00 0.31 74% 26% Resume thread
23.65 23.20 24.00 0.39 56% 44% Set priority
2.26 1.60 2.40 0.24 82% 18% Get priority
51.39 51.20 52.00 0.29 76% 76% Kill [suspended] thread
21.60 21.60 21.60 0.00 100% 100% Yield [no other] thread
29.47 28.00 29.60 0.22 86% 2% Resume [suspended low prio] thread
15.60 15.20 16.00 0.40 100% 50% Resume [runnable low prio] thread
27.73 24.00 28.00 0.40 74% 2% Suspend [runnable] thread
21.60 21.60 21.60 0.00 100% 100% Yield [only low prio] thread
15.65 15.20 16.00 0.39 56% 44% Suspend [runnable->not runnable]
51.39 51.20 52.00 0.29 76% 76% Kill [runnable] thread
27.66 27.20 28.80 0.41 54% 44% Destroy [dead] thread
68.93 64.80 69.60 0.35 2% 2% Destroy [runnable] thread
91.26 90.40 107.20 0.64 66% 32% Resume [high priority] thread
49.14 48.80 49.60 0.39 57% 57% Thread switch
2.20 1.60 2.40 0.30 75% 25% Scheduler lock
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [0 threads]
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [1 suspended]
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [many suspended]
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [many low prio]
6.85 6.40 7.20 0.39 56% 43% Init mutex
18.40 18.40 18.40 0.00 100% 100% Lock [unlocked] mutex
19.57 19.20 20.00 0.40 53% 53% Unlock [locked] mutex
16.55 16.00 16.80 0.34 68% 31% Trylock [unlocked] mutex
14.55 14.40 15.20 0.24 81% 81% Trylock [locked] mutex
3.55 3.20 4.00 0.39 56% 56% Destroy mutex
119.85 119.20 120.00 0.24 81% 18% Unlock/Lock mutex
12.85 12.80 13.60 0.09 93% 93% Create mbox
1.65 1.60 2.40 0.09 93% 93% Peek [empty] mbox
20.70 20.00 20.80 0.17 87% 12% Put [first] mbox
1.65 1.60 2.40 0.09 93% 93% Peek [1 msg] mbox
20.70 20.00 20.80 0.17 87% 12% Put [second] mbox
1.65 1.60 2.40 0.09 93% 93% Peek [2 msgs] mbox
20.85 20.80 21.60 0.09 93% 93% Get [first] mbox
20.85 20.80 21.60 0.09 93% 93% Get [second] mbox
19.90 19.20 20.00 0.17 87% 12% Tryput [first] mbox
17.60 17.60 17.60 0.00 100% 100% Peek item [non-empty] mbox
20.90 20.80 21.60 0.17 87% 87% Tryget [non-empty] mbox
16.80 16.80 16.80 0.00 100% 100% Peek item [empty] mbox
17.65 17.60 18.40 0.09 93% 93% Tryget [empty] mbox
1.85 1.60 2.40 0.34 68% 68% Waiting to get mbox
1.85 1.60 2.40 0.34 68% 68% Waiting to put mbox

194

19.
65.

14

40
05

.05
15.
17.

55
35

.60
14.
.55
.75
70.

20

85

.05
.25

2.25

22.

38.

297

All done,

.70
.45

.05
.60
.15
.35
.10
.20
138.

40.
704.
155.
105.
117.
117.
192.

00
40
25
20
20
57
49
59

10

69

All done
All done

19.
64.

14

20
80

.40
15.
l6.
.40
13.
.00
.20
70.

20
80

60

40

5.60

.60

1.60

21.

32.

276

.20
.20

.80
.60
.60
.80
.80
.20
137.

40.
697.
155.
104.
104.
104.
177.

60
00
60
20
80
80
80
60

60

80

20.00 0.30 % 75%
65.60 0.34 68% 68%
7.20 0.24 81% 18%
16.00 0.39 56% 56%
17.60 0.34 68% 31%
15.20 0.30 75% 75%
14.40 0.30 75% 25%
4.80 0.34 68% 31%
4.00 0.34 68% 31%
71.20 0.39 56% 43%
6.40 0.39 56% 43%
2.40 0.24 81% 18%
2.40 0.24 81% 18%
20.00 0.37 62% 37%
4.00 0.34 68% 68%
9.60 0.34 68% 68%
29.60 0.00 100% 100%
2.40 0.34 68% 31%
29.60 0.34 68% 31%
5.60 0.37 62% 62%
23.20 0.00 100% 100%
138.40 0.40 100% 50%
40.80 0.40 100% 50%
804.00 12.47 93% 93%
155.20 0.00 100% 100%
151.20 0.76 99% 94%
149.60 7.13 57% 25%
148.80 7.10 58% 26%
316.00 1.93 98% %
24.00 0.00
61.60 0.00
316 (main stack: 752)

main stack

stack used
Interrupt stack used
Idlethread stack used

Timing complete - 30350 ms total

PASS:<Basic timing OK>
EXIT:<done>

Appendix B. Real-time characterization

5% Delete mbox
% Put/Get mbox

Init semaphore

Post [0] semaphore
Wait [1] semaphore
Trywait [0] semaphore
Trywait [1] semaphore

Peek semaphore
Destroy semaphore
Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Create alarm
Initialize alarm
Disable alarm
Enable alarm
Delete alarm
Tick
Tick
Tick
Tick
Tick
Alarm

counter
counter
& fire counter
& fire counters
& fire counters
latency
Alarm latency
Alarm latency

Alarm

[1 alarm]
[many alarms]
[1 alarm]

[>1 together]
[>]1 separately]

[0 threads]

[2 threads]
[many threads]
—> thread resume latency

Clock/interrupt latency

Clock DSR latency

Thread stack used
752 size 2400
288 size 4096
272 size 2048

(1120 total)

195

Appendix B. Real-time characterization

CPU : ARM 920T 20 MHz

Board: ARM PID Evaluation Board

CPU : ARM 920T 20 MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 15 ’ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 291.41 microseconds (364 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 50
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function

257.78 168.00 568.00 48.70 56% 28% Create thread

50.21 49.60 50.40 0.29 76% 24% Yield thread [all suspended]
36.26 36.00 36.80 0.35 68% 68% Suspend [suspended] thread
37.20 36.80 37.60 0.40 100% 50% Resume thread

56.24 56.00 56.80 0.34 70% 70% Set priority

5.20 4.80 5.60 0.40 100% 50% Get priority
122.75 122.40 123.20 0.39 56% 56% Kill [suspended] thread

50.19 49.60 50.40 0.31 74% 26% Yield [no other] thread

69.49 66.40 69.60 0.21 92% 2% Resume [suspended low prio]
37.01 36.80 37.60 0.31 74% 74% Resume [runnable low prio]
64.75 55.20 65.60 0.38 80% 2% Suspend [runnable] thread
50.19 49.60 50.40 0.31 74% 26% Yield [only low prio] thread
36.24 36.00 36.80 0.34 70% 70% Suspend [runnable->not runnable]
122.75 122.40 123.20 0.39 56% 56% Kill [runnable] thread

67.76 67.20 68.00 0.34 70% 30% Destroy [dead] thread
167.07 158.40 168.00 0.35 92% 2% Destroy [runnable] thread
213.49 212.00 249.60 1.46 84% 90% Resume [high priority] thread
122.81 120.00 389.60 4.17 99% 99% Thread switch

4.70 4.00 4.80 0.17 87% 12% Scheduler lock

23.70 23.20 24.00 0.37 62% 37% Scheduler unlock [0 threads]
23.60 23.20 24.00 0.40 100% 50% Scheduler unlock [l suspended]

196

23.
23.

15.

42.

45.

39.

34.

284.

29.

49.

49.

49.

49.
47.

41

49.
40.
40.

45.
153.

l6.
36.
39.
34.
33.
10.

166.

70
60

65
40
37
20
45
.00
42

40
.35
35
.35
35
.35
15
15
80
.40
40
15
95
.05
.05
60
27

80
60
60
80
35
30
.80
92

.60

4.85
4.80

.25

7.75

20.
69.

67.
11.
54.

372
95

1757.

404
256

80
30
.80
35
80
80
.35
.50
92
.37
.57

23.
23.

15.
42.
44,
39.
34.

284.

28.

48.

48.

48.
48.
47.
40.
48.
40.
40.

45.
152.

20
20

20
40
80
20
40
.00
00

80
.20
80
.20
80
.20
80
80
20
80
80
00
80
.00
.00
60
80

.80
.00
.20
.40
.80
.60
.80
.40

.60
.80

4.80

.80

7.20

20.
68.

67.
11.
54.

363
95
1707
404
254

80
80
.80
20
20
40
.20
.20
.20
.00
.40

24

16.
42.
46.
39.
35.
.00
284.

29.
.00
49.
.00
49.
.00
49.
49.
48.
.60
49.
40.
.60
.80
.80

45.
153.

41

41

16.
36.
40.
35.
33.
10.
.80
167.

20.
69.
.80
68.
12.
55.
652.
96.
1996.
404.
395.

.00
24.

00

00
40
40
20
20

80

60

60

60

60

60

00

60
80

60
60

80
80
00
20
60
40

20

.60
.60
.80
.60
.00

80
60

00
00
20
80
00
80
80
20

o

O O O O O O O O O O O O O O O O O O O o o o o o o O O O O O O O

o O O O O

=

o)
N O O J O O O O O O

.37
.40

.39
.00
.36
.00
.09
.00
.40

.30
.24
.34
.24
.34
.24
.39
.39
.30
.30
.30
.24
.24
.09
.09
.00
.39

.00
.30
.40
.40
.34
.17
.00
.36

.00
.09
.00
.39
.34

.00
.37
.00
.24
.30
.40
.53
.37
.43
.40
.17

62%
100%

56%
100%
65%
100%
93%
100%
53%

75%
81%
68%
81%
68%
81%
56%
56%
75%
75%
75%
81%
81%
93%
93%
100%
59%

100%
75%
100%
100%
68%
87%
100%
65%

100%
93%
100%
56%
68%

100%
62%
100%
81%
75%
100%
96%
62%
81%
53%
98%

43%
100%
31%
100%
93%
100%
46%

25%
81%
31%
81%
31%
81%
56%
56%
25%
25%
25%
81%
81%
93%
93%
100%
40%

100%
25%
50%
50%
31%
12%

100%
34%

100%
93%
100%
43%
31%

100%
37%
100%
81%
25%
50%
96%
62%
81%
53%
97%

Appendix B. Real-time characterization

Scheduler unlock [many suspended]
Scheduler unlock [many low prio]

Init mutex

Lock [unlocked] mutex
Unlock [locked] mutex
Trylock [unlocked] mutex
Trylock [locked] mutex
Destroy mutex
Unlock/Lock mutex

Create mbox

Peek [empty] mbox

Put [first] mbox

Peek [l msg] mbox

Put [second] mbox

Peek [2 msgs] mbox

Get [first] mbox

Get [second] mbox
Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

Init semaphore

Post [0] semaphore
Wait [1] semaphore
Trywait [0] semaphore
Trywait [1] semaphore
Peek semaphore
Destroy semaphore
Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Create alarm

Initialize alarm

Disable alarm

Enable alarm

Delete alarm

Tick counter [l alarm]

Tick counter [many alarms]

Tick & fire counter [l alarm]

Tick & fire counters [>1 together]
Tick & fire counters [>1 separately]
Alarm latency [0 threads]

197

Appendix B. Real-time characterization

296.60 255.20 359.20 23.53 53% 31% Alarm latency [2 threads]
307.49 265.60 357.60 27.52 53% 053% Alarm latency [many threads]

467.04 432.00 788.80 5.03 97% 1% Alarm -> thread resume latency
55.63 54.40 60.80 0.00 Clock/interrupt latency
101.23 80.80 1433.60 0.00 Clock DSR latency
316 316 316 (main stack: 752) Thread stack used (1120 total)
All done, main stack : stack used 752 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 272 size 2048

Timing complete - 30780 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: Intel IQ80310 XScale Development Kit

Board: Intel IQ80310 XScale Development Kit

CPU: Intel XScale 600MHz

Startup, main stack : stack used 388 size 2400
Startup : Interrupt stack used 148 size 4096
Startup : Idlethread stack used 76 size 1120

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 73 ’ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 12.11 microseconds (399 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function

198

Appendix B. Real-time characterization

O W H OF OO OO0 O0OOoOF O OoOOOoOOoOoOOoOOoO

o O O O O

N OO O O O O

P O O O O O O O O O O O O o o o o

(@)

.53
.37
.24
.25
.36
.03
.07
.33
.55
.28
.43
.31
.21
.00
.59
.43
.12
.87

.15
.16
.16
.16
.16

.45
.43
.48
.35
.26
.21
.58

.99
.04
.47
.02
.29
.02
.48
.35
.50
.39
.43
.28
.28
.01
.05
.42
.39

.35
.19
.25

O N OO O O OO OO 0O oo oo o wum

o O O O O

N O O O O o O

P O O O O O O O O O O O o o o o o

o

.48
.03
.00
.00
.09
.00
.52
.06
.03
.00
.00
.00
.00
.88
.42
.27
.58
.36

.00
.00
.00
.00
.00

.00
.18
.09
.21
.00
.00
.09

.21
.00
.27
.00
.15
.00
.21
.09
.21
.15
.18
.03
.21
.00
.00
.09
.27

.00
.00
.21

R OO F Wk ORF PP REPE OOHDOOON W o

o O O O

W FE ON W W

NN OO OO WE WO WwWwoO o o wo N

fa

.55
.24
.06
.73
.82
.42
.39
.91
.06
.79
.00
.24
.42
.45
.97
.94
.09
.39

.39
.64
.64
.70
.64

.39
.27
.88
.24
.67
.27
.09

.48
.39
.48
.39
.58
.45
.67
.82
.18
.39
.33
.79
.58
.36
.45
.88
.39

.36

0.45

.88

O O O O O O O O O O O O O o o o o o

o O O O O

O O O O O O O

O O O O O O O O O O O O o o o o o

(@)

.50
.18
.12
.06
.10
.05
.18
.08
.09
.11
.12
.09
.04
.04
.13
.07
.33
.07

.21
.08
.08
.08
.07

.34
.23
.26
.21
.13
.24
.13

.41
.07
.29
.03
.04
.04
.26
.11
.33
.19
.23
.06
.05
.02
.09
.20
.14

.45
.04
.06

53%
87%
87%
71%
89%
90%
92%
78%
85%
84%
76%
82%
73%
78%
81%
78%
56%
86%

81%
85%
75%
78%
81%

56%
87%
84%
87%
78%
78%
75%

65%
90%
90%
90%
68%
93%
84%
75%
90%
78%
87%
68%
71%
96%
87%
84%
87%

o\

o° oe

46%
87%
71%
84%

9%
75%

28%
87%
78%
90%

o
)

93%
87%

)
)

68%
68%
90%

3%
65%
90%
84%
12%
87%

3 Create thread

% Yield thread [all suspended]
% Suspend [suspended] thread
% Resume thread

% Set priority

3 Get priority

% Kill [suspended] thread

% Yield [no other] thread

% Resume [suspended low prio]
% Resume [runnable low prio] thread
5 Suspend [runnable] thread

% Yield [only low prio] thread
% Suspend [runnable->not runnable]
¥ Kill [runnable] thread

3 Destroy [dead] thread

% Destroy [runnable] thread
3 Resume [high priority] thread

Thread switch

5 Scheduler lock

% Scheduler unlock
% Scheduler unlock
% Scheduler unlock

[0 threads]

[

[

Scheduler unlock [

Init mutex

Lock [unlocked] mutex
Unlock [locked] mutex
Trylock [unlocked] mutex
Trylock [locked] mutex
Destroy mutex
Unlock/Lock mutex

Create mbox

Peek [empty] mbox

Put [first] mbox

Peek [1 msg] mbox

Put [second] mbox

Peek [2 msgs] mbox

Get [first] mbox

Get [second] mbox
Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

Init semaphore

% Post [0] semaphore

Wait [1] semaphore

1 suspended]
many suspended]
many low prio]

199

Appendix B. Real-time characterization

.32
.20
.07
.06
.45

= O O O O
R O O O O

.70
.05
.02
.38
.03

o O O O O
o O O O O

.10
.58
.04
.54
.03
.50
.30
.82
.13
.56
.69
.98
.38
.72

[
P O W W U b O Ul OO O O O

=
H O 0w WU wWwou OO o o o o

=
-

1.87

=

3.02 2.

9 0

.06
.00
.00
.00
.42

.00
.00
.00
.12
.00

.39
.03
.00
.36
.00
.24
.12
.64
.85
.45
.45
.48
.48
.30

.82

58

R O O O

O O O O N

S = 01O O O W b

NN e =
PN DN O

=
o

260

All done, main stack

All done
All done

.79
.52
.45
.52
.79

.88
.42
.45
.58
.48

.30
.12
.42
.36
.70
.97
.97
.36
.55
.00
.52
.76
.67
.33

.42

.67

0.21 78% 68%
0.06 62% 3%
0.10 84% 81%
0.06 % 8%
0.04 $ 87%
0.47 43% 34%
0.09 87% 84%
0.04 93% 93%
0.06 59% 3%
0.05 93% 78%
0.47 62% 53%
0.18 87% 3%
0.07 90% 90%
0.12 84%
0.06 84% 84%
0.08 84% 6%
0.14 84% 75%
0.11 78% 43%
0.09 78% 3%
0.09 78% 71
0.22 64% 71
0.23 69% 14
0.59 74%
0.32 81% 58%
0.00
0.00

(main stack: 776)

stack used

Interrupt stack used
Idlethread stack used

Timing complete - 30300 ms total

PASS:<Basic timing OK>

EXIT:<done>

Trywait [0] semaphore

Peek semaphore
Destroy semaphore

Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Create alarm
Initialize alarm
Disable alarm

% Enable alarm

Delete alarm

% Trywait [1l] semaphore

Tick counter [1 alarm]

Tick counter [many alarms]

Tick & fire counter
Tick & fire counters
% Tick & fire counters

Alarm

[1 alarm]
[>1 together]
[>1 separately]

% Alarm latency [0 threads]

% Alarm latency [2 threads]

5% Alarm latency [many threads]
—> thread resume latency

Clock/interrupt latency

Clock DSR latency

Thread stack used
776 size 2400
268 size 4096
244 size 1120

Board: Toshiba JMR3904 Evaluation Board

Board: Toshiba JMR3904 Evaluation Board

CPU : TMPR3904F 50MHz

eCOS Kernel Timings

Note: all times are in microseconds (.000001

200

(1120 total)

) unless otherwise stated

Reading the hardware clock takes 0

"ticks’

Appendix B. Real-time characterization

overhead

this value will be factored out of all other measurements

Clock interrupt took

Testing parameters:

29.68 microseconds (

45 raw clock ticks)

Yield thread [all suspended]
Suspend [suspended] thread

Kill [suspended] thread

Yield [no other] thread

Resume [suspended low prio] thread
Resume [runnable low prio] thread
Suspend [runnable] thread

Yield [only low prio] thread
Suspend [runnable->not runnable]
Kill [runnable] thread

Resume [high priority] thread

Scheduler lock
Scheduler unlock [0 threads]
Scheduler unlock [1 suspended]

Scheduler unlock [many suspended]

[
[
[
Scheduler unlock [many low prio]

Lock [unlocked] mutex
Unlock [locked] mutex

% Trylock [unlocked] mutex

Trylock [locked] mutex

Unlock/Lock mutex

Peek [empty] mbox
Put [first] mbox

Clock samples: 32
Threads: 24
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
13.62 11.72 27.99 1.51 79% 54% Create thread
2.77 2.60 3.91 0.26 79% 79%
3.31 2.60 6.51 0.27 83% 12%
2.58 1.95 7.81 0.47 58% 37% Resume thread
4.94 4.56 11.07 0.60 95% 79% Set priority
0.71 0.65 1.95 0.10 95% 95% Get priority
14.97 14.32 25.39 0.87 95% 95%
2.25 1.95 9.11 0.57 95% 95%
7.27 6.51 12.37 0.42 79% 16%
2.28 1.95 7.16 0.51 95% 79%
4.31 3.26 12.37 0.75 87% 79%
2.17 1.95 7.16 0.42 95% 95%
2.39 1.95 6.51 0.51 95% 58%
13.43 12.37 22.79 0.80 91% 91%
22.30 20.83 37.76 1.76 91% 91%
4.62 4.56 11.07 0.13 98% 98% Thread switch
1.51 1.30 2.60 0.29 68% 68%
2.36 1.95 3.26 0.31 61% 37%
2.39 1.95 5.21 0.32 62% 36%
2.38 1.95 4.56 0.32 61% 37%
2.38 1.95 5.21 0.32 61% 37%
0.90 0.65 3.26 0.35 71% 71% Init mutex
2.48 1.95 8.46 0.50 50% 46%
2.83 2.60 9.11 0.42 93% 93%
2.30 1.95 6.51 0.45 96% 65%
1.99 1.30 5.86 0.24 84% 12%
0.04 0.00 1.30 0.08 96% 96% Destroy mutex
42.40 42 .32 44 .92 0.16 96% 96%
1.44 1.30 5.86 0.28 96% 96% Create mbox
0.51 0.00 1.30 0.25 71% 25%
2.93 2.60 9.11 0.51 96% 78%
0.51 0.00 1.30 0.25 71% 25%

Peek [l msg] mbox

201

Appendix B. Real-time characterization

202

4.19 3.91 5.21 0.34
0.45 0.00 0.65 0.28
3.28 2.60 10.42 0.45
3.34 2.60 9.77 0.40
2.69 1.95 9.11 0.40
2.75 1.95 7.81 0.32
3.15 2.60 9.11 0.48
2.22 1.95 6.51 0.41
2.40 1.95 5.86 0.42
0.47 0.00 0.65 0.26
0.59 0.00 1.30 0.15
4.01 3.26 10.42 0.40
26.18 26.04 30.60 0.28
0.92 0.65 3.91 0.38
2.24 1.95 6.51 0.43
2.32 1.95 7.16 0.48
2.03 1.30 5.86 0.24
1.91 1.30 4.56 0.23
0.77 0.00 1.95 0.30
0.61 0.00 1.95 0.15
22.62 22.14 30.60 0.61
0.92 0.65 3.91 0.38
0.69 0.65 1.95 0.08
0.41 0.00 1.30 0.33
3.21 2.60 5.86 0.27
0.65 0.00 3.26 0.16
1.57 1.30 4.56 0.38
4.52 3.91 13.02 0.57
0.61 0.00 1.95 0.15
4.43 3.91 9.11 0.43
0.87 0.65 2.60 0.32
2.93 2.60 6.51 0.43
14.83 14.32 22.79 0.60
4.88 4.56 11.07 0.51
83.25 82.03 102.86 1.23
17.58 16.93 27.34 0.61
26.18 24.74 40.36 0.30
33.88 29.30 56.64 1.70
36.37 29.30 61.20 3.25
7.85 6.51 14.97 0.00

Timing complete - 23540 ms total

PASS:<Basic timing OK>
EXIT:<done>

59%
68%
65%
78%
78%
93%
53%
96%
50%
71%
84%
81%
96%

71%
96%
96%
90%
78%
65%
84%
96%

71%
96%
56%
71%
84%

71%
50%
84%
56%
71%
96%
96%
96%
96%
50%
97%
85%
53%

59%
31%
31%
18%
18%

3%
43%
78%
46%
28%
12%
15%
96%

Put [second] mbox
Peek [2 msgs] mbox
Get [first] mbox

Get [second] mbox

Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-empty] mbox

Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

% Init semaphore

Post [0] semaphore

% Wait [1] semaphore

% Trywait [0] semaphore
> Trywait [1] semaphore
% Peek semaphore

3 Destroy semaphore

Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Create alarm

Initialize alarm

Disable alarm

Enable alarm

Delete alarm

Tick counter [l alarm]

Tick counter [many alarms]

Tick & fire counter [1 alarm]

Tick & fire counters [>1 together]
Tick & fire counters [>1 separately]
Alarm latency [0 threads]

Alarm latency [2 threads]

Alarm latency [many threads]

Clock/interrupt latency

Appendix B. Real-time characterization

Board: Toshiba REF 4955

Board: Toshiba REF 4955

CPU : Toshiba TX4955 66MHz

Startup, main stack : stack used 960 size 2936
Startup : Interrupt stack used 168 size 4096
Startup : Idlethread stack used 372 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 ‘ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 4.00 microseconds (264 raw clock ticks)

Testing parameters:

Clock samples: 32

Threads: 64

Thread switches: 128

Mutexes: 32

Mailboxes: 32

Semaphores: 32

Scheduler operations: 128

Counters: 32

Alarms: 32

Confidence

Ave Min Max Var Ave Min Function

11.21 9.58 14.11 0.95 48% 34% Create thread
0.66 0.65 1.29 0.02 98% 98% Yield thread [all suspended]
0.63 0.53 3.06 0.17 82% 82% Suspend [suspended] thread
0.54 0.53 1.06 0.02 98% 98% Resume thread
0.78 0.74 1.39 0.05 93% 93% Set priority
0.05 0.05 0.36 0.01 98% 98% Get priority

2.06 1.89 6.65 0.25 95% 79% Kill [suspended] thread
0.65 0.65 0.68 0.00 98% 98% Yield [no other] thread
1.15 1.02 3.03 0.20 81% 81% Resume [suspended low prio] thread
0.54 0.52 1.18 0.03 96% 96% Resume [runnable low prio] thread
0.94 0.88 1.27 0.01 95% 1% Suspend [runnable] thread
0.65 0.65 0.68 0.00 98% 98% Yield [only low prio] thread
0.54 0.53 0.86 0.01 98% 96% Suspend [runnable->not runnable]
1.97 1.89 2.98 0.12 84% 84% Kill [runnable] thread
1.03 0.92 4.94 0.17 89% 89% Destroy [dead] thread

2.55 2.33 4.38 0.24 89% 70% Destroy [runnable] thread
5.62 4.11 13.23 0.99 65% 40% Resume [high priority] thread
1.84 1.83 2.79 0.02 98% 98% Thread switch
0.12 0.02 0.65 0.15 74% 74% Scheduler lock
0.35 0.35 0.35 0.00 100% 100% Scheduler unlock [0 threads]
0.35 0.35 0.35 0.00 100% 100% Scheduler unlock [l suspended]
0.43 0.35 1.17 0.13 78% 78% Scheduler unlock [many suspended]

203

Appendix B. Real-time characterization

0.45 0.35 1.17 0.15 75% 75% Scheduler unlock [many low prio]
0.46 0.15 3.38 0.30 62% 50% Init mutex

0.73 0.64 3.27 0.16 96% 96% Lock [unlocked] mutex

0.77 0.65 4.50 0.23 96% 96% Unlock [locked] mutex

0.58 0.55 1.42 0.05 96% 96% Trylock [unlocked] mutex
0.51 0.50 0.83 0.02 96% 96% Trylock [locked] mutex
0.12 0.11 0.41 0.02 96% 96% Destroy mutex

4.72 4.70 5.58 0.05 96% 96% Unlock/Lock mutex

1.01 0.67 3.48 0.40 71% 71% Create mbox

0.02 0.00 0.53 0.03 96% 96% Peek [empty] mbox

0.89 0.68 4.20 0.29 96% 71% Put [first] mbox

0.02 0.00 0.33 0.02 96% 96% Peek [1 msg] mbox

0.69 0.68 0.76 0.01 50% 46% Put [second] mbox

0.02 0.00 0.30 0.02 96% 96% Peek [2 msgs] mbox

0.81 0.71 3.83 0.19 96% 96% Get [first] mbox

0.72 0.71 1.02 0.02 96% 96% Get [second] mbox

0.81 0.65 2.74 0.22 96% 71% Tryput [first] mbox

0.67 0.62 2.27 0.10 96% 96% Peek item [non-empty] mbox
0.77 0.71 2.41 0.10 96% 96% Tryget [non-empty] mbox
0.59 0.58 0.88 0.02 96% 96% Peek item [empty] mbox
0.62 0.62 0.67 0.00 96% 96% Tryget [empty] mbox

0.03 0.02 0.32 0.02 96% 96% Waiting to get mbox

0.02 0.02 0.06 0.01 50% 46% Waiting to put mbox

0.75 0.65 3.59 0.18 96% 96% Delete mbox

2.80 2.717 3.59 0.05 96% 96% Put/Get mbox

0.37 0.18 0.88 0.28 71% 71% Init semaphore

0.48 0.47 0.80 0.02 96% 96% Post [0] semaphore

0.60 0.59 0.67 0.01 50% 46% Wait [1] semaphore

0.53 0.50 1.41 0.06 96% 96% Trywait [0] semaphore

0.51 0.50 0.71 0.01 96% 50% Trywait [1] semaphore

0.09 0.09 0.15 0.00 96% 96% Peek semaphore

0.12 0.11 0.41 0.02 96% 96% Destroy semaphore

3.05 3.05 3.05 0.00 100% 100% Post/Wait semaphore

0.57 0.17 2.76 0.24 59% 25% Create counter

0.06 0.05 0.58 0.03 96% 96% Get counter value

0.06 0.03 0.64 0.04 96% 96% Set counter value

0.73 0.71 1.02 0.02 96% 96% Tick counter

0.12 0.11 0.15 0.01 50% 46% Delete counter

0.89 0.64 3.15 0.34 84% 71% Create alarm

1.00 0.95 2.41 0.09 96% 96% Initialize alarm

0.09 0.06 0.68 0.04 96% 96% Disable alarm

1.05 1.00 2.48 0.09 96% 96% Enable alarm

0.18 0.17 0.50 0.02 96% 96% Delete alarm

0.90 0.89 1.11 0.01 96% 96% Tick counter [1 alarm]
5.60 5.59 5.88 0.02 96% 96% Tick counter [many alarms]
1.53 1.52 2.11 0.04 96% 96% Tick & fire counter [1 alarm]
25.48 25.47 25.76 0.02 96% 96% Tick & fire counters [>1 together]
6.22 6.21 6.44 0.01 96% 96% Tick & fire counters [>1 separately]
2.59 2.56 6.17 0.07 98% 98% Alarm latency [0 threads]
4.06 3.95 6.24 0.08 78% 57% Alarm latency [2 threads]

204

Appendix B. Real-time characterization

5.03 2.56 9.03 0.89 59% 10% Alarm latency [many threads]
5.68 5.59 15.45 0.15 99% 99% Alarm —> thread resume latency
2.52 1.41 8.12 0.00 Clock/interrupt latency
2.05 1.17 6.00 0.00 Clock DSR latency
34 0 1072 (main stack: 1320) Thread stack used (1912 total)
All done, main stack : stack used 1320 size 2936
All done : Interrupt stack used 136 size 4096
All done : Idlethread stack used 996 size 2048

Timing complete - 30360 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: Matsushita STDEVAL1 Board

Board: Matsushita STDEVAL1l Board
CPU : MN103002A 60MHz

eCOS Kernel Timings
Note: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 18 ’ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 13.73 microseconds (205 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 24
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
14.36 11.53 23.53 1.81 54% 33% Create thread
2.64 2.53 5.07 0.20 95% 95% Yield thread [all suspended]
2.25 1.93 4.80 0.31 45% 83% Suspend [suspended] thread
2.19 2.00 4.93 0.28 91% 91% Resume thread
3.42 3.00 8.40 0.47 95% 87% Set priority

205

Appendix B. Real-time characterization

0.31 0.13 1.20
8.26 7.40 18.80
2.58 2.47 5.13
5.07 4.53 8.67
2.27 2.07 4.53
4.76 4.07 9.40
2.63 2.53 4.73
2.09 1.87 4.27
10.79 10.00 18.20
20.30 18.40 28.80
5.53 5.47 12.13
0.28 0.27 2.20
1.14 1.13 2.00
1.14 1.13 2.40
1.16 1.13 3.33
1.23 1.20 3.13
1.29 1.00 4.20
2.65 2.47 5.27
3.26 3.07 6.80
2.48 2.33 5.07
2.20 2.07 4.67
0.23 0.20 1.00
25.11 24.73 27.53
2.49 2.00 5.73
0.11 0.00 1.60
3.01 2.60 9.47
0.10 0.00 1.67
3.09 2.60 8.33
0.06 0.00 1.13
3.10 2.80 7.93
3.13 2.80 7.53
2.99 2.60 8.53
2.65 2.33 6.80
3.05 2.73 7.60
3.16 2.93 6.27
2.48 2.27 5.73
0.23 0.13 2.07
0.22 0.13 1.93
3.08 2.80 7.93
16.01 15.53 19.00
0.85 0.67 3.27
2.00 1.93 3.87
2.05 2.00 3.47
1.85 1.80 3.47
1.82 1.80 2.53
0.36 0.33 1.33
0.38 0.33 1.87
12.38 12.20 16.27
1.18 0.73 4.07
0.20 0.13 1.40

206

O OO O O O o o o o

o O O O O

O O O O O O O O O O o o o o o o o O O O O O O o

O O O O O O O o

o

.19
.93
.21
.44
.23
.65
.18
.27
.81
.42
.11

.03
.01
.02
.06
.05

.25
.23
.28
.21
.21
.05
.21

.32
.15
.52
.15
.50
.08
.40
.43
.52
.42
.42
.31
.30
.14
.13
.42
.52

.19
.12
.09
.10
.04
.06
.09
.30

.24
11

79%
95%
95%
62%
87%
66%
95%
91%
95%
79%
98%

97%
99%
99%
95%
95%

65%
93%
93%
90%
93%
96%
65%

81%
84%
96%
87%
93%
96%
93%
90%
93%
90%
93%
84%
84%
96%
96%
84%
78%

96%
96%
96%
96%
96%
96%
96%
93%

o°

o°

97%
99%
99%
95%
95%

50%
87%
87%
87%
87%
93%
31%

37%
81%
78%
81%
75%
87%
84%
78%
75%
78%
78%
84%
84%
87%
75%
84%
59%

50%
90%
96%
96%
96%
96%
96%
87%

% Resume
% Resume
% Suspend
% Yield
% Suspend
9% Kill

Get priority
Kill
Yield

thread
thread
[suspended low prio]

[suspended]
[no other]
thread
[runnable low prio] thread
thread

thread
[runnable->not runnable]
thread

Resume [high priority] thread
Thread switch

[runnable]
[only low prio]

[runnable]

Scheduler
Scheduler
Scheduler
Scheduler
Scheduler

lock
unlock [0 threads]
unlock [l suspended]

unlock [many suspended]

[

[

[
unlock [many low prio]
Init mutex
Lock [unlocked]
Unlock [locked] mutex
Trylock [unlocked]
[locked]
Destroy mutex

mutex

mutex
Trylock mutex
Unlock/Lock mutex

Create mbox
Peek [empty]
Put [first]
Peek [1 msg]
Put
Peek
Get
Get
Tryput

mbox
mbox
mbox
[second] mbox
[2 msgs] mbox
[first]
[second] mbox
[first]
Peek item

mbox

mbox
[non—-empty] mbox

Tryget [non-empty] mbox
[empty]
[empty] mbox

Waiting to get mbox

Peek item mbox

Tryget

Waiting to put mbox
Delete mbox
Put/Get mbox

Init semaphore
Post [0]
Wait [1]
Trywait [0]

semaphore
semaphore
semaphore
Trywait [1] semaphore
Peek semaphore
Destroy semaphore

Post/Wait semaphore

8% Create counter

% Get counter value

Appendix B. Real-time characterization

0.24 0.20 1.40 0.08 93% 93% Set counter value

3.17 3.13 4.20 0.07 93% 93% Tick counter

0.44 0.40 1.73 0.08 96% 96% Delete counter

2.24 1.67 5.13 0.47 68% 65% Create alarm

3.86 3.40 9.67 0.51 90% 78% Initialize alarm

0.15 0.07 1.60 0.12 96% 68% Disable alarm

3.76 3.47 7.67 0.35 93% 75% Enable alarm

0.57 0.47 2.73 0.16 96% 84% Delete alarm

3.64 3.60 4.73 0.07 96% 96% Tick counter [1 alarm]
21.72 21.67 23.27 0.10 96% 96% Tick counter [many alarms]

6.13 6.07 8.07 0.12 96% 96% Tick & fire counter [1 alarm]
101.40 99.53 132.73 2.75 93% 93% Tick & fire counters [>1 together]
24.21 24.13 26.40 0.14 96% 96% Tick & fire counters [>1 separately]
11.74 11.60 22.67 0.26 98% 98% Alarm latency [0 threads]

14.58 11.73 24.93 1.59 54% 28% Alarm latency [2 threads]

18.18 15.20 41.07 1.96 60% 43% Alarm latency [many threads]

3.06 2.13 10.33 0.00 Clock/interrupt latency

Timing complete - 23480 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: Fujitsu SPARCIlite Evaluation Board

Board: Fujitsu SPARClite Evaluation Board
CPU : Fujitsu SPARClite MB8683X 100MHz
eCOS Kernel Timings
Note: all times are in microseconds (.000001) unless otherwise stated
Reading the hardware clock takes 0 ’ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 17.19 microseconds (17 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 24
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

207

Appendix B. Real-time characterization

Confidence

Ave Min Max Var Ave Min Function
48.59 47.00 63.01 1.41 66% 70% Create thread

2.13 2.00 5.00 0.24 95% 95% Yield thread [all suspended]
2.92 2.00 10.00 0.69 58% 37% Suspend [suspended] thread

2.13 1.00 10.00 0.66 75% 20% Resume thread

2.79 2.00 11.00 0.86 95% 54% Set priority

1.00 0.00 5.00 0.33 79% 16% Get priority

7.17 5.00 34.00 2.24 95% 95% Kill [suspended] thread

2.42 2.00 12.00 0.80 95% 95% Yield [no other] thread

3.46 2.00 14.00 1.10 75% 83% Resume [suspended low prio] thread
2.00 1.00 9.00 0.58 66% 29% Resume [runnable low prio] thread
4.21 3.00 20.00 1.38 95% 91% Suspend [runnable] thread

2.33 2.00 10.00 0.64 95% 95% Yield [only low prio] thread
2.00 1.00 9.00 0.67 58% 33% Suspend [runnable->not runnable]
5.79 4.00 30.00 2.07 95% 95% Kill [runnable] thread
39.34 37.00 75.01 3.36 91% 91% Resume [high priority] thread
15.20 15.00 31.00 0.40 97% 97% Thread switch

1.04 1.00 4.00 0.08 97% 97% Scheduler lock

1.42 1.00 5.00 0.51 60% 60% Scheduler unlock [0 threads]
1.41 1.00 5.00 0.50 61% 61% Scheduler unlock [l suspended]
1.41 1.00 5.00 0.50 60% 60% Scheduler unlock [many suspended]
1.40 1.00 5.00 0.50 62% 62% Scheduler unlock [many low prio]
1.19 1.00 6.00 0.35 93% 93% Init mutex

2.34 2.00 12.00 0.64 93% 93% Lock [unlocked] mutex

3.41 3.00 13.00 0.71 96% 87% Unlock [locked] mutex

2.16 1.00 10.00 0.49 87% 9% Trylock [unlocked] mutex

1.78 1.00 7.00 0.59 59% 37% Trylock [locked] mutex

0.72 0.00 2.00 0.45 65% 31% Destroy mutex
25.25 24.00 41.00 0.98 71% 25% Unlock/Lock mutex

1.44 1.00 9.00 0.68 96% 78% Create mbox

0.94 0.00 3.00 0.23 84% 12% Peek [empty] mbox

3.06 2.00 13.00 0.62 71% 25% Put [first] mbox

0.69 0.00 3.00 0.52 59% 37% Peek [1 msg] mbox

2.44 2.00 10.00 0.68 96% 78% Put [second] mbox

0.78 0.00 3.00 0.44 68% 28% Peek [2 msgs] mbox

3.78 3.00 14.00 0.83 96% 53% Get [first] mbox

2.97 2.00 9.00 0.61 56% 31% Get [second] mbox

2.53 2.00 12.00 0.80 96% 75% Tryput [first] mbox

2.72 2.00 12.00 0.81 96% 56% Peek item [non-empty] mbox

2.63 2.00 13.00 0.94 90% 75% Tryget [non-empty] mbox

1.97 1.00 6.00 0.42 68% 21% Peek item [empty] mbox

2.09 1.00 9.00 0.49 78% 15% Tryget [empty] mbox

0.84 0.00 4.00 0.42 71% 25% Waiting to get mbox

0.81 0.00 4.00 0.46 68% 28% Waiting to put mbox

2.38 2.00 11.00 0.66 96% 87% Delete mbox
23.41 22.00 47.00 1.47 96% 96% Put/Get mbox

1.03 0.00 6.00 0.31 84% 12% Init semaphore

2.66 2.00 8.00 0.66 96% 50% Post [0] semaphore

208

Appendix B. Real-time characterization

1.97 1.00 10.00 0.55 68% 28% Wait [1] semaphore

1.78 1.00 8.00 0.63 56% 40% Trywait [0] semaphore

1.84 1.00 8.00 0.58 62% 34% Trywait [1] semaphore

1.00 0.00 5.00 0.25 84% 12% Peek semaphore

0.81 0.00 4.00 0.46 68% 28% Destroy semaphore

19.03 18.00 41.00 1.37 96% 96% Post/Wait semaphore

1.38 1.00 6.00 0.56 75% 75% Create counter

1.09 1.00 3.00 0.18 93% 93% Get counter value

1.00 0.00 5.00 0.31 78% 15% Set counter value

3.09 2.00 6.00 0.35 78% 9% Tick counter

0.91 0.00 5.00 0.40 75% 21% Delete counter

2.53 2.00 9.00 0.70 96% 65% Create alarm

6.03 5.00 22.00 1.00 50% 46% Initialize alarm

0.78 0.00 4.00 0.49 65% 31% Disable alarm

2.91 2.00 13.00 0.91 87% 50% Enable alarm

0.97 0.00 5.00 0.30 81% 15% Delete alarm

2.69 2.00 9.00 0.69 96% 50% Tick counter [1 alarm]

12.00 11.00 23.00 0.69 62% 34% Tick counter [many alarms]
4.16 3.00 13.00 0.55 84% 12% Tick & fire counter [1 alarm]
72.69 72.01 87.01 1.03 96% 96% Tick & fire counters [>1 together]
13.66 13.00 23.00 0.82 96% 62% Tick & fire counters [>1 separately]
13.26 13.00 42.00 0.51 98% 98% Alarm latency [0 threads]
16.75 11.00 53.01 2.78 64% 16% Alarm latency [2 threads]
24.06 18.00 58.01 3.55 67% 25% Alarm latency [many threads]
3.61 2.00 13.00 0.00 Clock/interrupt latency

Timing complete - 23590 ms total

PASS:<Basic timing OK>

EXIT:<done>

CPU MPC860,

eCOS Kernel Timings
Note:

Reading the hardware clock takes 0

all times are in microseconds

(PowerPC)

revision A3 33MHz

"ticks’

(.000001)

Evaluation

overhead

this value will be factored out of all other measurements

Clock interrupt took

Testing parameters:
Clock samples:
Threads:

14.46 microseconds

32
24

(30 raw clock ticks)

Board: Cogent CMA MPC860 (PowerPC) Evaluation

Board: Cogent CMA MPC860

unless otherwise stated

209

Appendix B. Real-time characterization

Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
26.78 23.52 41.76 1.97 66% 37% Create thread
4.00 3.84 4.80 0.23 70% 70% Yield thread [all suspended]
3.78 3.36 7.68 0.38 50% 45% Suspend [suspended] thread
3.56 3.36 7.68 0.37 95% 91% Resume thread
5.28 4.32 12.96 0.76 83% 66% Set priority
0.84 0.48 3.84 0.39 91% 54% Get priority
11.76 10.08 32.16 1.70 95% 95% Kill [suspended] thread
4.14 3.84 8.64 0.45 95% 75% Yield [no other] thread
7.14 5.76 17.76 1.07 79% 70% Resume [suspended low prio] thread
3.60 3.36 8.16 0.42 95% 87% Resume [runnable low prio] thread
6.10 5.28 14.88 0.80 62% 70% Suspend [runnable] thread
4.00 3.84 5.76 0.25 79% 79% Yield [only low prio] thread
3.66 3.36 8.64 0.47 95% 79% Suspend [runnable->not runnable]
11.66 10.08 30.24 1.58 79% 91% Kill [runnable] thread
31.12 27.84 53.28 2.35 87% 50% Resume [high priority] thread
7.52 7.20 15.84 0.30 50% 48% Thread switch
1.00 0.48 2.88 0.21 63% 14% Scheduler lock
2.57 2.40 3.84 0.23 65% 65% Scheduler unlock [0 threads]
2.58 2.40 4.32 0.23 64% 64% Scheduler unlock [1 suspended]
2.59 2.40 4.32 0.24 62% 62% Scheduler unlock [many suspended]
2.59 2.40 4.32 0.24 61% 61% Scheduler unlock [many low prio]
1.69 1.44 5.76 0.37 96% 71% Init mutex
4.15 3.84 10.56 0.47 96% 75% Lock [unlocked] mutex
5.82 5.28 10.56 0.38 62% 28% Unlock [locked] mutex
3.70 3.36 8.64 0.41 96% 59% Trylock [unlocked] mutex
3.42 2.88 6.72 0.26 75% 15% Trylock [locked] mutex
0.36 0.00 1.92 0.25 62% 34% Destroy mutex
43.41 42.72 45.12 0.34 81l% % Unlock/Lock mutex
3.27 2.88 8.16 0.39 96% 50% Create mbox
0.57 0.00 2.40 0.34 50% 21% Peek [empty] mbox
6.16 5.76 11.04 0.48 87% 87% Put [first] mbox
0.48 0.00 1.92 0.27 50% 28% Peek [l msg] mbox
5.92 5.28 10.56 0.35 90% 6% Put [second] mbox
0.60 0.00 2.40 0.30 62% 12% Peek [2 msgs] mbox
4.69 4.32 12.00 0.54 93% 93% Get [first] mbox
4.68 4.32 11.52 0.52 93% 93% Get [second] mbox
5.86 5.28 11.04 0.47 62% 31% Tryput [first] mbox

210

Appendix B. Real-time characterization

4.00 3.36 9.12 0.38 87% 9% Peek item [non-empty] mbox

4.59 3.84 12.48 0.61 71% 75% Tryget [non-empty] mbox

3.75 3.36 7.68 0.34 53% 43% Peek item [empty] mbox

3.93 3.36 9.60 0.45 65% 31% Tryget [empty] mbox

0.63 0.00 2.40 0.28 68% 6% Waiting to get mbox

0.54 0.00 1.92 0.19 75% 9% Waiting to put mbox

4.84 4.32 12.00 0.47 56% 40% Delete mbox

24.18 23.52 29.76 0.66 81% 75% Put/Get mbox

1.72 0.96 3.84 0.33 90% % Init semaphore

3.15 2.88 6.24 0.34 96% 62% Post [0] semaphore

3.85 3.36 8.64 0.30 68% 28% Wait [1] semaphore

3.24 2.88 6.24 0.34 46% 46% Trywait [0] semaphore

3.22 2.88 6.24 0.32 50% 46% Trywait [1] semaphore

0.96 0.48 2.88 0.12 84% 12% Peek semaphore

0.99 0.96 1.92 0.06 96% 96% Destroy semaphore

24.71 24.00 28.80 0.40 87% 6% Post/Wait semaphore

2.31 1.44 6.24 0.77 46% 56% Create counter

0.45 0.00 0.96 0.08 87% 9% Get counter value

0.42 0.00 0.96 0.16 75% 18% Set counter value

4.14 3.84 4.80 0.26 50% 43% Tick counter

0.91 0.48 2.40 0.19 71% 21% Delete counter

5.23 4.32 7.68 0.61 65% 53% Create alarm

5.58 4.80 12.96 0.72 68% 84% Initialize alarm

0.75 0.48 1.92 0.30 90% 56% Disable alarm

8.02 7.20 14.40 0.53 84% 68% Enable alarm

1.32 0.96 3.84 0.29 56% 40% Delete alarm

4.63 4.32 6.24 0.28 53% 43% Tick counter [1 alarm]

23.67 23.52 25.44 0.23 78% 78% Tick counter [many alarms]

7.24 6.72 10.56 0.21 84% 12% Tick & fire counter [l alarm]
106.83 106.56 110.40 0.35 96% 65% Tick & fire counters [>1 together]
26.18 25.44 29.76 0.46 81% 9% Tick & fire counters [>1 separately]
10.79 10.08 29.28 0.66 53% 55% Alarm latency [0 threads]
17.20 13.92 35.52 1.48 67% 21% Alarm latency [2 threads]
29.69 22.56 47.04 3.58 57% 17% Alarm latency [many threads]

7.66 3.84 19.20 0.00 Clock/interrupt latency

Timing complete - 23530 ms total

PASS:<Basic timing OK>
EXIT:<done>

211

Appendix B. Real-time characterization

Board: NEC VR4373

Board: NEC VR4373

CPU : NEC VR4300 133MHz

Startup, main stack : stack used 1304 size 3576
Startup : Interrupt stack used 980 size 4096
Startup : Idlethread stack used 494 size 2552

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 ‘ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 6.49 microseconds (431 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 16
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
17.21 16.18 22.14 0.88 75% 68% Create thread
0.84 0.78 1.29 0.10 81% 81% Yield thread [all suspended]
0.90 0.62 3.20 0.35 87% 87% Suspend [suspended] thread
0.74 0.65 1.16 0.12 81% 68% Resume thread
1.11 0.90 1.70 0.25 75% 68% Set priority
0.11 0.05 0.35 0.09 75% 75% Get priority
2.93 2.24 8.27 0.78 93% 75% Kill [suspended] thread
0.88 0.78 1.92 0.16 93% 81% Yield [no other] thread
1.82 1.20 4.71 0.62 87% 62% Resume [suspended low prio]
0.70 0.63 0.86 0.09 68% 68% Resume [runnable low prio]
1.21 1.07 1.61 0.13 81% 68% Suspend [runnable] thread
0.86 0.78 1.58 0.13 81% 81% Yield [only low prio] thread
0.69 0.62 0.84 0.09 68% 68% Suspend [runnable->not runnable]
2.64 2.24 4.35 0.43 81% 62% Kill [runnable] thread
1.50 1.07 5.82 0.56 93% 87% Destroy [dead] thread
3.66 2.75 7.74 0.82 50% ©56% Destroy [runnable] thread
13.65 8.33 27.88 3.70 50% 43% Resume [high priority] thread
2.04 1.89 3.32 0.15 46% 49% Thread switch
0.19 0.05 0.83 0.13 48% 44% Scheduler lock
0.50 0.41 1.59 0.13 89% 73% Scheduler unlock [0 threads]
0.52 0.41 1.29 0.14 89% 64% Scheduler unlock [1 suspended]

212

o

D O OO0 OO O O O O K O 4 O O O O O O

~ O O O O+ O O

o O O O O

N
N Oy R BB O R O

.56
.56

.57
.89
.90
17
.66
.07
.95

.04
.10
.15
.10
.01
.09
.03
.93
.07
.89
.04
.79
.84
.13
.13
.93
.74

.50
.86
.01
.87
.74
.36
.25
.85

.90
.07
.06
.88
.13

.37
.35
11
.23
.21
.03
.96
.70
.39
.65
.55

0.41

o

s O O O O O O O O O O O o o o o o ~N O O O O O O

~ O O O O O O O

o O O O O

N
N Oy R O OB OB O

.41

.20
.75
.74
.65
.59
.00
.71

.81
.02
.83
.02
.83
.02
.81
.81
17
.72
.83
.68
.12
.02
.02
17
.51

.21
.57
.74
.60
.62
.11
.12
.52

.44
.05
.05
.86
.12

.81
.17
.08
.14
.18
.99
.96
.67
.38
.64
.38

1.49

=

W WO ONFE B WD O Wwo b O Ww O O N D WD

W P FEWWwN P

O P O O W

A}
O 0o N DD O W o o N

.41

.33
.35
.38
.63
.16
.45
.49

.44
.57
.71
.57
.83
.57
.02
.61
.18
.49
.09
.97
.36
.59
.90
.23
.80

.95
.87
.62
.17
.70
11
.19
.93

.08
.89
.33
.62
.41

.95
.03
.65
.05
.47
.11
.96
.51
.71
.91
.86

o

O O O O O O O O O O O o o o o o o O O O O O O O

O O O O O O O O

o O O O O

O O O O O O O o o o o

.15
.15

.27
.20
.25
.17
.10
.09
.19

.27
.11
.31
.12
.22
.10
.27
.14
.23
.21
.26
.15
.17
.13
.13
.21
.32

.29
.29
.28
.28
.14
.26
.14
.21

.29
.05
.02
.05
.02

.27
.31
.05
.15
.04
.07
.00
.05
.02
.02
.19

TSN
w N
o

o° o

65%
96%
96%
96%
75%
75%
50%

93%
71%
53%
68%
93%
71%
96%
84%
68%
93%
90%
87%
93%
87%
90%
90%
93%

90%
93%
93%
90%
93%
65%
93%
62%

65%
96%
96%
96%
96%

62%
96%
90%
93%
90%
96%
100%
96%
96%
96%
96%

68%
68%
71%
68%
75%
71%
87%
62%
50%
71%
81%
68%
68%
62%
62%
71%
78%

50%
56%
56%
59%
56%
56%
56%
43%

28%
96%
96%
96%
96%

25%
93%
90%
87%
90%
96%
100%
96%
96%
96%
54%

Appendix B. Real-time characterization

Scheduler unlock [many suspended]
Scheduler unlock [many low prio]

Init mutex
Lock [unlocked] mutex
Unlock [locked] mutex

% Trylock [unlocked] mutex
% Trylock [locked] mutex

% Destroy mutex

% Unlock/Lock mutex

Create mbox

Peek [empty] mbox

Put [first] mbox

Peek [l msg] mbox

Put [second] mbox

Peek [2 msgs] mbox

Get [first] mbox

Get [second] mbox
Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

Init semaphore

Post [0] semaphore
Wait [1] semaphore
Trywait [0] semaphore
Trywait [1] semaphore
Peek semaphore
Destroy semaphore
Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Create alarm

Initialize alarm

Disable alarm

Enable alarm

Delete alarm

Tick counter [l alarm]

Tick counter [many alarms]

Tick & fire counter [l alarm]

Tick & fire counters [>1 together]
Tick & fire counters [>1 separately]
Alarm latency [0 threads]

213

Appendix B. Real-time characterization

5.37 3.80 9.73 0.95 50% 34% Alarm latency [2 threads]
8.79 5.83 16.12 1.29 57% 14% Alarm latency [many threads]
5.85 2.26 16.24 0.00 Clock/interrupt latency
1540 1536 1544 (main stack: 1664) Thread stack used (2552 total)
All done, main stack : stack used 1664 size 3576
All done : Interrupt stack used 312 size 4096
All done : Idlethread stack used 1440 size 2552

Timing complete - 23810 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: Intel SA1110 (Assabet)

Board: Intel SA1110 (Assabet)

CPU : StrongARM 221.2 MHz

Microseconds for one run through Dhrystone: 3.3
Dhrystones per Second: 306748.5

VAX MIPS rating = 174.586

Startup, main stack : stack used 420 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ‘ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 3.20 microseconds (11 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence

214

Appendix B. Real-time characterization

Yield thread [all suspended]
Suspend [suspended] thread

Kill [suspended] thread

Yield [no other] thread

Resume [suspended low prio] thread
Resume [runnable low prio] thread
Suspend [runnable] thread

Yield [only low prio] thread
Suspend [runnable->not runnable]
Kill [runnable] thread

Destroy [dead] thread

Destroy [runnable] thread

Resume [high priority] thread

Scheduler lock
Scheduler unlock [0 threads]

1 suspended]
many suspended]

many low prio]

Scheduler unlock
Scheduler unlock

[
[
[
[

Scheduler unlock

Lock [unlocked] mutex
Unlock [locked] mutex
Trylock [unlocked] mutex
Trylock [locked] mutex

Unlock/Lock mutex

3 Peek [empty] mbox

Put [first] mbox

% Peek [1 msg] mbox

% Put [second] mbox

% Peek [2 msgs] mbox
% Get [first] mbox

% Get [second] mbox

% Tryput [first] mbox

Peek item [non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox

% Waiting to get mbox
% Waiting to put mbox

Init semaphore

Ave Min Max Var Ave Min Function
5.98 4.88 14.38 0.70 57% 35% Create thread
0.86 0.81 1.90 0.08 87% 87%

1.05 0.81 3.53 0.19 46% 39%

1.07 0.81 3.80 0.18 48% 35% Resume thread
1.36 1.09 5.97 0.22 45% 39% Set priority
0.73 0.54 1.90 0.19 85% 50% Get priority
2.93 2.44 13.56 0.39 79% 70%

0.89 0.81 4.34 0.14 89% 89%

1.63 1.36 4.61 0.17 57% 29%

1.03 0.81 3.53 0.19 46% 42%

1.74 1.36 6.51 0.22 87% %

0.93 0.81 4.61 0.18 98% 78%

1.06 0.81 3.26 0.19 42% 39%

2.56 1.90 13.02 0.41 87% 34%

2.02 1.63 7.05 0.22 92% 3%

3.09 2.44 15.19 0.51 78% 46%

6.77 5.43 13.02 0.59 75% 17%

1.81 1.63 7.87 0.18 49% 49% Thread switch
0.25 0.00 1.36 0.05 89% 10%

0.51 0.27 1.36 0.06 85% 13%

0.51 0.27 1.09 0.06 85% 13%

0.51 0.27 1.09 0.07 85% 14%

0.51 0.27 1.09 0.06 85% 13%

0.52 0.27 2.17 0.15 62% 31% Init mutex
0.97 0.54 4.34 0.28 84% 65%

1.05 0.81 5.15 0.28 96% 96%

0.86 0.54 3.26 0.24 65% 31%

0.79 0.54 3.53 0.23 43% 46%

0.33 0.27 1.63 0.11 90% 90% Destroy mutex
4.16 3.80 8.95 0.30 75% 96%

0.70 0.54 2.98 0.21 96% 65% Create mbox
0.59 0.27 1.63 0.14 75% 9%

1.33 1.09 5.70 0.31 96% 93%

0.61 0.27 1.63 0.13 81l% 3%

1.35 1.09 5.43 0.31 96% 87%

0.58 0.27 1.36 0.11 78% 6

1.38 1.09 4.88 0.25 59% 37

1.40 1.09 5.15 0.26 62% 34%

1.27 0.81 4.88 0.28 90% 65%

1.34 0.81 4.61 0.22 59% 6%

1.47 1.09 5.15 0.27 84% 12%

1.12 0.81 4.34 0.23 59% 31%

1.14 0.81 4.07 0.24 71% 25%

0.59 0.27 1.36 0.12 78% 6

0.59 0.27 1.36 0.12 78% 6

1.28 0.81 5.43 0.32 87% 8% Delete mbox
2.64 2.17 10.31 0.48 96% 96% Put/Get mbox
0.47 0.27 2.17 0.19 46% 46%

0.77 0.54 3.80 0.26 90% 56%

Post [0] semaphore

215

Appendix B. Real-time characterization

0.90 0.54 4
0.85 0.54 3
0.69 0.54 2
0.44 0.27 2
0.38 0.27 1
2.74 2.44 9
0.43 0.27 1
0.49 0.00 2
0.33 0.00 1
1.03 0.81 2
0.42 0.27 1
0.70 0.54 2
1.65 1.36 6
0.75 0.54 1
1.75 1.36 7
0.81 0.54 2
1.01 0.81 2
4.19 4.07 5
1.48 1.36 3
20.23 20.07 22
4.70 4.61 6
2.81 2.71 14
3.19 2.71 13
9.71 7.87 18
5.77 5.43 45
2.38 0.81 9.
2.02 1.09 7.
11 0 316
All done, main stack
All done
All done

.07
.26
.17
.17
.90
.49

.90
.17
.63
.44
.90

.44
.78
.63
.05
.44
.17
.43
.80
.52
.78
.38
.56
.17
.57

49

32

(main stack:

.26
.21
.18
.19
.17
.42

o O O O O O

.18
.18
.13
.22
.20

o O O O O

.20
.40
.18
.38
.15
.16
.16
.20
.21
.16
.20
.38
.25
.68

O O O O O O O O oo o o o

0.00

0.00

Interrupt stack used
Idlethread stack used

Timing complete - 30220 ms total

Board: Intel SA1100 (Brutus)

Board: Intel SA1100

CPU

(Brutus)

StrongARM 221.2 MHz

Microseconds for one run through Dhrystone:

Dhrystones per Second:
VAX MIPS rating

Startup, main stack

Startup

216

174.586

75% 21% Wait [1l] semaphore
56% 28% Trywait [0] semaphore
96% 62% Trywait [1] semaphore
96% 56% Peek semaphore
96% 75% Destroy semaphore
96% 96% Post/Wait semaphore
96% 56% Create counter
56% 3% Get counter value
78% 6% Set counter value
84% 50% Tick counter
90% 65% Delete counter
93% 62% Create alarm
96% 81% Initialize alarm
43% 43% Disable alarm
65% 81% Enable alarm
62% 28% Delete alarm
56% 40% Tick counter [1 alarm]
96% 68% Tick counter [many alarms]
96% 78% Tick & fire counter [1 alarm]
96% 65% Tick & fire counters [>1 together]
87% 87% Tick & fire counters [>1 separately]
98% 98% Alarm latency [0 threads]
73% 59% Alarm latency [2 threads]
59% ©53% Alarm latency [many threads]
97% 97% Alarm —-> thread resume latency
Clock/interrupt latency
Clock DSR latency
764) Thread stack used (1120 total)
stack used 764 size 2400
287 size 4096
272 size 2048
3.3
306748.5
stack used 404 size 2400
136 size 4096

Interrupt stack used

Appendix B. Real-time characterization

Startup : Idlethread stack used 87 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ‘ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 3.09 microseconds (11 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
6.63 5.43 18.99 0.77 70% 37% Create thread
0.83 0.81 2.17 0.04 98% 98% Yield thread [all suspended]
1.27 0.81 5.15 0.30 68% 73% Suspend [suspended] thread
1.25 0.81 5.15 0.25 82% 1% Resume thread
1.52 1.09 7.87 0.30 78% 75% Set priority
0.97 0.54 2.71 0.28 64% 51% Get priority
3.45 2.71 19.53 0.66 84% 76% Kill [suspended] thread
0.90 0.81 6.24 0.17 98% 98% Yield [no other] thread
1.86 1.36 6.24 0.33 68% 50% Resume [suspended low prio] thread
1.25 0.81 5.15 0.25 82% 1% Resume [runnable low prio] thread
2.01 1.63 10.04 0.32 70% 84% Suspend [runnable] thread
0.90 0.81 6.24 0.17 98% 98% Yield [only low prio] thread
1.25 0.81 5.15 0.24 84% 1% Suspend [runnable->not runnable]
2.92 1.90 18.72 0.57 85% 43% Kill [runnable] thread
2.45 1.90 10.31 0.33 95% 54% Destroy [dead] thread
3.95 2.71 23.60 0.89 68% 54% Destroy [runnable] thread
8.55 6.24 19.53 1.15 60% 23% Resume [high priority] thread
1.85 1.63 11.94 0.21 49% 49% Thread switch
0.25 0.00 1.63 0.05 89% 10% Scheduler lock
0.52 0.27 1.90 0.07 85% 13% Scheduler unlock [0 threads]
0.51 0.27 1.36 0.06 85% 13% Scheduler unlock [l suspended]
0.51 0.27 1.36 0.06 85% 13% Scheduler unlock [many suspended]
0.51 0.27 1.63 0.06 85% 13% Scheduler unlock [many low prio]
0.58 0.27 3.53 0.20 71% 21% Init mutex
1.07 0.54 5.70 0.35 87% 59% Lock [unlocked] mutex
1.14 0.81 6.51 0.40 96% 81% Unlock [locked] mutex
0.96 0.54 5.15 0.34 68% 65% Trylock [unlocked] mutex
0.94 0.54 4.88 0.34 65% 65% Trylock [locked] mutex
0.33 0.27 2.17 0.11 96% 96% Destroy mutex

217

Appendix B. Real-time characterization

4.21 3.80 10.85 0.41 71% 96% Unlock/Lock mutex

0.76 0.54 4.07 0.25 96% 56% Create mbox

0.75 0.54 1.90 0.20 84% 50% Peek [empty] mbox

1.56 1.09 6.78 0.39 68% 59% Put [first] mbox

0.75 0.54 1.90 0.20 84% 50% Peek [1 msg] mbox

1.55 1.09 6.78 0.40 68% 62% Put [second] mbox

0.77 0.54 1.63 0.17 46% 37% Peek [2 msgs] mbox

1.67 1.09 6.24 0.31 87% 34% Get [first] mbox

1.63 1.09 6.24 0.31 75% 34% Get [second] mbox

1.50 1.09 6.51 0.40 56% 62% Tryput [first] mbox

1.58 1.09 5.43 0.37 68% 53% Peek item [non-empty] mbox
1.79 1.09 7.05 0.43 71% 25% Tryget [non-empty] mbox

1.29 1.09 5.15 0.32 87% 87% Peek item [empty] mbox

1.33 1.09 5.97 0.37 96% 84% Tryget [empty] mbox

0.73 0.54 1.90 0.21 84% 56% Waiting to get mbox

0.76 0.54 1.90 0.19 40% 43% Waiting to put mbox

1.47 1.09 6.78 0.39 59% 84% Delete mbox

2.70 2.17 12.75 0.63 96% 96% Put/Get mbox

0.47 0.27 2.71 0.20 96% 50% Init semaphore

0.89 0.54 4.88 0.33 56% 75% Post [0] semaphore

0.96 0.54 5.15 0.33 71% 75% Wait [1] semaphore

0.86 0.54 4.88 0.32 96% 81% Trywait [0] semaphore

0.69 0.54 3.26 0.22 96% 75% Trywait [1l] semaphore

0.49 0.27 3.26 0.28 84% 84% Peek semaphore

0.39 0.27 2.44 0.19 96% 78% Destroy semaphore

2.83 2.44 11.66 0.55 96% 96% Post/Wait semaphore

0.52 0.27 3.26 0.20 56% 40% Create counter

0.59 0.00 2.71 0.34 81% 46% Get counter value

0.36 0.00 2.44 0.21 81l% 9% Set counter wvalue

1.13 0.81 2.98 0.26 59% 37% Tick counter

0.39 0.27 1.90 0.19 90% 78% Delete counter

0.86 0.54 4.07 0.24 65% 31% Create alarm

1.86 1.36 9.77 0.54 96% 90% Initialize alarm

0.77 0.54 2.71 0.23 84% 50% Disable alarm

1.86 1.36 9.22 0.51 96% 75% Enable alarm

0.89 0.54 3.26 0.25 65% 21% Delete alarm

0.99 0.81 3.26 0.21 96% 59% Tick counter [1 alarm]

4.22 4.07 6.78 0.22 96% 71% Tick counter [many alarms]
1.51 1.36 4.61 0.24 96% 78% Tick & fire counter [l alarm]
20.29 20.07 23.33 0.23 96% 53% Tick & fire counters [>]1 together]
4.71 4.61 7.87 0.20 96% 96% Tick & fire counters [>1 separately]
2.88 2.71 23.87 0.33 99% 99% Alarm latency [0 threads]
3.24 2.71 17.36 0.40 79% 58% Alarm latency [2 threads]
15.71 12.48 27.40 1.47 53% 17% Alarm latency [many threads]
5.95 5.43 64.56 1.02 97% 97% Alarm -> thread resume latency
3.25 0.81 14.11 0.00 Clock/interrupt latency

2.68 1.09 12.75 0.00 Clock DSR latency
29 0 316 (main stack: 764) Thread stack used (1120 total)

All done, main stack : stack used 764 size 2400

218

All done
All done

Timing complete - 30280 ms total

Board: Motorola MBX

Board: Motorola MBX

CPU Motorola MPC860 66MHZ

Startup, main stack

Startup
Startup

eCos Kernel Timings
Notes:

Reading the hardware clock takes
Clock interrupt took

Testing parameters:

all times are in microseconds

stack used

Interrupt stack used
Idlethread stack used

Interrupt stack used
Idlethread stack used

(.000001)

0 ‘ticks’
this value will be factored out of all other measurements

25.36 microseconds

Appendix B. Real-time characterization

288 size 4096
260 size 2048
643 size 5664
427 size 4096
236 size 2048

unless otherwise stated

overhead

(79 raw clock ticks)

Clock samples: 32

Threads: 16

Thread switches: 128

Mutexes: 32

Mailboxes: 32

Semaphores: 32

Scheduler operations: 128

Counters: 32

Alarms: 32

Confidence

Ave Min Max Var Ave Min Function

27.58 25.60 44.16 2.07 93% 93% Create thread
5.94 5.76 7.04 0.22 93% 62% Yield thread [all suspended]
6.06 5.44 10.56 0.57 75% 75% Suspend [suspended] thread
5.42 4.80 9.60 0.53 87% 81% Resume thread
7.10 6.40 14.08 0.90 93% 87% Set priority
0.86 0.64 1.92 0.22 93% 50% Get priority

16.74 15.04 36.48 2.47 93% 93% Kill [suspended] thread
6.14 5.76 10.56 0.55 93% 93% Yield [no other] thread
9.74 8.96 18.56 1.10 93% 93% Resume [suspended low prio] thread
5.28 4.80 9.28 0.54 93% 81% Resume [runnable low prio] thread
9.40 8.32 18.56 1.14 93% 93% Suspend [runnable] thread

219

Appendix B. Real-time characterization

6.04 5.76 8.
5.68 5.12 9.
16.10 14.40 35.
8.54 7.68 16.

20.20 18.56 40.
39.02 36.48 57.
13.13 12.80 22.

0.59 0.32 1
3.67 3.52 5
3.67 3.52 4
3.67 3.52 4
3.69 3.52 5
2.41 2.24 5.
6.83 6.40 11.
6.74 6.40 13.
5.53 5.12 9.
4.84 4.48 7.
0.34 0.00 0.
56.10 55.68 59.
4.72 4.48 10.
0.75 0.64 1.
6.79 6.40 12.
0.46 0.32 1.
6.68 6.40 12.
0.50 0.32 1.
7.13 6.40 14.
6.97 6.40 13.
6.24 5.76 11.
5.98 5.44 11.
6.52 6.08 13.
5.50 5.12 10.
5.76 5.44 10.
0.50 0.32 1.
0.50 0.32 1.
7.45 7.04 15.
37.47 36.80 48.
2.49 2.24 6
5.09 4.80 8
6.25 5.76 10
4.84 4.48 8
4.98 4.80 8
1.66 1.28 3
1.24 0.96 3
40.74 40.32 49
2.65 2.24 6
0.85 0.64 2
0.68 0.64 1
7.13 6.72 8
1.30 0.96 3

220

96
60
20
00
64
28
08

.60
.12
.80
.80
.12

44
84
12
60
36
96
52

24
92
80
60
16
60
08
44
52
20
12
24
88
60
60
04
64

.08
.64
.88
.32
.00
.84
.20
.28

.08
.24
.92
.64
.20

O O O O O O W N O N O O

O O O O O O O O O O O o o o o o o O O O O O O o

O O O O O O O o

o O O O O

.38
.52
.39
.94
.55
.28
.15

.09
.17
.17
.17
.17

.25
.34
.40
.25
.17
.06
.21

.37
.16
.41
.19
.37
.20
.49
.47
.38
.39
.49
.30
.32
.19
.19
.49
.70

.28
.27
.32
.23
.26
.20
.17
.53

.23
.22
.08
.24
.12

93%
68%
93%
93%
93%
87%
78%

82%
99%
99%
54%
99%

96%
75%
96%
84%
78%
90%
93%

96%
75%
96%
93%
96%
93%
90%
84%
78%
78%
93%
68%
96%
96%
96%
96%
96%

96%
46%
93%
68%
96%
68%
65%
96%

84%
90%
96%
78%
84%

16%
54%
53%
54%
50%

75%
90%
96%
12%
15%

3%

)
©

96%
75%
90%
68%
96%
56%
46%
78%
81%
62%
81%
28%
96%
53%
53%
93%
96%

% Kill

% Destroy
% Resume
% Thread switch

Yield
Suspend

thread
[runnable->not runnable]
thread

thread

thread
thread

[only low prio]

[runnable]
[dead]
[runnable]

Destroy

[high priority]

Scheduler
Scheduler
Scheduler
Scheduler
Scheduler

lock
unlock [0 threads]
unlock [l suspended]

unlock [many suspended]

[

[

[
unlock [many low prio]
Init mutex
Lock [unlocked]
Unlock [locked] mutex
Trylock [unlocked]
[locked]
Destroy mutex
Unlock/Lock mutex

mutex

mutex

Trylock mutex

Create mbox
Peek [empty]
Put [first]
Peek [1 msg]
Put [second]
Peek [2 msgs] mbox
Get [first]
Get [second] mbox
Tryput [first]
Peek item

mbox
mbox

mbox

mbox

mbox

mbox
[non—empty] mbox

Tryget [non-empty] mbox
[empty]
[empty] mbox

Waiting to get mbox

Peek item mbox

Tryget

Waiting to put mbox
Delete mbox
Put/Get mbox

Init semaphore
Post [0]
Wait [1]
Trywait [0]

semaphore
semaphore
semaphore
Trywait [1l] semaphore
Peek semaphore
Destroy semaphore

Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

.52
.32
.64
.32
.60
.36

44
56
48
96
72
20
40

.96

7

17

24

56.
58.

16.

651

3.69 3
8.98 8
0.96 0
8.76 8
1.99 1
7.44 7
21.68 21.
10.95 10.
132.79 132.
25.18 24.
23.06 22.
31.53 27.
36.86 30.
11.41 8
609 603
All done, main stack
All done
All done

.68
17.
2.

60
88

.60
5.
9.
.64
15.
136.
28.
47.

12
92

04
32
80
36
00
88

32

(main stack:

.29
.61
.14
.59
.21
.15
.25
.26
.23
.29
.40
.63
.15

D O O O O O O O O O o O O

0.00

Interrupt stack used
Idlethread stack used

Timing complete - 23690 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: Hitachi EDK7708

Board: Hitachi EDK7708

CPU: Hitachi SH3/7708 60MHz

Startup, main stack

Startup
Startup

eCos Kernel Timings

Notes: all times are in microseconds

Reading the hardware clock takes 2

96% 84%
68% 62%
71% 21%
96% 87%
81l 12%
96% 96%
96% 53%
78% 18%
59% 37%
96% 65%
98% 98%
96% 0%
50% 28%

1059)

stack used

Appendix B. Real-time characterization

Create alarm

Initialize alarm

Disable alarm

Enable alarm

Delete alarm

Tick counter [1 alarm]

Tick counter [many alarms]

Tick & fire counter [1 alarm]

Tick & fire counters [>1 together]
Tick & fire counters [>1 separately]
Alarm latency [0 threads]

Alarm latency [2 threads]

Alarm latency [many threads]

Clock/interrupt latency

Thread stack used (1704 total)
1059 size 5664
251 size 4096
587 size 2048

stack used 444 size 4112

Interrupt stack used 76 size 4096
Idlethread stack used 96 size 2048

‘ticks’

(.000001) unless otherwise stated

overhead

this value will be factored out of all other measurements

Clock interrupt took

Testing parameters:

Clock samples:

Threads:

Thread switches:

14.75 microseconds

32
16
128

(55 raw clock ticks)

221

Appendix B. Real-time characterization

Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
15.43 13.60 24.00 1.29 62% 50% Create thread
3.33 3.20 4.27 0.18 93% 68% Yield thread [all suspended]
2.90 2.40 5.33 0.36 81% 62% Suspend [suspended] thread
2.93 2.67 4.80 0.27 93% 87% Resume thread
4.30 3.73 10.13 0.73 93% 93% Set priority
0.65 0.27 2.13 0.28 68% 62% Get priority
9.72 8.53 21.33 1.45 93% 93% Kill [suspended] thread
3.33 3.20 4.53 0.20 93% 75% Yield [no other] thread
5.30 4.80 10.13 0.65 93% 87% Resume [suspended low prio] thread
2.80 2.40 4.53 0.27 81% 75% Resume [runnable low prio] thread
4.82 4.00 8.27 0.49 68% 25% Suspend [runnable] thread
3.32 3.20 4.00 0.16 93% 68% Yield [only low prio] thread
2.82 2.40 4.27 0.25 81l% 12% Suspend [runnable->not runnable]
9.45 8.53 19.47 1.25 93% 93% Kill [runnable] thread
5.30 4.53 11.20 0.74 87% 93% Destroy [dead] thread
11.83 10.67 25.07 1.65 93% 93% Destroy [runnable] thread
19.53 17.33 31.20 1.88 75% 75% Resume [high priority] thread
6.70 6.67 11.47 0.07 99% 99% Thread switch
0.33 0.27 0.80 0.10 75% 75% Scheduler lock
1.74 1.60 2.67 0.14 99% 50% Scheduler unlock [0 threads]
1.72 1.60 3.20 0.14 99% 57% Scheduler unlock [1 suspended]
1.81 1.60 3.20 0.10 75% 23% Scheduler unlock [many suspended]
1.86 1.60 3.20 0.02 94% % Scheduler unlock [many low prio]
1.22 1.07 3.20 0.20 96% 65% Init mutex
3.21 2.93 5.87 0.17 68% 28% Lock [unlocked] mutex
3.36 2.93 7.47 0.30 84% 75% Unlock [locked] mutex
2.83 2.67 5.33 0.22 96% 65% Trylock [unlocked] mutex
2.53 2.40 2.93 0.14 96% 53% Trylock [locked] mutex
0.28 0.27 0.80 0.03 96% 96% Destroy mutex
20.09 19.73 23.20 0.23 84% 12% Unlock/Lock mutex
2.38 2.13 4.53 0.17 59% 34% Create mbox
0.45 0.27 1.33 0.15 56% 40% Peek [empty] mbox
3.70 3.20 7.20 0.29 84% 59% Put [first] mbox
0.45 0.27 0.80 0.13 62% 34% Peek [l msg] mbox
3.67 3.20 5.60 0.23 81% % Put [second] mbox
0.42 0.27 0.53 0.13 59% 40% Peek [2 msgs] mbox
3.98 3.47 7.47 0.24 59% 9% Get [first] mbox
3.97 3.47 4.80 0.24 59% 12% Get [second] mbox
3.51 3.20 6.67 0.28 56% 78% Tryput [first] mbox
3.29 2.93 5.60 0.29 59% 65% Peek item [non-empty] mbox
4.06 3.47 7.20 0.26 68% % Tryget [non-empty] mbox

222

Appendix B. Real-time characterization

3.03 2.67 5.33 0.19 93% 3% Peek item [empty] mbox
3.36 3.20 4.80 0.18 96% 56% Tryget [empty] mbox
0.57 0.27 1.33 0.09 84% 3% Waiting to get mbox
0.52 0.27 1.07 0.11 62% 21% Waiting to put mbox
3.88 3.47 7.47 0.30 78% 65% Delete mbox
12.04 11.73 17.33 0.33 96% 96% Put/Get mbox
1.17 1.07 2.40 0.16 71% 71% Init semaphore
2.67 2.40 4.27 0.15 62% 25% Post [0] semaphore
3.00 2.67 4.53 0.17 65% 12% Wait [1] semaphore
2.54 2.40 4.80 0.20 96% 71% Trywait [0] semaphore
2.42 2.40 2.93 0.03 96% 96% Trywait [1] semaphore
0.79 0.53 2.13 0.15 59% 28% Peek semaphore
0.77 0.53 1.87 0.12 71% 25% Destroy semaphore
12.64 12.27 17.07 0.28 84% 96% Post/Wait semaphore
1.27 1.07 2.93 0.17 53% 43% Create counter
0.54 0.27 1.33 0.13 59% 21% Get counter value
0.47 0.27 1.60 0.17 46% 43% Set counter value
3.47 3.20 4.80 0.16 53% 28% Tick counter
0.80 0.53 2.13 0.13 62% 25% Delete counter
1.86 1.60 4.00 0.21 43% 40% Create alarm
5.12 4.80 9.07 0.36 93% 75% Initialize alarm
0.44 0.27 1.33 0.19 87% 53% Disable alarm
4.77 4.27 9.60 0.35 87% 62% Enable alarm
1.02 0.80 2.67 0.18 53% 40% Delete alarm
3.56 3.47 5.33 0.15 84% 84% Tick counter [l alarm]
15.04 14.93 16.27 0.16 71% 71% Tick counter [many alarms]
5.75 5.60 8.00 0.21 96% 68% Tick & fire counter [1 alarm]
79.60 79.47 81.07 0.17 96% 65% Tick & fire counters [>1 together]
17.04 16.80 18.93 0.15 65% 31% Tick & fire counters [>1 separately]
12.44 12.27 29.60 0.31 96% 96% Alarm latency [0 threads]
14.06 12.27 27.20 0.53 82% 4% Alarm latency [2 threads]
19.62 17.07 38.40 1.44 57% 34% Alarm latency [many threads]
2.79 2.40 6.13 0.00 Clock/interrupt latency
376 376 376 (main stack: 764) Thread stack used (992 total)
All done, main stack stack used 764 size 4112
All done Interrupt stack used 176 size 4096
All done Idlethread stack used 352 size 2048

Timing complete - 23860 ms total

PASS:<Basic timing OK>
EXIT:<done>

223

Appendix B. Real-time characterization

Board: CQ CqREEK SH3 Evaluation Board (cq7708)

Board: CQ CgREEK SH3 Evaluation Board (cg7708)

CPU: Hitachi SH3/7708 60MHz

Startup, main stack : stack used 448 size 4112
Startup : Interrupt stack used 80 size 4096
Startup : Idlethread stack used 96 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 2 ‘ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 19.17 microseconds (71 raw clock ticks)

Testing parameters:

Clock samples: 32

Threads: 64

Thread switches: 128

Mutexes: 32

Mailboxes: 32

Semaphores: 32

Scheduler operations: 128

Counters: 32

Alarms: 32

Confidence

Ave Min Max Var Ave Min Function

20.62 14.40 26.93 3.23 48% 26% Create thread
3.16 2.93 4.27 0.09 78% 20% Yield thread [all suspended]
2.91 2.40 5.87 0.17 57% 1% Suspend [suspended] thread

2.73 2.40 6.40 0.19 64% 15% Resume thread
4.05 3.73 11.47 0.27 62% 90% Set priority
0.82 0.27 2.67 0.17 56% % Get priority
9.07 8.53 24.27 0.51 78% 71% Kill [suspended] thread
3.19 2.93 7.20 0.14 70% 28% Yield [no other] thread
5.45 4.53 17.87 0.49 78% 17% Resume [suspended low prio] thread
2.67 2.40 5.07 0.15 56% 28% Resume [runnable low prio] thread
4.95 4.27 11.47 0.28 82% 14% Suspend [runnable] thread
3.15 2.93 4.53 0.11 73% 25% Yield [only low prio] thread
2.82 2.40 5.60 0.21 84% 10% Suspend [runnable->not runnable]
8.92 8.00 24 .27 0.51 84% 14% Kill [runnable] thread
5.10 4.53 12.00 0.27 59% 39% Destroy [dead] thread

11.81 10.93 37.33 0.81 87% 95% Destroy [runnable] thread

22.15 20.80 54.67 1.27 92% 92% Resume [high priority] thread
6.85 6.67 13.60 0.19 99% 50% Thread switch
0.27 0.27 1.07 0.01 99% 99% Scheduler lock
1.74 1.60 2.67 0.14 99% 50% Scheduler unlock [0 threads]
1.74 1.60 2.93 0.14 99% 50% Scheduler unlock [l suspended]
1.81 1.60 4.27 0.11 72% 26% Scheduler unlock [many suspended]

224

N ODNDNDN W W

W WO O WhNhwwwwwowowoNN

= =
SO O NN NN

O W O O

g w s o o N

.75

.22
.18
.40
17
.35
.78
.80

.61
.52
.54
.50
.62
.52
.93
.92
.37
.30
.93
.94
.23
.58
.55
.82
.35

.22
.42
.96
.37
.29
.66
.81
.47

.44
.62
.56
.39
.83

.02
.06
.73
.82
.19
.63
.01
.50
74.
l6.
lé6.
17.

27
90
70
85

N O NN WDN

N WO ODNDNDWDNDDNWWOWOWON

= =
S O O NN DN R

O W O O K

S w o b O B

.60

.07
.93
.20
.40
.13
.53
.40

.40
.27
.20
.27
.20
.27
.47
.47
.93
.67
.47
.67
.93
.27
.27
.47
.80

.07
.13
.67
.13
.13
.53
.53
.13

.07
.27
.27
.20
.53

.87
.27
.27
.27
.80
.47
.93
.33
74.
16.
16.
l6.

13
53
53
53

N W 0o b

J

P O R, NMNOHDOO WOH O JO N F I O

NS}

N
NN W 0N

[N ot

.00

.27
.20
.00
.87
.47
.67
.80

.13
.60
.73
.60
.93
.13
.13
.47
.93
.93
.33
.13
.67
.67
.87
.87
.33

.93
.27
.07
.53
.47
.13
.93
.33

.47
.07
.60
.27
.87

.00
11.
.40
11.
.47
.60
16.
.00
76.
19.
36.
34.

73

47

53

80
47
27
40

O O O O O O O O O O O o o o o o o O O O O O O O

O O O O O O o o

o O O O O

O O O O O O O O o o o o

.15

.23
.27
.31
.22
.14
.14
.51

.26
.19
.35
.17
.34
.23
.43
.40
.36
.38
.44
.25
.27
.20
.14
.39
.50

.19
.12
.16
.17
.17
.17
.13
.43

.29
.14
.17
.16
.14

.21
.46
.22
.48
.22
.20
.13
.22
.21
.23
.33
.47

93%
78%
84%
81%
87%
96%
87%
96%
96%
81%
98%
73%

78%

96%

Appendix B. Real-time characterization

Scheduler unlock [many low prio]

Init mutex

% Lock [unlocked] mutex

Unlock [locked] mutex

9% Trylock [unlocked] mutex

% Trylock [locked] mutex
8% Destroy mutex
% Unlock/Lock mutex

% Create mbox
3 Peek [empty] mbox

Put [first] mbox

Peek [l msg] mbox

Put [second] mbox

Peek [2 msgs] mbox

Get [first] mbox

Get [second] mbox
Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

Init semaphore

Post [0] semaphore
Wait [1] semaphore
Trywait [0] semaphore
Trywait [1] semaphore
Peek semaphore
Destroy semaphore
Post/Wait semaphore

Create counter

% Get counter value
% Set counter value
5 Tick counter

Delete counter

Create alarm

Initialize alarm

Disable alarm

Enable alarm

Delete alarm

Tick counter [l alarm]
Tick counter [many alarms]

% Tick & fire counter [1 alarm]

% Tick & fire counters [>1 together]

% Tick & fire counters [>1 separately]
% Alarm latency [0 threads]

% Alarm latency [2 threads]

225

Appendix B. Real-time characterization

63.26 58.40 80.00 2.64 52% 32% Alarm latency [many threads]
30.37 29.33 124.80 1.68 98% 97% Alarm —> thread resume latency
7.37 5.07 17.87 0.00 Clock/interrupt latency
9.00 4.53 26.93 0.00 Clock DSR latency
106 0 376 (main stack: 764) Thread stack used (992 total)
All done, main stack stack used 764 size 4112
All done Interrupt stack used 176 size 4096
All done Idlethread stack used 352 size 2048
Timing complete - 30310 ms total
PASS:<Basic timing OK>
EXIT:<done>
Board: Hitachi HS7729PCI HS7729 SH3
Board: Hitachi HS7729PCI HS7729 SH3
CPU: Hitachi SH3/7729 132MHz
Startup, main stack stack used 464 size 4112
Startup Interrupt stack used 92 size 4096
Startup Idlethread stack used 94 size 2048

eCos Kernel Timings
Notes:

Reading the hardware clock takes 3

all times are in microseconds

(.000001)

"ticks’

unless otherwise stated

overhead

this value will be factored out of all other measurements

Clock interrupt took

Testing parameters:
Clock samples:
Threads:

Thread switches:
Mutexes:

Mailboxes:
Semaphores:

Scheduler operations:
Counters:

Alarms:

Ave Min Max

32
64
128
32
32
32
128
32
32

18.10 microseconds

(149 raw clock ticks)

Confidence

Var Ave

Min Function

226

.33
.08
.23
.70
.12
.61
.14
.04
.12
.54
.00
.04
.91
.82
.07
.17
.43
.99

g0 N WU UWwW oo DN W W o

N -
~ N

0.37
1.74
1.75
1.71
1.76

.23
.12
.54
.88
.33

N O DN W b

.92
.61
.00
.30
.82
.32
.19
.91
.51
.25
.86
.87
.15
.34
.36
.49
.67

N D OO WNhWWwWwwdhdh o wo b~ o

=

.87
.74
.39
.62
.76
.09

PN DN W NN O

.52
.91
.03
.55
.00
.48
.61
.91
.73
.42
.36
.91
.79
.12
.48
.55
.45
.88

S0 DN BN BN 0O BN WND U

N -
~ = O

1.70
1.70

1.70

1.70

.88
.91
.42
.73
.06

N ON DN W

.82
.48
.64
.24
.64
.24
.76
.76
.27
.91
.52
.79
.03
.24
.24
.24
.36

N D> O O WD WDNDWWWwWwOoOwo wo

=

.85
.55
.15
.42
.67
.85

O N DN WD O

.24
.79
.18
.18
.52
.33
.91
.48
.88
.03
.45
.61
.27
.39
.73
.91
.73
.58

=
SO wd b 0o Jd ooy Y O

oW N e
W NN oW

2.06
2.06

2.42

3.64

6.91
2.91
3.15

.73
.70
.45
.73
.67
.33
.21
.21
.12
.15
.73
.76
.24
.33
.45
.91
.52

O O R BB B W oo J o0 Ul vk o0 W

=

.45
.48
.24
.33
.27
.91

N W O s

.47
.13
.16
.15
.16
.07
.42
.07
.29
.09
.21
.07
.08
.36
.37
.52
.61
.14

O O O O O O O O O O O O O o o o o+

0.06
0.07

0.03

0.08

.41
.29
.11
.14
.23

o O O O O

.19
.15
.36
.09
.22
.12
.34
.16
.34
.30
.37
.12
.10
.10
.09
.41
.43

O O O O O O O O O O O O o o o o o

.05
.18
.14
.21
.08
.19

O O O O O O

53%
78%
59%
54%
96%
57%
85%
68%
60%
39%
75%
65%
43%
68%
76%
78%
81%
98%

97%
70%
92%
89%
96%

96%
96%
18%
65%
81%

96%
84%
96%
84%
90%
81%
84%
84%
93%
62%
93%
84%
46%
43%
53%
96%
96%

93%
50%
78%
96%
46%
68%

28%
89%
70%
82%
81%
28%
57%
20%
53%
40%

1%
21%
31%
29%
50%
67%
50%
86%

97%
70%
64%
89%
64%

93%
75%
87%
75%
84%
81%
50%
75%
87%
56%
84%
71%
40%
46%
37%
96%
96%

Appendix B. Real-time characterization

Create thread

Yield thread [all suspended]
Suspend [suspended] thread

Resume thread

Set priority

Get priority

Kill [suspended] thread

Yield [no other] thread

Resume [suspended low prio] thread
Resume [runnable low prio] thread
Suspend [runnable] thread

Yield [only low prio] thread
Suspend [runnable->not runnable]
Kill [runnable] thread

Destroy [dead] thread

Destroy [runnable] thread

Resume [high priority] thread
Thread switch

Scheduler lock

Scheduler unlock [0 threads]
Scheduler unlock [1 suspended]
Scheduler unlock [many suspended]
Scheduler unlock [many low prio]

Unlock [locked] mutex

5 Trylock [unlocked] mutex
% Trylock [locked] mutex
% Destroy mutex

Unlock/Lock mutex

Create mbox

Peek [empty] mbox

Put [first] mbox

Peek [l msg] mbox

Put [second] mbox

Peek [2 msgs] mbox

Get [first] mbox

Get [second] mbox
Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

% Init semaphore

% Post [0] semaphore

% Wait [1l] semaphore

% Trywait [0] semaphore
% Trywait [1l] semaphore
% Peek semaphore

227

Appendix B. Real-time characterization

0.97
13.09

.57
.91
.55
.19
.87

O b O O

.50
.16
.50
.16
.18
.22
.37
6.73
108.65
54.25
17.36
19.75
39.02
29.31

N OO oY N

5.08

7.32

6

All done,

All done
All done

0.
12.

O b O O

g O O N

17

0

73
85

.45
.73
.48
.00
.73

.30
.70
.36
.85
.09
.09
52.

6.
108.
54.
17.

12
55
61
06
09

.09
34.
28.

06
36

.88

.09

3.39

w oo N W

.12

.88
.18
.97
.82
.15

5.21

11.

16.

380

main stack

.97
.70
.73
.30
.39
.73
.24
109.
54.
29.
28.
50.
105.

21
79
82
00
67
09

15

73

(main stack:
stack used 820 size 4112
Interrupt stack used 196 size 4096

o

o O O O O

P NP OO OOOOOOOoOOoO OO OO

0.

.17
.19

.15
.16
.09
.13
.16

.18
.47
11
.29
.12
.14
.20
.13
.07
.11
.23
.65
.00
.27

.00

00

o o

96%
46%
90%
84%
93%

81%
96%
62%
78%
84%
96%
37%
78%
87%
65%
82%
46%
53%
98%

65% Destroy semaphore
65% Post/Wait semaphore

93% Create counter
68% Get counter value
62% Set counter value
75% Tick counter

93% Delete counter

90% Create alarm

71% Initialize alarm

34% Disable alarm

78% Enable alarm

65% Delete alarm

93% Tick counter [1 alarm]

56% Tick counter [many alarms]

68% Tick & fire counter [1 alarm]

87% Tick & fire counters [>1 together]
18% Tick & fire counters [>1 separately]
57% Alarm latency [0 threads]

40% Alarm latency [2 threads]

15% Alarm latency [many threads]

97% Alarm —-> thread resume latency

Clock/interrupt latency

Clock DSR latency

820) Thread stack used (992 total)

Idlethread stack used 360 size 2048

Timing complete - 29960 ms total
PASS:<Basic timing OK>
EXIT:<done>

Board: Hitachi Solution Engine 7751 SH4 (se7751)

Board: Hitachi Solution Engine 7751 SH4 (se7751)

228

CPU: Hitachi SH4/7751 162MHz

Startup,
Startup
Startup

main stack

eCos Kernel Timings

Interrupt stack used
Idlethread stack used

Notes: all times are in microseconds (

stack used 464 size 4112

92 size 4096
94 size 2048

.000001) unless otherwise stated

Reading the hardware clock takes 1

Clock interrupt took

Testing parameters:

‘ticks’

this value will be factored out of all other measurements

14.27 microseconds

Appendix B. Real-time characterization

overhead

(96 raw clock ticks)

Yield thread [all suspended]
Suspend [suspended] thread

Kill [suspended] thread

Yield [no other] thread

Resume [suspended low prio] thread
Resume [runnable low prio] thread
Suspend [runnable] thread

Yield [only low prio] thread
Suspend [runnable->not runnable]
Kill [runnable] thread

Destroy [dead] thread

Destroy [runnable] thread

Resume [high priority] thread

Scheduler lock
Scheduler unlock [0 threads]

1 suspended]
many suspended]

many low prio]

[
Scheduler unlock [
Scheduler unlock [
Scheduler unlock [
Lock [unlocked] mutex
Unlock [locked] mutex

Trylock [unlocked] mutex
Trylock [locked] mutex

Unlock/Lock mutex

Peek [empty] mbox

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
8.06 5.63 12.15 1.37 46% 29% Create thread
1.15 1.04 5.19 0.15 98% 98%
1.13 0.89 5.04 0.27 89% 62%
1.11 0.89 5.19 0.26 89% 71% Resume thread
1.45 1.19 3.56 0.23 53% 53% Set priority
0.21 0.15 1.19 0.10 90% 79% Get priority
4.15 3.56 13.04 0.53 68% 64%
1.12 1.04 3.70 0.12 98% 70%
1.75 1.33 8.00 0.38 59% 65%
1.10 0.89 4.59 0.25 87% 73%
1.59 1.33 5.93 0.33 81l% 79%
1.13 1.04 4.30 0.13 98% 71%
1.09 0.89 3.56 0.21 89% 70%
4.96 4.30 11.70 0.44 68% 39%
1.95 1.48 8.00 0.34 75% 57%
4.41 3.85 10.37 0.47 53% 57%
13.15 11.41 23.85 1.11 73% 39%
3.10 2.96 6.22 0.11 41% 39% Thread switch
0.13 0.00 1.33 0.06 74% 21%
0.76 0.74 1.78 0.03 96% 96%
0.76 0.74 1.78 0.03 96% 96%
0.77 0.74 2.67 0.05 95% 95%
0.76 0.74 2.37 0.04 95% 95%
0.52 0.15 2.67 0.26 65% 34% Init mutex
1.23 1.04 5.63 0.32 93% 93%
1.45 1.19 5.33 0.31 90% 87%
1.13 0.89 4.15 0.28 90% 84%
1.00 0.89 2.96 0.17 87% 87%
0.37 0.30 1.78 0.13 90% 84% Destroy mutex
9.09 8.59 12.59 0.43 71% 71%
0.93 0.59 4.30 0.40 84% 71% Create mbox
0.26 0.00 1.19 0.17 71% 59%
3.03 2.52 6.37 0.47 50% 59%

Put [first] mbox

229

Appendix B. Real-time characterization

0.23 0.00 0.74 0.14 68% 15% Peek [l msg] mbox
2.93 2.52 4.74 0.46 71% 59% Put [second] mbox
0.22 0.00 0.59 0.13 68% 15% Peek [2 msgs] mbox
2.07 1.63 5.93 0.37 84% 59% Get [first] mbox
2.06 1.63 4.74 0.34 78% 59% Get [second] mbox
1.48 1.04 5.48 0.37 62% 53% Tryput [first] mbox
1.31 1.04 4.89 0.32 96% 75% Peek item [non-empty] mbox
1.47 1.04 5.78 0.38 84% 65% Tryget [non—-empty] mbox
1.15 0.89 3.11 0.18 71% 56% Peek item [empty] mbox
1.20 1.04 3.85 0.21 93% 84% Tryget [empty] mbox
0.21 0.00 0.74 0.14 68% 18% Waiting to get mbox
0.19 0.00 0.44 0.10 43% 15% Waiting to put mbox
2.19 1.93 5.78 0.27 93% 71% Delete mbox
10.23 9.93 11.56 0.15 53% 37% Put/Get mbox
0.37 0.15 1.33 0.26 71% 71% Init semaphore
0.98 0.89 2.52 0.13 96% 68% Post [0] semaphore
1.08 0.89 3.26 0.15 68% 93% Wait [1] semaphore
0.98 0.89 3.41 0.16 93% 93% Trywait [0] semaphore
0.73 0.59 1.63 0.07 71% 25% Trywait [1] semaphore
0.33 0.30 1.33 0.07 93% 93% Peek semaphore
0.34 0.30 1.78 0.09 96% 96% Destroy semaphore
9.36 8.74 10.37 0.33 56% 31% Post/Wait semaphore
0.54 0.15 3.26 0.23 59% 37% Create counter
0.13 0.00 0.59 0.07 68% 25% Get counter value
0.14 0.00 0.59 0.07 68% 25% Set counter value
3.74 3.56 5.33 0.17 53% 75% Tick counter
0.32 0.15 2.07 0.12 71% 21% Delete counter
1.59 1.19 3.11 0.29 71% 43% Create alarm
1.89 1.48 6.37 0.44 87% 78% Initialize alarm
0.20 0.15 0.74 0.09 87% 84% Disable alarm
1.62 1.33 5.63 0.41 87% 84% Enable alarm
0.40 0.30 1.33 0.13 87% 62% Delete alarm
4.03 3.70 5.78 0.27 68% 56% Tick counter [1 alarm]
14.18 13.93 15.70 0.27 81% 75% Tick counter [many alarms]
4.81 4.59 5.93 0.13 81% 15% Tick & fire counter [l alarm]
30.77 30.52 33.63 0.20 75% 65% Tick & fire counters [>1 together]
15.10 14.52 17.04 0.23 71% 3% Tick & fire counters [>1 separately]
8.78 8.59 18.22 0.20 97% 89% Alarm latency [0 threads]
11.29 9.33 17.48 1.02 56% 22% Alarm latency [2 threads]
18.70 15.70 26.37 1.45 54% 22% Alarm latency [many threads]
19.40 18.81 57.48 0.65 97% 97% Alarm —-> thread resume latency
4.18 2.81 8.89 0.00 Clock/interrupt latency
3.98 2.52 11.56 0.00 Clock DSR latency
6 0 380 (main stack: 728) Thread stack used (992 total)
All done, main stack : stack used 728 size 4112
All done : Interrupt stack used 196 size 4096
All done : Idlethread stack used 360 size 2048

230

Appendix B. Real-time characterization

Timing complete - 29790 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: PC

Board: PC

CPU: 433MHz Celeron

Startup, main stack : stack used 124 size 2912
Startup : Interrupt stack used 280 size 4108
Startup : Idlethread stack used 62 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 8 ’ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 6.75 microseconds (8 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
3.93 1.68 8.38 0.93 68% 3% Create thread
0.71 0.00 3.35 0.84 59% 59% Yield thread [all suspended]
0.65 0.00 5.03 0.84 64% 64% Suspend [suspended] thread
0.63 0.00 1.68 0.79 62% 62% Resume thread
0.76 0.00 1.68 0.83 54% 54% Set priority
0.39 0.00 1.68 0.60 76% 76% Get priority
1.34 0.00 6.70 0.67 73% 25% Kill [suspended] thread
0.68 0.00 1.68 0.81 59% 59% Yield [no other] thread
0.92 0.00 1.68 0.83 54% 45% Resume [suspended low prio] thread
0.63 0.00 1.68 0.79 62% 62% Resume [runnable low prio] thread
0.84 0.00 1.68 0.84 100% 50% Suspend [runnable] thread
0.73 0.00 1.68 0.82 56% 56% Yield [only low prio] thread
0.58 0.00 1.68 0.76 65% 65% Suspend [runnable->not runnable]
1.26 0.00 3.35 0.67 71% 26% Kill [runnable] thread
0.86 0.00 3.35 0.86 98% 50% Destroy [dead] thread

231

Appendix B. Real-time characterization

1.44 0.00 1.68 0.40 85% 14% Destroy [runnable] thread
4.45 3.35 6.70 0.89 53% 40% Resume [high priority] thread
1.62 0.00 1.68 0.10 96% 3% Thread switch

0.41 0.00 1.68 0.61 75% 75% Scheduler lock

0.48 0.00 1.68 0.69 71% 71% Scheduler unlock [0 threads]
0.59 0.00 1.68 0.76 64% 64% Scheduler unlock [l suspended]
0.45 0.00 1.68 0.65 73% 73% Scheduler unlock [many suspended]
0.45 0.00 1.68 0.65 73% 73% Scheduler unlock [many low prio]
0.52 0.00 1.68 0.72 68% 68% Init mutex

0.79 0.00 5.03 0.93 96% 59% Lock [unlocked] mutex

0.84 0.00 5.03 0.94 96% 56% Unlock [locked] mutex

0.63 0.00 1.68 0.79 62% 62% Trylock [unlocked] mutex
0.52 0.00 1.68 0.72 68% 68% Trylock [locked] mutex

0.58 0.00 1.68 0.76 65% 65% Destroy mutex

3.40 3.35 5.03 0.10 96% 96% Unlock/Lock mutex

0.99 0.00 1.68 0.81 59% 40% Create mbox

0.47 0.00 1.68 0.68 71% 71% Peek [empty] mbox

0.79 0.00 5.03 0.93 96% 59% Put [first] mbox

0.42 0.00 1.68 0.63 75% 75% Peek [1 msg] mbox

0.79 0.00 1.68 0.83 53% 53% Put [second] mbox

0.37 0.00 1.68 0.57 78% 78% Peek [2 msgs] mbox

0.73 0.00 3.35 0.87 59% 59% Get [first] mbox

0.73 0.00 1.68 0.82 56% 56% Get [second] mbox

0.79 0.00 3.35 0.88 56% 56% Tryput [first] mbox

0.68 0.00 3.35 0.85 62% 62% Peek item [non-empty] mbox
0.73 0.00 3.35 0.87 59% 59% Tryget [non-empty] mbox
0.63 0.00 1.68 0.79 62% 62% Peek item [empty] mbox

0.68 0.00 1.68 0.81 59% 59% Tryget [empty] mbox

0.26 0.00 1.68 0.44 84% 84% Waiting to get mbox

0.63 0.00 1.68 0.79 62% 62% Waiting to put mbox

0.73 0.00 3.35 0.87 59% 59% Delete mbox

3.25 1.68 3.35 0.20 93% % Put/Get mbox

0.63 0.00 1.68 0.79 62% 62% Init semaphore

0.63 0.00 1.68 0.79 62% 62% Post [0] semaphore

0.63 0.00 1.68 0.79 62% 62% Wait [1] semaphore

0.52 0.00 1.68 0.72 68% 68% Trywait [0] semaphore

0.52 0.00 1.68 0.72 68% 68% Trywait [1] semaphore

0.52 0.00 1.68 0.72 68% 68% Peek semaphore

0.21 0.00 1.68 0.37 87% 87% Destroy semaphore

3.30 1.68 3.35 0.10 96% 3% Post/Wait semaphore

0.79 0.00 3.35 0.88 56% 056% Create counter

0.42 0.00 1.68 0.63 75% 75% Get counter value

0.37 0.00 1.68 0.57 78% 78% Set counter value

0.73 0.00 1.68 0.82 56% 56% Tick counter

0.63 0.00 1.68 0.79 62% 62% Delete counter

0.89 0.00 3.35 0.89 96% 50% Create alarm

0.84 0.00 1.68 0.84 100% 50% Initialize alarm

0.52 0.00 1.68 0.72 68% 68% Disable alarm

0.89 0.00 3.35 0.89 96% 50% Enable alarm

232

Appendix B. Real-time characterization

0.58 0.00 1.68 0.76 65% 65% Delete alarm
0.63 0.00 1.68 0.79 62% 62% Tick counter [1 alarm]
5.03 3.35 6.70 0.10 93% 3% Tick counter [many alarms]
0.94 0.00 1.68 0.82 56% 43% Tick & fire counter [l alarm]
11.16 10.06 11.73 0.76 65% 34% Tick & fire counters [>1 together]
5.19 5.03 6.70 0.28 90% 90% Tick & fire counters [>1 separately]
0.01 0.00 1.68 0.03 99% 99% Alarm latency [0 threads]
0.13 0.00 1.68 0.24 92% 92% Alarm latency [2 threads]
0.94 0.00 3.35 0.85 53% 45% Alarm latency [many threads]
1.75 1.68 6.70 0.15 96% 96% Alarm -> thread resume latency
41 0 368 (main stack: 1036) Thread stack used (1712 total)
All done, main stack : stack used 1036 size 2912
All done : Interrupt stack used 368 size 4108
All done : Idlethread stack used 288 size 2048

Timing complete - 28520 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: NEC V850 Cosmo Evaluation Board

Board: NEC V850 Cosmo Evaluation Board

CPU: NEC CEB-V850/SAl 17MHz

Startup, main stack : stack used 552 size 2936
Startup : Interrupt stack used 120 size 4096
Startup : Idlethread stack used 206 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 27 ‘ticks’ overhead
this value will be factored out of all other measurements

Clock interrupt took 280.04 microseconds (1190 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 7
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function

233

Appendix B. Real-time characterization

288.71 280.24 297.18 4.84 42% 28% Create thread
70.76 70.59 70.82 0.10 71% 28% Yield thread [all suspended]
59.06 59.06 59.06 0.00 100% 100% Suspend [suspended] thread
60.00 60.00 60.00 0.00 100% 100% Resume thread
77.38 77.18 77.41 0.06 85% 14% Set priority
3.13 3.06 3.29 0.10 71% 71% Get priority
187.46 187.29 187.53 0.10 71% 28% Kill [suspended] thread
70.76 70.59 70.82 0.10 71% 28% Yield [no other] thread
104.40 103.29 104.71 0.32 85% 14% Resume [suspended low prio] thread
59.06 59.06 59.06 0.00 100% 100% Resume [runnable low prio] thread
97.11 91.06 98.12 1.73 85% 14% Suspend [runnable] thread
70.76 70.59 70.82 0.10 71% 28% Yield [only low prio] thread
59.06 59.06 59.06 0.00 100% 100% Suspend [runnable->not runnable]
187.46 187.29 187.53 0.10 71% 28% Kill [runnable] thread
95.63 95.29 97.18 0.44 85% 85% Destroy [dead] thread
241.28 236.94 242.12 1.24 85% 14% Destroy [runnable] thread
378.55 370.35 427.06 13.86 85% 85% Resume [high priority] thread
198.77 183.76 452.94 18.77 96% 96% Thread switch
2.59 2.59 2.59 0.00 100% 100% Scheduler lock
41.29 41.18 41.41 0.12 100% 50% Scheduler unlock [0 threads]
40.82 40.71 40.94 0.12 100% 50% Scheduler unlock [l suspended]
41.29 41.18 41.41 0.12 100% 50% Scheduler unlock [many suspended]
41.29 41.18 41.41 0.12 100% 50% Scheduler unlock [many low prio]
17.94 17.88 18.12 0.09 75% 75% Init mutex
68.71 68.71 68.71 0.00 100% 100% Lock [unlocked] mutex
72.10 72.00 73.41 0.15 96% 71% Unlock [locked] mutex
57.88 57.88 57.88 0.00 100% 100% Trylock [unlocked] mutex
52.24 52.24 52.24 0.00 100% 100% Trylock [locked] mutex
12.41 12.24 12.47 0.09 75% 25% Destroy mutex
427.06 427.06 427.06 0.00 100% 100% Unlock/Lock mutex
34.94 34.82 35.06 0.12 100% 50% Create mbox
0.76 0.71 0.94 0.09 75% 75% Peek [empty] mbox
75.29 75.29 75.29 0.00 100% 100% Put [first] mbox
1.24 1.18 1.41 0.09 75% 75% Peek [l msg] mbox
75.76 75.76 75.76 0.00 100% 100% Put [second] mbox
0.76 0.71 0.94 0.09 75% 75% Peek [2 msgs] mbox
80.12 80.00 80.24 0.12 100% 50% Get [first] mbox
79.65 79.53 79.76 0.12 100% 50% Get [second] mbox
70.12 70.12 70.12 0.00 100% 100% Tryput [first] mbox
65.76 65.65 65.88 0.12 100% 50% Peek item [non-empty] mbox
78.00 77.88 78.12 0.12 100% 50% Tryget [non—-empty] mbox
63.12 63.06 63.29 0.09 75% 75% Peek item [empty] mbox
67.82 67.76 68.00 0.09 75% 75% Tryget [empty] mbox
1.94 1.88 2.12 0.09 75% 75% Waiting to get mbox
1.47 1.41 1.65 0.09 75% 75% Waiting to put mbox
75.59 75.53 75.76 0.09 75% 75% Delete mbox
252.76 252.71 252.94 0.09 75% 75% Put/Get mbox
20.24 20.24 20.24 0.00 100% 100% Init semaphore
54.35 54.35 54 .35 0.00 100% 100% Post [0] semaphore

234

Appendix B. Real-time characterization

66.59 66.59 66.59 0.00 100% 100% Wait [1l] semaphore
52.24 52.24 52.24 0.00 100% 100% Trywait [0] semaphore
53.41 53.41 53.41 0.00 100% 100% Trywait [1l] semaphore
10.65 10.59 10.82 0.09 75% 75% Peek semaphore
12.65 12.47 12.71 0.09 75% 25% Destroy semaphore
276.94 276.94 276.94 0.00 100% 100% Post/Wait semaphore
14.94 14.82 15.06 0.12 100% 50% Create counter
2.18 2.12 2.35 0.09 75% 75% Get counter value
3.06 3.06 3.06 0.00 100% 100% Set counter value
78.12 78.12 78.12 0.00 100% 100% Tick counter
13.82 13.65 13.88 0.09 75% 25% Delete counter
26.94 26.82 27.06 0.12 100% 50% Create alarm
104.18 104.00 104.24 0.09 75% 25% Initialize alarm
7.65 7.53 7.76 0.12 100% 50% Disable alarm
104.94 104.94 104.94 0.00 100% 100% Enable alarm
19.47 19.29 19.53 0.09 75% 25% Delete alarm
88.53 88.47 88.71 0.09 75% 75% Tick counter [1 alarm]
418.61 411.29 645.41 14.17 96% 96% Tick counter [many alarms]
139.59 139.53 139.76 0.09 75% 75% Tick & fire counter [l alarm]

2150.21 2096.71 2367.53 83.59 78% 78% Tick & fire counters [>1 together]
478.15 462.35 733.41 29.61 93% 93% Tick & fire counters [>1 separately]
219.89 218.59 369.88 2.34 99% 99% Alarm latency [0 threads]

292.11 218.59 371.53 37.85 50% 25% Alarm latency [2 threads]
292.96 218.59 370.59 38.12 49% 25% Alarm latency [many threads]
540.90 495.76 1677.41 17.76 98% 0% Alarm -> thread resume latency

79.01 78.59 104.71 0.00 Clock/interrupt latency
123.41 85.88 1982.82 0.00 Clock DSR latency
522 516 536 (main stack: 1124) Thread stack used (1912 total)
All done, main stack : stack used 1124 size 2936
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 488 size 2048

Timing complete - 32540 ms total

Board: NEC V850 Cosmo Evaluation Board

Board: NEC V850 Cosmo Evaluation Board

CPU: NEC CEB-V850/SB1 16MHz (in internal Flash)

Startup, main stack : stack used 572 size 2936
Startup : Interrupt stack used 132 size 4096
Startup : Idlethread stack used 210 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

235

Appendix B. Real-time characterization

Reading the hardware clock takes 8 ’‘ticks’ overhead
this value will be factored out of all other measurements
Clock interrupt took 118.15 microseconds (472 raw clock ticks)

Testing parameters:

Clock samples: 32
Threads: 7
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function

113.68 111.00 116.50 1.63 42% 28% Create thread
30.00 30.00 30.00 0.00 100% 100% Yield thread [all suspended]
29.57 29.50 29.75 0.10 71% 71% Suspend [suspended] thread
27.43 27.25 27.50 0.10 71% 28% Resume thread
34.11 34.00 34.25 0.12 57% 57% Set priority
1.57 1.50 1.75 0.10 71% 71% Get priority
72.96 72.75 73.00 0.06 85% 14% Kill [suspended] thread
30.00 30.00 30.00 0.00 100% 100% Yield [no other] thread
42.75 42.75 42 .75 0.00 100% 100% Resume [suspended low prio] thread
27.00 27.00 27.00 0.00 100% 100% Resume [runnable low prio] thread
43.64 41.25 44 .25 0.68 85% 14% Suspend [runnable] thread
30.00 30.00 30.00 0.00 100% 100% Yield [only low prio] thread
29.57 29.50 29.75 0.10 71% 71% Suspend [runnable->not runnable]
72.93 72.75 73.00 0.10 71% 28% Kill [runnable] thread
44 .89 44 .75 45.75 0.24 85% 85% Destroy [dead] thread
103.00 101.50 103.25 0.43 85% 14% Destroy [runnable] thread
175.21 171.50 197.50 6.37 85% 85% Resume [high priority] thread
84.11 79.50 197.25 1.77 98% 0% Thread switch
1.00 1.00 1.00 0.00 100% 100% Scheduler lock
20.06 20.00 20.25 0.09 75% 75% Scheduler unlock [0 threads]
20.00 20.00 20.00 0.00 100% 100% Scheduler unlock [l suspended]
20.06 20.00 20.25 0.09 75% 75% Scheduler unlock [many suspended]
20.06 20.00 20.25 0.09 75% 75% Scheduler unlock [many low prio]
4.00 4.00 4.00 0.00 100% 100% Init mutex
33.00 33.00 33.00 0.00 100% 100% Lock [unlocked] mutex
36.77 36.75 37.25 0.03 96% 96% Unlock [locked] mutex
28.13 28.00 28.25 0.13 100% 50% Trylock [unlocked] mutex
25.13 25.00 25.25 0.13 100% 50% Trylock [locked] mutex
4.88 4.75 5.00 0.13 100% 50% Destroy mutex
187.00 187.00 187.00 0.00 100% 100% Unlock/Lock mutex
10.00 10.00 10.00 0.00 100% 100% Create mbox
0.69 0.50 0.75 0.09 75% 25% Peek [empty] mbox

236

34.75 34.
0.69 0
35.00 35.
0.69 0
36.00 36.
36.00 36.
31.00 31.
29.50 29.
35.25 35.
27.69 27.
31.06 31.

0.94
0.94
37.81 37.
112.00 112.
3.19
25.38 25.
32.63 32.
24.25 24.
25.00 25.
4.00
4.88
124.50 124
6.50 6
1.25 1
1.44 1
36.25 36
5.25 5
12.25 12.
49.13 49.
2.81
48.50 48.
8.25
46.50 46.
485.42 482.
64.00 64.
1109.76 1100.
505.85 502.
96.26 95.
159.20 95.
159.73 110.
218.45 211.
28.24 25.
60.15 40.
472 424
All done,
All done
All done

0.
0.

3.

4.
4.

2.

8.

75

.50

00

.50

00
00
00
50
25
50
00
75
75
75
00

00
25
50
25
00
00
75

.50

.50
.25
.25
.25
.25

25
00
75
50
25
50
25
00
50
00
75
75
50
25

25

50

34.75 0.00 100% 100%
0.75 0.09 75% 25%
35.00 0.00 100% 100%
0.75 0.09 75% 25%
36.00 0.00 100% 100%
36.00 0.00 100% 100%
31.00 0.00 100% 100%
29.50 0.00 100% 100%
35.25 0.00 100% 100%
27.75 0.09 75% 25%
31.25 0.09 75% 75%
1.00 0.09 75% 25%
1.00 0.09 75% 25%
38.00 0.09 75% 75%
112.00 0.00 100% 100%
3.25 0.09 75% 25%
25.50 0.13 100% 50%
32.75 0.13 100% 50%
24.25 0.00 100% 100%
25.00 0.00 100% 100%
4.00 0.00 100% 100%
5.00 0.13 100% 50%
124.50 0.00 100% 100%
6.50 0.00 100% 100%
1.25 0.00 100% 100%
1.50 0.09 75% 25%
36.25 0.00 100% 100%
5.25 0.00 100% 100%
12.25 0.00 100% 100%
49.25 0.13 100% 50%
3.00 0.09 75% 75%
48.50 0.00 100% 100%
8.25 0.00 100% 100%
46.50 0.00 100% 100%
580.00 5.91 96% 96%
64.00 0.00 100% 100%
1198.00 16.53 90% 90%
621.00 7.20 96% 96%
161.25 1.02 99% 99%
160.75 2.52 97% 0%
161.75 1.53 97% %
445.75 3.55 97% 1%
43.25 0.00
221.50 0.00
572 (main stack: 1052)

main stack

stack used
Interrupt stack used
Idlethread stack used

Appendix B. Real-time characterization

Put
Peek
Put
Peek
Get

[first]
[1 msqg]

mbox
mbox
[second] mbox
[2 msgs]
[first] mbox
Get [second] mbox
Tryput [first]
Peek item [non-empty]
[non—-empty]
[empty]
[empty] mbox
Waiting to get mbox

mbox

mbox

mbox
Tryget mbox
Peek item mbox

Tryget

Waiting to put mbox
Delete mbox
Put/Get mbox

Init semaphore
Post [0]
Wait [1]
Trywait

semaphore
semaphore
[0]
[1]

Peek semaphore

semaphore
Trywait semaphore
Destroy semaphore
Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Create alarm
Initialize alarm
Disable alarm
Enable alarm
Delete alarm
Tick
Tick
Tick
Tick
Tick
Alarm

counter [1 alarm]

counter [many alarms]
& fire counter [1 alarm]

[>1 together]

& fire counters [>1 separately]
[0 threads]

[2 threads]

[many threads]

& fire counters

latency
Alarm latency
Alarm latency
Alarm —-> thread resume latency
Clock/interrupt latency

Clock DSR latency

Thread stack used (1912 total)
1052 size 2936
280 size 4096
516 size 2048

237

Appendix B. Real-time characterization

Timing complete - 30590 ms total

PASS:<Basic timing OK>
EXIT:<done>

Board: ARM Industrial Module AIM711 (S3C4510)

Board: ARM Industrial Module AIM711 (S3C4510)
CPU S3C4510B (ARM7TDMI core), 50MHz

8MB RAM, 2MB Flash

Startup, main stack stack used
Startup Interrupt stack used
Startup Idlethread stack used
eCos Kernel Timings

Notes: all times are in microseconds (.000001)

Reading the hardware clock takes 33 ’ticks’

82 size 2400
134 size 4096
91 size 2048

unless otherwise stated

overhead

this value will be factored out of all other measurements

Clock interrupt took

Testing parameters:

17.68 microseconds

(884 raw clock ticks)

Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Flags: 32
Alarms: 32
Confidence
Ave Min Max Var Ave Min Function
22.99 15.24 36.98 4.01 50% 26% Create thread
2.96 2.88 8.30 0.17 98% 98% Yield thread [all suspended]
3.57 3.36 8.76 0.26 93% 71% Suspend [suspended] thread
3.64 3.00 8.74 0.33 65% 20% Resume thread
5.44 4.78 15.10 0.42 75% 26% Set priority
0.77 0.20 1.98 0.25 59% 17% Get priority
14.46 12.40 33.02 1.03 85% 9% Kill [suspended] thread
2.95 2.88 7.44 0.14 98% 98% Yield [no other] thread
6.73 5.40 15.60 0.44 78% 6% Resume [suspended low prio] thread
3.59 2.98 7.18 0.28 56% 21% Resume [runnable low prio] thread
5.77 4.78 13.46 0.44 71% 18% Suspend [runnable] thread
2.97 2.88 8.86 0.18 98% 98% Yield [only low prio] thread
3.40 2.86 6.26 0.26 59% 17% Suspend [runnable->not runnable]
14.15 12.08 30.54 1.09 78% 23% Kill [runnable] thread

238

11

DN DN O

w O W W b O

OO O B WU OO OoO 0O O

N N
O W O O P O O N W W w o

o

.00
20.
23.
.40

35
77

.10
.01
.01
.01
.01

.67
.55
.84
.72
.22
.49
.13

.21
.63
.57
.52
.39
.51
.06
.01
.56
.25
.10
.86
.13
.60
.61
.51
.55

.53
.08
.64
.08
.72
.85
.80
.87

.18
.69
.26
.73
.79

.53

3.49

.93

e e =)

O N W b b O

w
N

O WO O WWWWE B DO OWwWO K

N N
O W O O P O O NDNMDWwDNDO

o

.74
17.
21.
.30

72
02

.08
.98
.98
.98
.98

.54
.14
.12
.18
.76
.34
.42

.06
.46
.64
.10
.46
.10
.00
.36
.70
.14
.82
.12
.28
.14
.14
.66
.00

.44
.76
.20
.66
.62
.52
.34
.54

.04
.52
.14
.24
.36

.44

3.02

.52

23.
43.
45.
.38

w D w w =

N
O W w o3 3 0N

w U0 =N

38
00
38

.52
.80
.80
.08
.68

.90
.40
.78
.86
.38
.26
.64

.12
.66
.12
.74
.00
.38
.86
.20
.22
.64
.02
.72
.20
.34
.90
.20
.46

.68
.02
L2
.40
.88
.30
.74
.64

.92
.84
.76
.62
.58

3.06
9.28
7.42

o = = O

o O O O O

O O O O O O O O O O O o o o o o o O O O O O O O

O O O O O O O o

o O O O O

(@)

.75
.26
.59
.18

.03
.06
.06
.06
.05

.21
.53
.56
.41
.26
.26
.66

.25
.22
.50
.23
.56
.22
.60
.38
.55
.49
.78
.47
.54
.22
.27
.53
.37

.15
.29
.40
.39
.20
.32
.39
.28

.24
.24
.18
.14
.19

.17
.45
.39

96%
96%
65%
68%
65%
93%
90%

96%
96%
75%
62%
75%
62%
81l%
68%
75%
75%
78%
81%
87%
68%
78%
84%
78%

96%
43%
53%
50%
96%
50%
46%
68%

96%
93%
78%
78%
78%

96%

50%

96%
87%
56%
56%
28%
84%
81%

96%
71%
18%
18%
43%
18%
18%
25%
37%

<

40%
21%
59%

9%
15%
50%
40%

90%
46%
50%
50%
96%
50%
37%
65%

96%
71%
78%
12%
15%

90%

46%

Appendix B. Real-time characterization

Destroy [dead] thread

Destroy [runnable] thread
Resume [high priority] thread
Thread switch

Scheduler lock
Scheduler unlock [0 threads]
1 suspended]

many suspended]

[
Scheduler unlock [
Scheduler unlock [
Scheduler unlock [many low prio]
Init mutex
Lock [unlocked] mutex
Unlock [locked] mutex
Trylock [unlocked] mutex
Trylock [locked] mutex
Destroy mutex
Unlock/Lock mutex

Create mbox

Peek [empty] mbox

Put [first] mbox

Peek [1 msg] mbox

Put [second] mbox

Peek [2 msgs] mbox

Get [first] mbox

Get [second] mbox
Tryput [first] mbox
Peek item [non-empty] mbox
Tryget [non-—-empty] mbox
Peek item [empty] mbox
Tryget [empty] mbox
Waiting to get mbox
Waiting to put mbox
Delete mbox

Put/Get mbox

Init semaphore

Post [0] semaphore
Wait [1] semaphore
Trywait [0] semaphore
Trywait [1] semaphore
Peek semaphore
Destroy semaphore
Post/Wait semaphore

Create counter
Get counter value
Set counter value
Tick counter
Delete counter

Init flag

Destroy flag
Mask bits in flag

239

Appendix B. Real-time characterization

240

Set bits in flag [no waiters]
Wait for flag [AND]

Wait for flag [OR]

Wait for flag [AND/CLR]

Wait for flag [OR/CLR]

Peek on flag

Create alarm

Initialize alarm
Disable alarm
Enable alarm
Delete alarm
Tick counter [1 alarm]
Tick counter [many alarms]
Tick & fire counter [1 alarm]

Tick & fire counters [>1 together]

3.58 3.12 9.38 0.46 50% 50%
7.48 7.22 12.90 0.35 96% 96%
4.92 4.66 11.22 0.39 96% 96%
4.58 4.30 11.66 0.44 96% 96%
4.39 4.12 11.02 0.43 96% 96%
0.06 0.00 1.40 0.11 87% 87%
1.82 1.58 8.02 0.40 96% 96%
7.27 6.54 17.86 0.77 93% 87%
3.30 2.58 7.28 0.60 56% 71%
7.60 5.82 14.72 0.84 81% 12%
3.86 3.06 9.20 0.67 53% 65%
4.03 3.90 7.18 0.23 96% 90%
25.12 24.98 28.82 0.24 96% 93%
7.92 7.64 14.00 0.40 96% 96%
155.10 154.42 161.04 0.37 90% %
29.27 29.02 35.48 0.42 96% 93%
17.87 17.32 49.30 0.56 98% 97%
24.39 22.02 63.60 1.43 57% 19%
55.33 52.72 62.44 1.11 67% 20%
37.98 36.54 170.56 2.17 97% 97%

29 0 259 (main stack: 805)
All done, main stack stack used
All done Interrupt stack used
All done Idlethread stack used

Timing complete - 28880 ms total

PASS:<Basic timing OK>
EXIT:<done>

Tick & fire counters [>1 separately]

Alarm latency [0 threads]

Alarm latency [2 threads]

Alarm latency [many threads]

Alarm —-> thread resume latency
Thread stack used (1120 total)

805 size 2400

163 size 4096

239 size 2048

Appendix C. GNU General Public License

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

241

Appendix C. GNU General Public License

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

242

Appendix C. GNU General Public License

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c¢) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete

243

Appendix C. GNU General Public License

244

machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further

Appendix C. GNU General Public License

restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

245

Appendix C. GNU General Public License

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

246

Appendix C. GNU General Public License

to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, the commands you use may

be called something other than ‘show w’ and ‘show ¢’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer” for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

247

Appendix C. GNU General Public License

248

proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

	eCos User Guide
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Key Features
	Chapter 2. eCos Overview
	Chapter 3. eCos Licence Overview
	Questions and answers
	Previous License

	Chapter 4. Notation and Conventions
	GDB and GCC Command Notation
	Directory and File System Conventions
	Version Conventions

	Chapter 5. Documentation Roadmap
	II. Installing eCos
	Chapter 6. System Requirements
	Chapter 7. Installation on Linux
	Chapter 8. Installation on Windows
	Chapter 9. Target Setup
	Connecting Via Serial Line
	Connecting Via Ethernet
	Using A Simulator Target
	Using A Synthetic Target

	III. Programming With eCos
	Chapter 10. Programming With eCos
	The Development Process
	eCos Configuration
	Integrity check of the eCos configuration
	Application Development Target Neutral Part
	Application Development Target Specific Part

	Chapter 11. Configuring and Building eCos from Source
	eCos Startup Configurations
	Configuration Tool on Windows and Linux Quick Start
	Ecosconfig on Windows and Linux Quick Start
	Selecting a Target

	Chapter 12. Running an eCos Test Case
	Using the Configuration Tool
	Using the command line
	Testing Filters

	Chapter 13. Building and Running Sample Applications
	eCos Hello World
	eCos hello world program listing

	A Sample Program with Two Threads
	eCos twothreaded program listing

	Chapter 14. More Features Clocks and Alarm Handlers
	A Sample Program with Alarms

	IV. The eCos Configuration Tool
	Chapter 15. Getting Started
	Introduction
	Invoking the eCos Configuration Tool
	On Linux
	On Windows

	The Component Repository
	eCos Configuration Tool Documents
	Configuration Save File
	Save the currently active document
	Open an existing document
	Open a document you have used recently
	Create a new blank document based on the Component Registry
	Save to a different file name

	Build and Install Trees

	Chapter 16. Getting Help
	Contextsensitive Help for Dialogs
	Contextsensitive Help for Other Windows
	Contextsensitive Help for Configuration Items
	Methods of Displaying HTML Help

	Chapter 17. Customization
	Window Placement
	Settings
	Settings: Display tab
	Labels
	Integer Items
	Font
	Miscellaneous

	Settings: Viewers tab
	View header files
	View documentation

	Chapter 18. Screen Layout
	Configuration Window
	Disabled items
	RightClicking

	Conflicts Window
	Output Window
	Properties Window
	Short Description Window

	Chapter 19. Updating the Configuration
	Adding and Removing Packages
	Platform Selection
	Using Templates
	Resolving conflicts
	Automatic resolution

	Chapter 20. Searching
	Chapter 21. Building
	Selecting Build Tools
	Selecting User Tools

	Chapter 22. Execution
	Properties
	Download Timeout
	Run time Timeout
	Connection
	Executables Tab
	Output Tab
	Summary Tab

	Chapter 23. Creating a Shell
	Keyboard Accelerators

	V. eCos Programming Concepts and Techniques
	Chapter 24. CDL Concepts
	About this chapter
	Background
	Configurations

	Component Repository
	Component Definition Language
	Packages
	Configuration Items
	Expressions
	Properties
	Inactive Items

	Conflicts
	Templates

	Chapter 25. The Component Repository and Working Directories
	Component Repository
	Purpose
	How is it modified?
	When is it edited manually?
	User Applications
	Examples of files in this hierarchy:

	Build Tree
	Purpose
	How is it modified?
	User applications
	Examples of files in this hierarchy

	Install Tree
	Purpose
	How is it modified?
	When is it edited manually?
	User applications
	Examples of files in this hierarchy

	Application Build Tree

	Chapter 26. Compiler and Linker Options
	Compiling a C Application
	Compiling a C++ Application

	Chapter 27. Debugging Techniques
	Tracing
	Kernel Instrumentation

	VI. Configuration and the Package Repository
	Chapter 28. Manual Configuration
	Directory Tree Structure
	Creating the Build Tree
	ecosconfig qualifiers
	ecosconfig commands

	Conflicts and constraints
	Building the System
	Packages
	Coarsegrained Configuration
	Finegrained Configuration
	Editing an eCos Savefile
	Header
	Toplevel Section
	Conflicts Section
	Data Section
	Tcl Syntax

	Editing the Sources
	Modifying the Memory Layout

	Chapter 29. Managing the Package Repository
	Package Installation
	Using the Administration Tool
	Using the command line

	Package Structure

	VII. Appendixes
	Appendix A. Target Setup
	MN10300 stdeval1 Hardware Setup
	MN10300 Architectural Simulator Setup
	AM33 STB Hardware Setup
	Use with GDB Stub ROM
	Use with the JTAG debugger
	Building the GDB stub ROM image

	TX39 Hardware Setup
	TX39 Architectural Simulator Setup
	TX49 Hardware Setup
	Preparing the GDB stubs
	Building the GDB stub image with the eCos Configuration Tool
	Building the GDB stub image with ecosconfig

	Installing GDB stubs into FLASH

	VR4300 Hardware Setup
	VRC4375 Hardware Setup
	Atlas/Malta Hardware Setup
	PowerPC Cogent Hardware Setup
	Installing the Stubs into ROM
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM or FLASH

	PowerPC MBX860 Hardware Setup
	Installing the Stubs into FLASH
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM
	Installing the Stubs into FLASH
	Program FLASH

	PowerPC Architectural Simulator Setup
	SPARClite Hardware Setup
	Ethernet Setup
	BOOTP/DHCP service on Linux
	BOOTP/DHCP boot process

	Serial Setup

	SPARClite Architectural Simulator Setup
	ARM PID Hardware Setup
	Installing the Stubs into FLASH
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig
	Building the FLASH Tool with the eCos Configuration Tool
	Building the FLASH Tool with ecosconfig
	Prepare the Board for FLASH Programming
	Program the FLASH
	Programming the FLASH for bigendian mode

	Installing the Stubs into ROM

	ARM AEB1 Hardware Setup
	Overview
	Talking to the Board
	Downloading the Stubs via the Rom Menu
	Activating the GDB Stubs
	Building the GDB Stub FLASH ROM Images
	Building the GDB Stubs with the eCos Configuration Tool
	Building the GDB Stub ROMs with ecosconfig

	ARM Cogent CMA230 Hardware Setup
	Building the GDB Stub FLASH ROM images
	Building the GDB Stubs with the eCos Configuration Tool
	Building the GDB Stub ROMs with ecosconfig

	Cirrus Logic ARM EP7211 Development Board Hardware Setup
	Building programs for programming into FLASH
	Building the GDB Stub FLASH ROM images
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig
	Loading the ROM Image into Onboard Flash
	Building the Flash Downloader on Linux
	Developing eCos Programs with the ARM MultiICE

	Cirrus Logic ARM EP7212 Development Board Hardware Setup
	Cirrus Logic ARM EP7312 Development Board Hardware Setup
	90MHz Operation

	Cirrus Logic ARM EP7209 Development Board Hardware Setup
	Cirrus Logic ARM CLPS7111 Evaluation Board Hardware Setup
	StrongARM EBSA285 Hardware Setup
	Building the GDB Stub FLASH ROM images
	Building the GDB Stubs with the eCos Configuration Tool
	Building the GDB Stub ROMs with ecosconfig
	Loading the ROM Image into Onboard Flash
	Running your eCos Program Using GDB and the StubROM

	Compaq iPAQ PocketPC Hardware Setup
	Arm Industrial Module AIM 711 Hardware Setup
	Setup Hardware
	Power supply
	Serial devices
	Ethernet

	Installing RedBoot into FLASH
	Using RedBoot
	Using JTAG

	More documentation

	SH3/EDK7708 Hardware Setup
	Installing the Stubs into FLASH
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM or FLASH

	SH3/CQ7708 Hardware Setup
	Preparing the board
	eCos GDB Stubs
	Preparing the GDB stubs
	Building the GDB stub image with the eCos Configuration Tool
	Building the GDB stub image with ecosconfig

	Programming the stubs in EPROM/FLASH

	SH3/HS7729PCI Hardware Setup
	SH3/SE77x9 Hardware Setup
	SH4/CQ7750 Hardware Setup
	Preparing the board
	eCos GDB Stubs
	Preparing the GDB stubs
	Building the GDB stub image with the eCos Configuration Tool
	Building the GDB stub image with ecosconfig

	Programming the stubs in EPROM/FLASH

	SH4/SE7751 Hardware Setup
	NEC CEBV850/SA1 Hardware Setup
	Installing the Stubs into ROM
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM or FLASH

	Debugging with the NEC V850 I.C.E.
	INITIAL SETUP
	BUILD PROCEDURES
	V850ICE.EXE EXECUTION
	V850ELFGDB EXECUTION
	MDI INTERFACE VS. GDB INTERFACE
	eCos THREAD DEBUGGING

	NEC CEBV850/SB1 Hardware Setup
	i386 PC Hardware Setup
	RedBoot Support
	Floppy Disk Support
	GRUB Bootloader Support
	Debugging FLOPPY and GRUB Applications

	i386/Linux Synthetic Target Setup
	Tools

	Appendix B. Realtime characterization
	Board: ARM AEB1 Revision B Evaluation Board
	Board: Atmel AT91/EB40
	Board: Intel StrongARM EBSA285 Evaluation Board
	Board: Cirrus Logic EDB71112 Development Board
	CPU : Cirrus Logic EP7211 73MHz
	CPU : Cirrus Logic EP7212 73MHz

	Board: ARM PID Evaluation Board
	CPU : ARM 7TDMI 20 MHz
	CPU : ARM 920T 20 MHz

	Board: Intel IQ80310 XScale Development Kit
	Board: Toshiba JMR3904 Evaluation Board
	Board: Toshiba REF 4955
	Board: Matsushita STDEVAL1 Board
	Board: Fujitsu SPARClite Evaluation Board
	Board: Cogent CMA MPC860 (PowerPC) Evaluation
	Board: NEC VR4373
	Board: Intel SA1110 (Assabet)
	Board: Intel SA1100 (Brutus)
	Board: Motorola MBX
	Board: Hitachi EDK7708
	Board: CQ CqREEK SH3 Evaluation Board (cq7708)
	Board: Hitachi HS7729PCI HS7729 SH3
	Board: Hitachi Solution Engine 7751 SH4 (se7751)
	Board: PC
	Board: NEC V850 Cosmo Evaluation Board
	Board: NEC V850 Cosmo Evaluation Board
	Board: ARM Industrial Module AIM711 (S3C4510)

	Appendix C. GNU General Public License

