
eCos Reference Manual

eCos Reference Manual
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Red Hat, Inc.Nick Garnett (eCosCentric)Jonathan Larmour
(eCosCentric)Andrew Lunn (Ascom)Gary Thomas (MLB Associates)Bart Veer (eCosCentric)

Documentation licensing terms

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is

presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright

holder.

Trademarks

Altera® and Excalibur™ are trademarks of Altera Corporation.

AMD® is a registered trademark of Advanced Micro Devices, Inc.

ARM®, StrongARM®, Thumb®, ARM7™, ARM9™ is a registered trademark of Advanced RISC Machines, Ltd.

Cirrus Logic® and Maverick™ are registered trademarks of Cirrus Logic, Inc.

Cogent™ is a trademark of Cogent Computer Systems, Inc.

Compaq® is a registered trademark of the Compaq Computer Corporation.

Fujitsu® is a registered trademark of Fujitsu Limited.

IBM®, and PowerPC™ are trademarks of International Business Machines Corporation.

IDT® is a registered trademark of Integrated Device Technology Inc.

Intel®, i386™, Pentium®, StrataFlash® and XScale™ are trademarks of Intel Corporation.

Intrinsyc® and Cerf™ are trademarks of Intrinsyc Software, Inc.

Linux® is a registered trademark of Linus Torvalds.

Matsushita™ and Panasonic® are trademarks of the Matsushita Electric Industrial Corporation.

Microsoft®, Windows®, Windows NT® and Windows XP® are registered trademarks of Microsoft Corporation, Inc.

MIPS®, MIPS32™ MIPS64™, 4K™, 5K™ Atlas™ and Malta™ are trademarks of MIPS Technologies, Inc.

Motorola®, ColdFire® is a trademark of Motorola, Inc.

NEC® V800™, V850™, V850/SA1™, V850/SB1™, VR4300™, and VRC4375™ are trademarks of NEC Corporation.

PMC-Sierra® RM7000™ and Ocelot™ are trademarks of PMC-Sierra Incorporated.

Red Hat, eCos™, RedBoot™, GNUPro®, and Insight™ are trademarks of Red Hat, Inc.

Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.

Sharp® is a registered trademark of Sharp Electronics Corp.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SuperH™ and Renesas™ are trademarks owned by Renesas Technology Corp.

Texas Instruments®, OMAP™ and Innovator™ are trademarks of Texas Instruments Incorporated.

Toshiba® is a registered trademark of the Toshiba Corporation.

UNIX® is a registered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

Warranty

eCos and RedBoot are open source software, covered by a modified version of the GNU General Public Licence (http://www.gnu.org/copyleft/gpl.html),

and you are welcome to change it and/or distribute copies of it under certain conditions. See http://ecos.sourceware.org/license-overview.html for more

information about the license.

eCos and RedBoot software have NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted by applicable law. Except when otherwise stated in

writing, the copyright holders and/or other parties provide the software “as is” without warranty of any kind, either expressed or implied, including, but

not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the

software is with you. Should the software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or any other party who may modify and/or redistribute

the program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use

or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a

failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

Table of Contents
I. The eCos Kernel... xxi

Kernel Overview... 23
SMP Support... 31
Thread creation... 35
Thread information... 39
Thread control... 43
Thread termination.. 45
Thread priorities.. 47
Per-thread data.. 49
Thread destructors... 51
Exception handling... 53
Counters.. 55
Clocks.. 57
Alarms... 59
Mutexes... 61
Condition Variables... 67
Semaphores... 71
Mail boxes... 73
Event Flags.. 75
Spinlocks... 79
Scheduler Control... 81
Interrupt Handling... 83
Kernel Real-time Characterization.. 89

II. The eCos Hardware Abstraction Layer (HAL) ..xcix

1. Introduction... 1
2. Architecture, Variant and Platform... 3
3. General principles... 5
4. HAL Interfaces.. 7

Base Definitions... 7
Byte order... 7
Label Translation... 7
Base types.. 7
Atomic types.. 8

Architecture Characterization.. 8
Register Save Format... 8
Thread Context Initialization... 8
Thread Context Switching... 9
Bit indexing.. 9
Idle thread activity... 10
Reorder barrier... 10
Breakpoint support... 10
GDB support.. 10
Setjmp and longjmp support.. 11
Stack Sizes... 11
Address Translation... 11
Global Pointer.. 12

Interrupt Handling... 12
Vector numbers.. 12
Interrupt state control... 13

v

ISR and VSR management.. 13
Interrupt controller management.. 14

Clocks and Timers... 15
Clock Control... 15
Microsecond Delay.. 15
Clock Frequency Definition... 16

HAL I/O... 17
Register address... 17
Register read.. 17
Register write... 18

Cache Control.. 18
Cache Dimensions... 19
Global Cache Control.. 19
Cache Line Control.. 20

Linker Scripts.. 21
Diagnostic Support.. 22
SMP Support... 22

Target Hardware Limitations... 23
HAL Support.. 23

CPU Control... 24
Test-and-set Support... 24
Spinlocks.. 25
Scheduler Lock... 25
Interrupt Routing.. 26

5. Exception Handling... 27
HAL Startup.. 27
Vectors and VSRs.. 28
Default Synchronous Exception Handling.. 30
Default Interrupt Handling.. 30

6. Porting Guide.. 33
Introduction... 33
HAL Structure... 33

HAL Classes.. 33
File Descriptions.. 34

Common HAL.. 34
Architecture HAL... 35
Variant HAL... 36
Platform HAL... 37
Auxiliary HAL ... 37

Virtual Vectors (eCos/ROM Monitor Calling Interface)... 37
Virtual Vectors... 38

Initialization (or Mechanism vs. Policy).. 38
Pros and Cons of Virtual Vectors... 38
Available services... 39

The COMMS channels.. 40
Console and Debugging Channels... 40
Mangling.. 40
Controlling the Console Channel... 40
Footnote: Design Reasoning for Control of Console Channel................................... 41

The calling Interface API... 42
Implemented Services.. 42
Compatibility.. 44

vi

Implementation details... 44
New Platform Ports.. 44
New architecture ports.. 44

IO channels.. 45
Available Procedures.. 45
Usage.. 46
Compatibility.. 47
Implementation Details.. 47
New Platform Ports.. 47

HAL Coding Conventions... 48
Implementation issues.. 48
Source code details.. 48
Nested Headers.. 49

Platform HAL Porting... 50
HAL Platform Porting Process.. 50

Brief overview.. 50
Step-by-step.. 51

Minimal requirements... 51
Adding features... 53

Hints... 54
HAL Platform CDL... 54

eCos Database.. 55
CDL File Layout.. 55
Startup Type... 56
Build options.. 57
Common Target Options.. 58

Platform Memory Layout.. 61
Layout Files.. 61
Reserved Regions... 61

Platform Serial Device Support... 61
Variant HAL Porting.. 63

HAL Variant Porting Process... 63
HAL Variant CDL.. 63
Cache Support.. 65

Architecture HAL Porting... 66
HAL Architecture Porting Process.. 66
CDL Requirements.. 71

7. Future developments... 75

III. The ISO Standard C and Math Libraries ... 77

8. C and math library overview... 79
Included non-ISO functions.. 79
Math library compatibility modes... 80

matherr().. 80
Thread-safety and re-entrancy... 82

Some implementation details.. 82
Thread safety... 83
C library startup... 84

vii

IV. I/O Package (Device Drivers).. 87

9. Introduction... 89
10. User API.. 91
11. Serial driver details.. 93

Raw Serial Driver.. 93
Runtime Configuration.. 93
API Details... 94

cyg_io_write... 95
cyg_io_read.. 95
cyg_io_get_config.. 95
cyg_io_set_config... 97

TTY driver... 98
Runtime configuration... 99
API details.. 99

12. How to Write a Driver... 101
How to Write a Serial Hardware Interface Driver... 102

DevTab Entry... 102
Serial Channel Structure.. 103
Serial Functions Structure.. 104
Callbacks.. 105

Serial testing with ser_filter... 106
Rationale.. 106
The Protocol... 106
The Serial Tests.. 107
Serial Filter Usage.. 108
A Note on Failures... 109
Debugging.. 109

13. Device Driver Interface to the Kernel... 111
Interrupt Model.. 111
Synchronization... 111
SMP Support... 112
Device Driver Models.. 112
Synchronization Levels... 113
The API... 114

cyg_drv_isr_lock.. 114
cyg_drv_isr_unlock.. 114
cyg_drv_spinlock_init.. 115
cyg_drv_spinlock_destroy... 115
cyg_drv_spinlock_spin.. 116
cyg_drv_spinlock_clear... 116
cyg_drv_spinlock_try.. 116
cyg_drv_spinlock_test... 117
cyg_drv_spinlock_spin_intsave... 117
cyg_drv_spinlock_clear_intsave.. 118
cyg_drv_dsr_lock... 118
cyg_drv_dsr_unlock... 119
cyg_drv_mutex_init... 119
cyg_drv_mutex_destroy... 120
cyg_drv_mutex_lock.. 120
cyg_drv_mutex_trylock... 120
cyg_drv_mutex_unlock.. 121

viii

cyg_drv_mutex_release... 121
cyg_drv_cond_init... 122
cyg_drv_cond_destroy... 122
cyg_drv_cond_wait.. 123
cyg_drv_cond_signal... 123
cyg_drv_cond_broadcast... 124
cyg_drv_interrupt_create... 124
cyg_drv_interrupt_delete... 125
cyg_drv_interrupt_attach... 125
cyg_drv_interrupt_detach.. 126
cyg_drv_interrupt_mask.. 126
cyg_drv_interrupt_mask_intunsafe.. 126
cyg_drv_interrupt_unmask.. 127
cyg_drv_interrupt_unmask_intunsafe.. 127
cyg_drv_interrupt_acknowledge.. 128
cyg_drv_interrupt_configure.. 128
cyg_drv_interrupt_level... 129
cyg_drv_interrupt_set_cpu.. 129
cyg_drv_interrupt_get_cpu.. 130
cyg_ISR_t.. 130
cyg_DSR_t... 131

V. File System Support Infrastructure ... 133

14. Introduction... 135
15. File System Table.. 137
16. Mount Table.. 139
17. File Table... 141
18. Directories... 143
19. Synchronization.. 145
20. Initialization and Mounting... 147
21. Sockets.. 149
22. Select... 151
23. Devices.. 153
24. Writing a New Filesystem... 155

VI. PCI Library .. 159

25. The eCos PCI Library... 161
PCI Library.. 161

PCI Overview... 161
Initializing the bus.. 161
Scanning for devices.. 161
Generic config information.. 162
Specific config information.. 163
Allocating memory.. 163
Interrupts.. 164
Activating a device... 164
Links .. 165

PCI Library reference.. 165
PCI Library API... 165
Definitions.. 165
Types and data structures... 165
Functions.. 166
Resource allocation.. 168

ix

PCI Library Hardware API.. 169
HAL PCI support... 169

VII. FLASH Library .. 171

26. The eCos FLASH Library... 173
FLASH Library ... 173

Initializing the FLASH library... 173
Retrieving information about the FLASH... 173
Reading from FLASH.. 174
Erasing areas of FLASH.. 174
Programming the FLASH.. 174
Locking and unlocking blocks... 174
Return values and errors.. 175
Notes on using the FLASH library.. 175
Danger, Will Robinson! Danger!... 175

VIII. SPI Support .. 177

Overview... 179
SPI Interface.. 183
Porting to New Hardware.. 187

IX. I2C Support .. 189

Overview... 191
I2C Interface.. 193
Porting to New Hardware.. 197

X. eCos POSIX compatibility layer... 203

27. POSIX Standard Support.. 205
Process Primitives [POSIX Section 3].. 205

Functions Implemented.. 205
Functions Omitted.. 205
Notes.. 206

Process Environment [POSIX Section 4].. 206
Functions Implemented.. 206
Functions Omitted.. 206
Notes.. 207

Files and Directories [POSIX Section 5]... 207
Functions Implemented.. 208
Functions Omitted.. 208
Notes.. 208

Input and Output [POSIX Section 6]... 208
Functions Implemented.. 209
Functions Omitted.. 209
Notes.. 209

Device and Class Specific Functions [POSIX Section 7].. 209
Functions Implemented.. 209
Functions Omitted.. 210
Notes.. 210

C Language Services [POSIX Section 8].. 210
Functions Implemented.. 210
Functions Omitted.. 210
Notes.. 211

System Databases [POSIX Section 9]... 211
Functions Implemented.. 211

x

Functions Omitted.. 211
Notes.. 211

Data Interchange Format [POSIX Section 10].. 211
Synchronization [POSIX Section 11].. 211

Functions Implemented.. 212
Functions Omitted.. 212
Notes.. 212

Memory Management [POSIX Section 12].. 213
Functions Implemented.. 213
Functions Omitted.. 213
Notes.. 213

Execution Scheduling [POSIX Section 13]... 213
Functions Implemented.. 213
Functions Omitted.. 214
Notes.. 214

Clocks and Timers [POSIX Section 14].. 215
Functions Implemented.. 215
Functions Omitted.. 215
Notes.. 215

Message Passing [POSIX Section 15]... 215
Functions Implemented.. 215
Functions Omitted.. 216
Notes.. 216

Thread Management [POSIX Section 16]... 216
Functions Implemented.. 216
Functions Omitted.. 217
Notes.. 217

Thread-Specific Data [POSIX Section 17].. 217
Functions Implemented.. 217
Functions Omitted.. 217
Notes.. 218

Thread Cancellation [POSIX Section 18]... 218
Functions Implemented.. 218
Functions Omitted.. 218
Notes.. 218

Non-POSIX Functions... 218
General I/O Functions.. 218
Socket Functions.. 219
Notes.. 219

References and Bibliography.. 221

XI. µITRON .. 221

28.µITRON API... 223
Introduction toµITRON.. 223
µITRON andeCos... 223
Task Management Functions... 224

Error checking.. 225
Task-Dependent Synchronization Functions... 225

Error checking.. 226
Synchronization and Communication Functions... 226

Error checking.. 228
Extended Synchronization and Communication Functions.. 229

xi

Interrupt management functions.. 229
Error checking.. 230

Memory pool Management Functions... 230
Error checking.. 231

Time Management Functions.. 232
Error checking.. 233

System Management Functions... 233
Error checking.. 234

Network Support Functions... 234
µITRON Configuration FAQ... 234

XII. TCP/IP Stack Support for eCos .. 239

29. Ethernet Driver Design.. 241
30. Sample Code... 243
31. Configuring IP Addresses... 245
32. Tests and Demonstrations... 247

Loopback tests... 247
Building the Network Tests... 247
Standalone Tests.. 247
Performance Test... 248
Interactive Tests... 249
Maintenance Tools... 250

33. Support Features... 251
TFTP.. 251
DHCP.. 253

34. TCP/IP Library Reference.. 255
getdomainname.. 255
gethostname... 256
byteorder.. 257
ethers.. 258
getaddrinfo... 260
gethostbyname... 265
getifaddrs... 267
getnameinfo... 269
getnetent.. 272
getprotoent... 273
getrrsetbyname.. 275
getservent... 276
if_nametoindex.. 278
inet... 279
inet6_option_space.. 282
inet6_rthdr_space.. 286
inet_net.. 289
ipx .. 290
iso_addr... 291
link_addr.. 292
net_addrcmp.. 293
ns.. 294
resolver.. 295
accept... 298
bind.. 299
connect... 301

xii

getpeername... 302
getsockname.. 304
getsockopt.. 305
ioctl .. 308
poll ... 309
select.. 311
send.. 313
shutdown.. 316
socket... 316
socketpair... 319

XIII. FreeBSD TCP/IP Stack port for eCos ... 321

35. Networking Stack Features... 323
36. Freebsd TCP/IP stack port.. 325

Targets... 325
Building the Network Stack.. 325

37. APIs... 327
Standard networking.. 327
Enhanced Select().. 327

XIV. OpenBSD TCP/IP Stack port for eCos.. 329

38. Networking Stack Features... 331
Introduction... 331

39. OpenBSD TCP/IP stack port... 333
Targets... 333
Building the Network Stack.. 333
Inclusion of bridge code.. 333

40. APIs... 335
Standard networking.. 335
Enhanced Select().. 335
OpenBSD networking facilities... 336
Bridging... 339
Spanning Tree Protocol... 346

XV. DNS for eCos and RedBoot.. 349

41. DNS... 351
DNS API.. 351
DNS Client Testing.. 352

XVI. IPSEC for eCos.. 355

42. Installation and Configuration... 357
43. libipsec Reference... 359

ipsec_set_policy.. 359
ipsec_strerror... 361

XVII. eCos PPP User Guide.. 363

44. Features... 365
45. Using PPP... 367
46. PPP Interface... 371

cyg_ppp_options_init().. 371
cyg_ppp_up()... 375
cyg_ppp_down().. 377
cyg_ppp_wait_up().. 379
cyg_ppp_wait_down()... 381
cyg_ppp_chat().. 383

xiii

47. Installing and Configuring PPP... 385
Including PPP in a Configuration.. 385
Configuring PPP.. 385

48. CHAT Scripts.. 389
Chat Script... 389
ABORT Strings... 390
TIMEOUT ... 390
Sending EOT... 391
Escape Sequences.. 391

49. PPP Enabled Device Drivers... 393
50. Testing... 395

Test Programs.. 395
Test Script.. 396

XVIII. Ethernet Device Drivers ... 399

51. Generic Ethernet Device Driver.. 401
Generic Ethernet API.. 401
Review of the functions... 403

Init function.. 403
Start function.. 404
Stop function.. 404
Control function... 404
Can-send function.. 405
Send function... 406
Deliver function... 406
Receive function.. 407
Poll function... 407
Interrupt-vector function.. 408

Upper Layer Functions.. 408
Callback Init function.. 408
Callback Tx-Done function.. 408
Callback Receive function... 408

Calling graph for Transmission and Reception... 409
Transmission.. 409
Receive... 410

XIX. Ethernet PHY Device Support ... 411

52. Ethernet PHY Device Support.. 413
Ethernet PHY Device API... 413

XX. SNMP ... 415

53. SNMP foreCos... 417
Version... 417
SNMP packages in theeCossource repository... 417
MIBs supported... 417
Changes to eCos sources... 418
Starting the SNMP Agent.. 418
Configuring eCos... 419

Version usage (v1, v2 or v3).. 419
Traps... 420
snmpd.conf file ... 420

Test cases... 421
SNMP clients and package use.. 421

xiv

Unimplemented features.. 422
MIB Compiler ... 422
snmpd.conf.. 423

XXI. Embedded HTTP Server .. 433

54. Embedded HTTP Server... 435
Intrduction... 435
Server Organization... 435
Server Configuration... 436

CYGNUM_HTTPD_SERVER_PORT... 436
CYGDAT_HTTPD_SERVER_ID... 436
CYGNUM_HTTPD_THREAD_COUNT... 436
CYGNUM_HTTPD_THREAD_PRIORITY... 436
CYGNUM_HTTPD_THREAD_STACK_SIZE... 436
CYGNUM_HTTPD_SERVER_BUFFER_SIZE... 437
CYGNUM_HTTPD_SERVER_AUTO_START... 437
CYGNUM_HTTPD_SERVER_DELAY... 437

Support Functions and Macros.. 437
HTTP Support.. 437
General HTML Support... 438
Table Support... 438
Forms Support.. 438
Predefined Handlers... 439

System Monitor... 440

XXII. FTP Client for eCos TCP/IP Stack ... 441

55. FTP Client Features.. 443
FTP Client API.. 443

ftp_get.. 443
ftp_put.. 443
ftpclient_printf... 443

XXIII. Simple Network Time Protocol Client .. 445

56. The SNTP Client... 447
Starting the SNTP client.. 447
What it does... 447
Configuring the unicast list of NTP servers.. 447
Warning: timestamp wrap around.. 448
The SNTP test program... 448

XXIV. Memory Allocation ... 449

57. eCos Memory Pools.. 451
eCos Memory pools... 451

Variable Size Allocation Pools... 451
Fixed Size Allocation Pools... 453
stdlib malloc Pools... 455

XXV. CRC Algorithms ... 457

58. CRC Functions.. 459
CRC API.. 459

cyg_posix_crc32.. 459
cyg_crc32... 459
cyg_ether_crc32... 459
cyg_crc16... 459

xv

XXVI. CPU load measurements.. 461

59. CPU Load Measurements... 463
CPU Load API... 463

cyg_cpuload_calibrate... 463
cyg_cpuload_create.. 463
cyg_cpuload_delete.. 463
cyg_cpuload_get.. 463
Implementation details... 464

XXVII. gprof Profiling Support .. 465

Profiling... 467

XXVIII. eCos Power Management Support... 475

Introduction... 477
Power Management Information... 481
Changing Power Modes.. 485
Support for Policy Modules.. 487
Attached and Detached Controllers.. 489
Implementing a Power Controller... 491

XXIX. eCos USB Slave Support.. 495

Introduction... 497
USB Enumeration Data... 501
Starting up a USB Device... 507
Devtab Entries... 509
Receiving Data from the Host... 513
Sending Data to the Host.. 515
Halted Endpoints... 517
Control Endpoints... 519
Data Endpoints.. 525
Writing a USB Device Driver... 527
Testing... 533

XXX. eCos Support for Developing USB-ethernet Peripherals... 543

Introduction... 545
Initializing the USB-ethernet Package.. 547
USB-ethernet Data Transfers.. 549
USB-ethernet State Handling.. 551
Network Device for the eCos TCP/IP Stack... 553
Example Host-side Device Driver... 555
Communication Protocol.. 557

XXXI. eCos Synthetic Target... 559

Overview... 561
Installation... 565
Running a Synthetic Target Application... 567
The I/O Auxiliary’s User Interface... 573
The Console Device.. 579
System Calls.. 581
Writing New Devices - target.. 583
Writing New Devices - host.. 589
Porting... 599

XXXII. SA11X0 USB Device Driver ... 603

SA11X0 USB Device Driver.. 605

xvi

XXXIII. NEC uPD985xx USB Device Driver ... 609

NEC uPD985xx USB Device Driver.. 611

XXXIV. Synthetic Target Ethernet Driver ... 615

Synthetic Target Ethernet Driver... 617

XXXV. Synthetic Target Watchdog Device.. 623

Synthetic Target Watchdog Device... 625

XXXVI. Dallas DS1307 Wallclock Device Driver.. 629

Dallas DS1307 Wallclock Device Driver.. 631

xvii

xviii

List of Tables
8-1. Behavior of math exception handling.. 81

xix

xx

I. The eCos Kernel

Kernel Overview

Name
Kernel — Overview of the eCos Kernel

Description
The kernel is one of the key packages in all of eCos. It provides the core functionality needed for developing
multi-threaded applications:

1. The ability to create new threads in the system, either during startup or when the system is already running.

2. Control over the various threads in the system, for example manipulating their priorities.

3. A choice of schedulers, determining which thread should currently be running.

4. A range of synchronization primitives, allowing threads to interact and share data safely.

5. Integration with the system’s support for interrupts and exceptions.

In some other operating systems the kernel provides additional functionality. For example the kernel may also
provide memory allocation functionality, and device drivers may be part of the kernel as well. This is not the
case for eCos. Memory allocation is handled by a separate package. Similary each device driver will typically
be a separate package. Various packages are combined and configured using the eCos configuration technology
to meet the requirements of the application.

The eCos kernel package is optional. It is possible to write single-threaded applications which do not use any
kernel functionality, for example RedBoot. Typically such applications are based around a central polling loop,
continually checking all devices and taking appropriate action when I/O occurs. A small amount of calculation
is possible every iteration, at the cost of an increased delay between an I/O event occurring and the polling loop
detecting the event. When the requirements are straightforward it may well be easier to develop the application
using a polling loop, avoiding the complexities of multiple threads and synchronization between threads. As
requirements get more complicated a multi-threaded solution becomes more appropriate, requiring the use
of the kernel. In fact some of the more advanced packages in eCos, for example the TCP/IP stack, use multi-
threading internally. Therefore if the application uses any of those packages then the kernel becomes a required
package, not an optional one.

The kernel functionality can be used in one of two ways. The kernel provides its own C API, with functions
like cyg_thread_create andcyg_mutex_lock . These can be called directly from application code or from
other packages. Alternatively there are a number of packages which provide compatibility with existing API’s,
for example POSIX threads orµITRON. These allow application code to call standard functions such as
pthread_create , and those functions are implemented using the basic functionality provided by the eCos
kernel. Using compatibility packages in an eCos application can make it much easier to reuse code developed
in other environments, and to share code.

Although the different compatibility packages have similar requirements on the underlying kernel, for example
the ability to create a new thread, there are differences in the exact semantics. For example, strictµITRON
compliance requires that kernel timeslicing is disabled. This is achieved largely through the configuration
technology. The kernel provides a number of configuration options that control the exact semantics that are
provided, and the various compatibility packages require particular settings for those options. This has two
important consequences. First, it is not usually possible to have two different compatibility packages in one
eCos configuration because they will have conflicting requirements on the underlying kernel. Second, the
semantics of the kernel’s own API are only loosely defined because of the many configuration options. For

23

Kernel Overview

examplecyg_mutex_lock will always attempt to lock a mutex, but various configuration options determine
the behaviour when the mutex is already locked and there is a possibility of priority inversion.

The optional nature of the kernel package presents some complications for other code, especially device
drivers. Wherever possible a device driver should work whether or not the kernel is present. However there
are some parts of the system, especially those related to interrupt handling, which should be implemented
differently in multi-threaded environments containing the eCos kernel and in single-threaded environments
without the kernel. To cope with both scenarios the common HAL package provides a driver API, with func-
tions such ascyg_drv_interrupt_attach . When the kernel package is present these driver API functions
map directly on to the equivalent kernel functions such ascyg_interrupt_attach , using macros to avoid any
overheads. When the kernel is absent the common HAL package implements the driver API directly, but this
implementation is simpler than the one in the kernel because it can assume a single-threaded environment.

Schedulers
When a system involves multiple threads, a scheduler is needed to determine which thread should currently
be running. The eCos kernel can be configured with one of two schedulers, the bitmap scheduler and the
multi-level queue (MLQ) scheduler. The bitmap scheduler is somewhat more efficient, but has a number of
limitations. Most systems will instead use the MLQ scheduler. Other schedulers may be added in the future,
either as extensions to the kernel package or in separate packages.

Both the bitmap and the MLQ scheduler use a simple numerical priority to determine which thread should
be running. The number of priority levels is configurable via the optionCYGNUM_KERNEL_SCHED_PRIORITIES,
but a typical system will have up to 32 priority levels. Therefore thread priorities will be in the range 0 to 31,
with 0 being the highest priority and 31 the lowest. Usually only the system’s idle thread will run at the lowest
priority. Thread priorities are absolute, so the kernel will only run a lower-priority thread if all higher-priority
threads are currently blocked.

The bitmap scheduler only allows one thread per priority level, so if the system is configured with 32 priority
levels then it is limited to only 32 threads — still enough for many applications. A simple bitmap can be
used to keep track of which threads are currently runnable. Bitmaps can also be used to keep track of threads
waiting on a mutex or other synchronization primitive. Identifying the highest-priority runnable or waiting
thread involves a simple operation on the bitmap, and an array index operation can then be used to get hold of
the thread data structure itself. This makes the bitmap scheduler fast and totally deterministic.

The MLQ scheduler allows multiple threads to run at the same priority. This means that there is no limit on
the number of threads in the system, other than the amount of memory available. However operations such as
finding the highest priority runnable thread are a little bit more expensive than for the bitmap scheduler.

Optionally the MLQ scheduler supports timeslicing, where the scheduler automatically switches from one
runnable thread to another when some number of clock ticks have occurred. Timeslicing only comes into
play when there are two runnable threads at the same priority and no higher priority runnable threads. If
timeslicing is disabled then a thread will not be preempted by another thread of the same priority, and
will continue running until either it explicitly yields the processor or until it blocks by, for example,
waiting on a synchronization primitive. The configuration optionsCYGSEM_KERNEL_SCHED_TIMESLICEand
CYGNUM_KERNEL_SCHED_TIMESLICE_TICKScontrol timeslicing. The bitmap scheduler does not provide
timeslicing support. It only allows one thread per priority level, so it is not possible to preempt the current
thread in favour of another one with the same priority.

Another important configuration option that affects the MLQ scheduler is
CYGIMP_KERNEL_SCHED_SORTED_QUEUES. This determines what happens when a thread blocks, for
example by waiting on a semaphore which has no pending events. The default behaviour of the system is
last-in-first-out queuing. For example if several threads are waiting on a semaphore and an event is posted, the
thread that gets woken up is the last one that calledcyg_semaphore_wait . This allows for a simple and fast

24

Kernel Overview

implementation of both the queue and dequeue operations. However if there are several queued threads with
different priorities, it may not be the highest priority one that gets woken up. In practice this is rarely a
problem: usually there will be at most one thread waiting on a queue, or when there are several threads they
will be of the same priority. However if the application does require strict priority queueing then the option
CYGIMP_KERNEL_SCHED_SORTED_QUEUESshould be enabled. There are disadvantages: more work is needed
whenever a thread is queued, and the scheduler needs to be locked for this operation so the system’s dispatch
latency is worse. If the bitmap scheduler is used then priority queueing is automatic and does not involve any
penalties.

Some kernel functionality is currently only supported with the MLQ scheduler, not the bitmap scheduler. This
includes support for SMP systems, and protection against priority inversion using either mutex priority ceilings
or priority inheritance.

Synchronization Primitives
The eCos kernel provides a number of different synchronization primitives:mutexes, condition variables,
counting semaphores, mail boxesandevent flags.

Mutexes serve a very different purpose from the other primitives. A mutex allows multiple threads to share a
resource safely: a thread locks a mutex, manipulates the shared resource, and then unlocks the mutex again. The
other primitives are used to communicate information between threads, or alternatively from a DSR associated
with an interrupt handler to a thread.

When a thread that has locked a mutex needs to wait for some condition to become true, it should use a
condition variable. A condition variable is essentially just a place for a thread to wait, and which another
thread, or DSR, can use to wake it up. When a thread waits on a condition variable it releases the mutex
before waiting, and when it wakes up it reacquires it before proceeding. These operations are atomic so that
synchronization race conditions cannot be introduced.

A counting semaphore is used to indicate that a particular event has occurred. A consumer thread can wait
for this event to occur, and a producer thread or a DSR can post the event. There is a count associated with
the semaphore so if the event occurs multiple times in quick succession this information is not lost, and the
appropriate number of semaphore wait operations will succeed.

Mail boxes are also used to indicate that a particular event has occurred, and allows for one item of data to be
exchanged per event. Typically this item of data would be a pointer to some data structure. Because of the need
to store this extra data, mail boxes have a finite capacity. If a producer thread generates mail box events faster
than they can be consumed then, to avoid overflow, it will be blocked until space is again available in the mail
box. This means that mail boxes usually cannot be used by a DSR to wake up a thread. Instead mail boxes are
typically only used between threads.

Event flags can be used to wait on some number of different events, and to signal that one or several of these
events have occurred. This is achieved by associating bits in a bit mask with the different events. Unlike a
counting semaphore no attempt is made to keep track of the number of events that have occurred, only the fact
that an event has occurred at least once. Unlike a mail box it is not possible to send additional data with the
event, but this does mean that there is no possibility of an overflow and hence event flags can be used between
a DSR and a thread as well as between threads.

The eCos common HAL package provides its own device driver API which contains some of the above syn-
chronization primitives. These allow the DSR for an interrupt handler to signal events to higher-level code. If
the configuration includes the eCos kernel package then the driver API routines map directly on to the equiv-
alent kernel routines, allowing interrupt handlers to interact with threads. If the kernel package is not included
and the application consists of just a single thread running in polled mode then the driver API is implemented
entirely within the common HAL, and with no need to worry about multiple threads the implementation can
obviously be rather simpler.

25

Kernel Overview

Threads and Interrupt Handling
During normal operation the processor will be running one of the threads in the system. This may be an
application thread, a system thread running inside say the TCP/IP stack, or the idle thread. From time to time
a hardware interrupt will occur, causing control to be transferred briefly to an interrupt handler. When the
interrupt has been completed the system’s scheduler will decide whether to return control to the interrupted
thread or to some other runnable thread.

Threads and interrupt handlers must be able to interact. If a thread is waiting for some I/O operation to com-
plete, the interrupt handler associated with that I/O must be able to inform the thread that the operation has
completed. This can be achieved in a number of ways. One very simple approach is for the interrupt handler
to set a volatile variable. A thread can then poll continuously until this flag is set, possibly sleeping for a
clock tick in between. Polling continuously means that the cpu time is not available for other activities, which
may be acceptable for some but not all applications. Polling once every clock tick imposes much less over-
head, but means that the thread may not detect that the I/O event has occurred until an entire clock tick has
elapsed. In typical systems this could be as long as 10 milliseconds. Such a delay might be acceptable for some
applications, but not all.

A better solution would be to use one of the synchronization primitives. The interrupt handler could signal a
condition variable, post to a semaphore, or use one of the other primitives. The thread would perform a wait
operation on the same primitive. It would not consume any cpu cycles until the I/O event had occurred, and
when the event does occur the thread can start running again immediately (subject to any higher priority threads
that might also be runnable).

Synchronization primitives constitute shared data, so care must be taken to avoid problems with concurrent
access. If the thread that was interrupted was just performing some calculations then the interrupt handler
could manipulate the synchronization primitive quite safely. However if the interrupted thread happened to be
inside some kernel call then there is a real possibility that some kernel data structure will be corrupted.

One way of avoiding such problems would be for the kernel functions to disable interrupts when executing
any critical region. On most architectures this would be simple to implement and very fast, but it would mean
that interrupts would be disabled often and for quite a long time. For some applications that might not matter,
but many embedded applications require that the interrupt handler run as soon as possible after the hardware
interrupt has occurred. If the kernel relied on disabling interrupts then it would not be able to support such
applications.

Instead the kernel uses a two-level approach to interrupt handling. Associated with every interrupt vector is
an Interrupt Service Routine or ISR, which will run as quickly as possible so that it can service the hardware.
However an ISR can make only a small number of kernel calls, mostly related to the interrupt subsystem, and
it cannot make any call that would cause a thread to wake up. If an ISR detects that an I/O operation has
completed and hence that a thread should be woken up, it can cause the associated Deferred Service Routine
or DSR to run. A DSR is allowed to make more kernel calls, for example it can signal a condition variable or
post to a semaphore.

Disabling interrupts prevents ISRs from running, but very few parts of the system disable interrupts and then
only for short periods of time. The main reason for a thread to disable interrupts is to manipulate some state
that is shared with an ISR. For example if a thread needs to add another buffer to a linked list of free buffers
and the ISR may remove a buffer from this list at any time, the thread would need to disable interrupts for
the few instructions needed to manipulate the list. If the hardware raises an interrupt at this time, it remains
pending until interrupts are reenabled.

Analogous to interrupts being disabled or enabled, the kernel has a scheduler lock. The various kernel functions
such ascyg_mutex_lock andcyg_semaphore_post will claim the scheduler lock, manipulate the kernel data
structures, and then release the scheduler lock. If an interrupt results in a DSR being requested and the scheduler
is currently locked, the DSR remains pending. When the scheduler lock is released any pending DSRs will run.
These may post events to synchronization primitives, causing other higher priority threads to be woken up.

26

Kernel Overview

For an example, consider the following scenario. The system has a high priority thread A, responsible for
processing some data coming from an external device. This device will raise an interrupt when data is available.
There are two other threads B and C which spend their time performing calculations and occasionally writing
results to a display of some sort. This display is a shared resource so a mutex is used to control access.

At a particular moment in time thread A is likely to be blocked, waiting on a semaphore or another synchro-
nization primitive until data is available. Thread B might be running performing some calculations, and thread
C is runnable waiting for its next timeslice. Interrupts are enabled, and the scheduler is unlocked because none
of the threads are in the middle of a kernel operation. At this point the device raises an interrupt. The hardware
transfers control to a low-level interrupt handler provided by eCos which works out exactly which interrupt
occurs, and then the corresponding ISR is run. This ISR manipulates the hardware as appropriate, determines
that there is now data available, and wants to wake up thread A by posting to the semaphore. However ISR’s
are not allowed to callcyg_semaphore_post directly, so instead the ISR requests that its associated DSR be
run and returns. There are no more interrupts to be processed, so the kernel next checks for DSR’s. One DSR
is pending and the scheduler is currently unlocked, so the DSR can run immediately and post the semaphore.
This will have the effect of making thread A runnable again, so the scheduler’s data structures are adjusted
accordingly. When the DSR returns thread B is no longer the highest priority runnable thread so it will be
suspended, and instead thread A gains control over the cpu.

In the above example no kernel data structures were being manipulated at the exact moment that the interrupt
happened. However that cannot be assumed. Suppose that thread B had finished its current set of calculations
and wanted to write the results to the display. It would claim the appropriate mutex and manipulate the display.
Now suppose that thread B was timesliced in favour of thread C, and that thread C also finished its calcu-
lations and wanted to write the results to the display. It would callcyg_mutex_lock . This kernel call locks
the scheduler, examines the current state of the mutex, discovers that the mutex is already owned by another
thread, suspends the current thread, and switches control to another runnable thread. Another interrupt happens
in the middle of thiscyg_mutex_lock call, causing the ISR to run immediately. The ISR decides that thread
A should be woken up so it requests that its DSR be run and returns back to the kernel. At this point there is a
pending DSR, but the scheduler is still locked by the call tocyg_mutex_lock so the DSR cannot run immedi-
ately. Instead the call tocyg_mutex_lock is allowed to continue, which at some point involves unlocking the
scheduler. The pending DSR can now run, safely post the semaphore, and thus wake up thread A.

If the ISR had calledcyg_semaphore_post directly rather than leaving it to a DSR, it is likely that there would
have been some sort of corruption of a kernel data structure. For example the kernel might have completely
lost track of one of the threads, and that thread would never have run again. The two-level approach to interrupt
handling, ISR’s and DSR’s, prevents such problems with no need to disable interrupts.

Calling Contexts
eCos defines a number of contexts. Only certain calls are allowed from inside each context, for example most
operations on threads or synchronization primitives are not allowed from ISR context. The different contexts
are initialization, thread, ISR and DSR.

When eCos starts up it goes through a number of phases, including setting up the hardware and invoking C++
static constructors. During this time interrupts are disabled and the scheduler is locked. When a configuration
includes the kernel package the final operation is a call tocyg_scheduler_start . At this point interrupts are
enabled, the scheduler is unlocked, and control is transferred to the highest priority runnable thread. If the
configuration also includes the C library package then usually the C library startup package will have created
a thread which will call the application’smain entry point.

Some application code can also run before the scheduler is started, and this code runs in initialization context.
If the application is written partly or completely in C++ then the constructors for any static objects will be run.
Alternatively application code can define a functioncyg_user_start which gets called after any C++ static
constructors. This allows applications to be written entirely in C.

27

Kernel Overview

void
cyg_user_start(void)
{

/* Perform application-specific initialization here */
}

It is not necessary for applications to provide acyg_user_start function since the system will provide a
default implementation which does nothing.

Typical operations that are performed from inside static constructors orcyg_user_start include creating
threads, synchronization primitives, setting up alarms, and registering application-specific interrupt handlers.
In fact for many applications all such creation operations happen at this time, using statically allocated data,
avoiding any need for dynamic memory allocation or other overheads.

Code running in initialization context runs with interrupts disabled and the scheduler locked. It is not permitted
to reenable interrupts or unlock the scheduler because the system is not guaranteed to be in a totally consistent
state at this point. A consequence is that initialization code cannot use synchronization primitives such as
cyg_semaphore_wait to wait for an external event. It is permitted to lock and unlock a mutex: there are no
other threads running so it is guaranteed that the mutex is not yet locked, and therefore the lock operation will
never block; this is useful when making library calls that may use a mutex internally.

At the end of the startup sequence the system will callcyg_scheduler_start and the various threads will
start running. In thread context nearly all of the kernel functions are available. There may be some restrictions
on interrupt-related operations, depending on the target hardware. For example the hardware may require
that interrupts be acknowledged in the ISR or DSR before control returns to thread context, in which case
cyg_interrupt_acknowledge should not be called by a thread.

At any time the processor may receive an external interrupt, causing control to be transferred from the current
thread. Typically a VSR provided by eCos will run and determine exactly which interrupt occurred. Then the
VSR will switch to the appropriate ISR, which can be provided by a HAL package, a device driver, or by the
application. During this time the system is running at ISR context, and most of the kernel function calls are
disallowed. This includes the various synchronization primitives, so for example an ISR is not allowed to post
to a semaphore to indicate that an event has happened. Usually the only operations that should be performed
from inside an ISR are ones related to the interrupt subsystem itself, for example masking an interrupt or
acknowledging that an interrupt has been processed. On SMP systems it is also possible to use spinlocks from
ISR context.

When an ISR returns it can request that the corresponding DSR be run as soon as it is safe to do so, and that will
run in DSR context. This context is also used for running alarm functions, and threads can switch temporarily to
DSR context by locking the scheduler. Only certain kernel functions can be called from DSR context, although
more than in ISR context. In particular it is possible to use any synchronization primitives which cannot block.
These includecyg_semaphore_post , cyg_cond_signal , cyg_cond_broadcast , cyg_flag_setbits , and
cyg_mbox_tryput . It is not possible to use any primitives that may block such ascyg_semaphore_wait ,
cyg_mutex_lock , or cyg_mbox_put . Calling such functions from inside a DSR may cause the system to hang.

The specific documentation for the various kernel functions gives more details about valid contexts.

Error Handling and Assertions
In many APIs each function is expected to perform some validation of its parameters and possibly of the current
state of the system. This is supposed to ensure that each function is used correctly, and that application code is
not attempting to perform a semaphore operation on a mutex or anything like that. If an error is detected then
a suitable error code is returned, for example the POSIX functionpthread_mutex_lock can return various

28

Kernel Overview

error codes includingEINVAL andEDEADLK. There are a number of problems with this approach, especially in
the context of deeply embedded systems:

1. Performing these checks inside the mutex lock and all the other functions requires extra cpu cycles and
adds significantly to the code size. Even if the application is written correctly and only makes system
function calls with sensible arguments and under the right conditions, these overheads still exist.

2. Returning an error code is only useful if the calling code detects these error codes and takes appropriate
action. In practice the calling code will often ignore any errors because the programmer“knows” that the
function is being used correctly. If the programmer is mistaken then an error condition may be detected and
reported, but the application continues running anyway and is likely to fail some time later in mysterious
ways.

3. If the calling code does always check for error codes, that adds yet more cpu cycles and code size overhead.

4. Usually there will be no way to recover from certain errors, so if the application code detected an error
such asEINVAL then all it could do is abort the application somehow.

The approach taken within the eCos kernel is different. Functions such ascyg_mutex_lock will not return an
error code. Instead they contain various assertions, which can be enabled or disabled. During the development
process assertions are normally left enabled, and the various kernel functions will perform parameter checks
and other system consistency checks. If a problem is detected then an assertion failure will be reported and
the application will be terminated. In a typical debug session a suitable breakpoint will have been installed
and the developer can now examine the state of the system and work out exactly what is going on. Towards
the end of the development cycle assertions will be disabled by manipulating configuration options within the
eCos infrastructure package, and all assertions will be eliminated at compile-time. The assumption is that by
this time the application code has been mostly debugged: the initial version of the code might have tried to
perform a semaphore operation on a mutex, but any problems like that will have been fixed some time ago.
This approach has a number of advantages:

1. In the final application there will be no overheads for checking parameters and other conditions. All that
code will have been eliminated at compile-time.

2. Because the final application will not suffer any overheads, it is reasonable for the system to do more work
during the development process. In particular the various assertions can test for more error conditions and
more complicated errors. When an error is detected it is possible to give a text message describing the
error rather than just return an error code.

3. There is no need for application programmers to handle error codes returned by various kernel function
calls. This simplifies the application code.

4. If an error is detected then an assertion failure will be reported immediately and the application will be
halted. There is no possibility of an error condition being ignored because application code did not check
for an error code.

Although none of the kernel functions return an error code, many of them do return a status condition. For
example the functioncyg_semaphore_timed_wait waits until either an event has been posted to a semaphore,
or until a certain number of clock ticks have occurred. Usually the calling code will need to know whether the
wait operation succeeded or whether a timeout occurred.cyg_semaphore_timed_wait returns a boolean: a
return value of zero or false indicates a timeout, a non-zero return value indicates that the wait succeeded.

In conventional APIs one common error conditions is lack of memory. For example the POSIX function
pthread_create usually has to allocate some memory dynamically for the thread stack and other per-thread
data. If the target hardware does not have enough memory to meet all demands, or more commonly if the ap-
plication contains a memory leak, then there may not be enough memory available and the function call would
fail. The eCos kernel avoids such problems by never performing any dynamic memory allocation. Instead it
is the responsibility of the application code to provide all the memory required for kernel data structures and

29

Kernel Overview

other needs. In the case ofcyg_thread_create this means a cyg_thread data structure to hold the thread
details, and a char array for the thread stack.

In many applications this approach results in all data structures being allocated statically rather than dynami-
cally. This has several advantages. If the application is in fact too large for the target hardware’s memory then
there will be an error at link-time rather than at run-time, making the problem much easier to diagnose. Static
allocation does not involve any of the usual overheads associated with dynamic allocation, for example there
is no need to keep track of the various free blocks in the system, and it may be possible to eliminatemalloc

from the system completely. Problems such as fragmentation and memory leaks cannot occur if all data is
allocated statically. However, some applications are sufficiently complicated that dynamic memory allocation
is required, and the various kernel functions do not distinguish between statically and dynamically allocated
memory. It still remains the responsibility of the calling code to ensure that sufficient memory is available, and
passing null pointers to the kernel will result in assertions or system failure.

30

SMP Support

Name
SMP— Support Symmetric Multiprocessing Systems

Description
eCos contains support for limited Symmetric Multi-Processing (SMP). This is only available on selected ar-
chitectures and platforms. The implementation has a number of restrictions on the kind of hardware supported.
These are described inthe Section calledSMP Supportin Chapter 4.

The following sections describe the changes that have been made to the eCos kernel to support SMP operation.

System Startup
The system startup sequence needs to be somewhat different on an SMP system, although this is largely trans-
parent to application code. The main startup takes place on only one CPU, called the primary CPU. All other
CPUs, the secondary CPUs, are either placed in suspended state at reset, or are captured by the HAL and put
into a spin as they start up. The primary CPU is responsible for copying the DATA segment and zeroing the
BSS (if required), calling HAL variant and platform initialization routines and invoking constructors. It then
callscyg_start to enter the application. The application may then create extra threads and other objects.

It is only when the application callscyg_scheduler_start that the secondary CPUs are initialized. This
routine scans the list of available secondary CPUs and invokesHAL_SMP_CPU_STARTto start each CPU. Finally
it calls an internal functionCyg_Scheduler::start_cpu to enter the scheduler for the primary CPU.

Each secondary CPU starts in the HAL, where it completes any per-CPU initialization before
calling into the kernel atcyg_kernel_cpu_startup . Here it claims the scheduler lock and calls
Cyg_Scheduler::start_cpu .

Cyg_Scheduler::start_cpu is common to both the primary and secondary CPUs. The first thing this code
does is to install an interrupt object for this CPU’s inter-CPU interrupt. From this point on the code is the same
as for the single CPU case: an initial thread is chosen and entered.

From this point on the CPUs are all equal, eCos makes no further distinction between the primary and sec-
ondary CPUs. However, the hardware may still distinguish between them as far as interrupt delivery is con-
cerned.

Scheduling
To function correctly an operating system kernel must protect its vital data structures, such as the run queues,
from concurrent access. In a single CPU system the only concurrent activities to worry about are asynchronous
interrupts. The kernel can easily guard its data structures against these by disabling interrupts. However, in a
multi-CPU system, this is inadequate since it does not block access by other CPUs.

The eCos kernel protects its vital data structures using the scheduler lock. In single CPU systems this is a
simple counter that is atomically incremented to acquire the lock and decremented to release it. If the lock is
decremented to zero then the scheduler may be invoked to choose a different thread to run. Because interrupts
may continue to be serviced while the scheduler lock is claimed, ISRs are not allowed to access kernel data
structures, or call kernel routines that can. Instead all such operations are deferred to an associated DSR routine
that is run during the lock release operation, when the data structures are in a consistent state.

31

SMP Support

By choosing a kernel locking mechanism that does not rely on interrupt manipulation to protect data structures,
it is easier to convert eCos to SMP than would otherwise be the case. The principal change needed to make
eCos SMP-safe is to convert the scheduler lock into a nestable spin lock. This is done by adding a spinlock and
a CPU id to the original counter.

The algorithm for acquiring the scheduler lock is very simple. If the scheduler lock’s CPU id matches the
current CPU then it can just increment the counter and continue. If it does not match, the CPU must spin on
the spinlock, after which it may increment the counter and store its own identity in the CPU id.

To release the lock, the counter is decremented. If it goes to zero the CPU id value must be set to NONE and
the spinlock cleared.

To protect these sequences against interrupts, they must be performed with interrupts disabled. However, since
these are very short code sequences, they will not have an adverse effect on the interrupt latency.

Beyond converting the scheduler lock, further preparing the kernel for SMP is a relatively minor matter. The
main changes are to convert various scalar housekeeping variables into arrays indexed by CPU id. These
include the current thread pointer, the need_reschedule flag and the timeslice counter.

At present only the Multi-Level Queue (MLQ) scheduler is capable of supporting SMP configurations. The
main change made to this scheduler is to cope with having several threads in execution at the same time.
Running threads are marked with the CPU that they are executing on. When scheduling a thread, the scheduler
skips past any running threads until it finds a thread that is pending. While not a constant-time algorithm, as in
the single CPU case, this is still deterministic, since the worst case time is bounded by the number of CPUs in
the system.

A second change to the scheduler is in the code used to decide when the scheduler should be called to choose a
new thread. The scheduler attempts to keep the n CPUs running the n highest priority threads. Since an event or
interrupt on one CPU may require a reschedule on another CPU, there must be a mechanism for deciding this.
The algorithm currently implemented is very simple. Given a thread that has just been awakened (or had its
priority changed), the scheduler scans the CPUs, starting with the one it is currently running on, for a current
thread that is of lower priority than the new one. If one is found then a reschedule interrupt is sent to that CPU
and the scan continues, but now using the current thread of the rescheduled CPU as the candidate thread. In this
way the new thread gets to run as quickly as possible, hopefully on the current CPU, and the remaining CPUs
will pick up the remaining highest priority threads as a consequence of processing the reschedule interrupt.

The final change to the scheduler is in the handling of timeslicing. Only one CPU receives timer interrupts,
although all CPUs must handle timeslicing. To make this work, the CPU that receives the timer interrupt
decrements the timeslice counter for all CPUs, not just its own. If the counter for a CPU reaches zero, then
it sends a timeslice interrupt to that CPU. On receiving the interrupt the destination CPU enters the scheduler
and looks for another thread at the same priority to run. This is somewhat more efficient than distributing clock
ticks to all CPUs, since the interrupt is only needed when a timeslice occurs.

All existing synchronization mechanisms work as before in an SMP system. Additional synchronization mech-
anisms have been added to provide explicit synchronization for SMP, in the form ofspinlocks.

SMP Interrupt Handling
The main area where the SMP nature of a system requires special attention is in device drivers and especially
interrupt handling. It is quite possible for the ISR, DSR and thread components of a device driver to exe-
cute on different CPUs. For this reason it is much more important that SMP-capable device drivers use the
interrupt-related functions correctly. Typically a device driver would use the driver API rather than call the
kernel directly, but it is unlikely that anybody would attempt to use a multiprocessor system without the kernel
package.

32

SMP Support

Two new functions have been added to the Kernel API to dointerrupt routing: cyg_interrupt_set_cpu

andcyg_interrupt_get_cpu . Although not currently supported, special values for the cpu argument may be
used in future to indicate that the interrupt is being routed dynamically or is CPU-local. Once a vector has been
routed to a new CPU, all other interrupt masking and configuration operations are relative to that CPU, where
relevant.

There are more details of how interrupts should be handled in SMP systems inthe Section calledSMP Support
in Chapter 13.

33

SMP Support

34

Thread creation

Name
cyg_thread_create — Create a new thread

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_create (cyg_addrword_t sched_info , cyg_thread_entry_t* entry ,
cyg_addrword_t entry_data , char* name, void* stack_base , cyg_ucount32 stack_size ,
cyg_handle_t* handle , cyg_thread* thread);

Description
Thecyg_thread_create function allows application code and eCos packages to create new threads. In many
applications this only happens during system initialization and all required data is allocated statically. However
additional threads can be created at any time, if necessary. A newly created thread is always in suspended state
and will not start running until it has been resumed via a call tocyg_thread_resume . Also, if threads are
created during system initialization then they will not start running until the eCos scheduler has been started.

The name argument is used primarily for debugging purposes, making it easier to keep track of which
cyg_thread structure is associated with which application-level thread. The kernel configuration option
CYGVAR_KERNEL_THREADS_NAMEcontrols whether or not this name is actually used.

On creation each thread is assigned a unique handle, and this will be stored in the location pointed at by the
handle argument. Subsequent operations on this thread including the requiredcyg_thread_resume should
use this handle to identify the thread.

The kernel requires a small amount of space for each thread, in the form of a cyg_thread data structure, to hold
information such as the current state of that thread. To avoid any need for dynamic memory allocation within
the kernel this space has to be provided by higher-level code, typically in the form of a static variable. The
thread argument provides this space.

Thread Entry Point
The entry point for a thread takes the form:

void
thread_entry_function(cyg_addrword_t data)
{

...
}

The second argument tocyg_thread_create is a pointer to such a function. The third argument
entry_data is used to pass additional data to the function. Typically this takes the form of a pointer to
some static data, or a small integer, or0 if the thread does not require any additional data.

35

Thread creation

If the thread entry function ever returns then this is equivalent to the thread callingcyg_thread_exit . Even
though the thread will no longer run again, it remains registered with the scheduler. If the application needs to
re-use the cyg_thread data structure then a call tocyg_thread_delete is required first.

Thread Priorities
Thesched_info argument provides additional information to the scheduler. The exact details depend on the
scheduler being used. For the bitmap and mlqueue schedulers it is a small integer, typically in the range 0 to 31,
with 0 being the highest priority. The lowest priority is normally used only by the system’s idle thread. The ex-
act number of priorities is controlled by the kernel configuration optionCYGNUM_KERNEL_SCHED_PRIORITIES.

It is the responsibility of the application developer to be aware of the various threads in the system, including
those created by eCos packages, and to ensure that all threads run at suitable priorities. For threads created by
other packages the documentation provided by those packages should indicate any requirements.

The functions cyg_thread_set_priority , cyg_thread_get_priority , and
cyg_thread_get_current_priority can be used to manipulate a thread’s priority.

Stacks and Stack Sizes
Each thread needs its own stack for local variables and to keep track of function calls and returns. Again it is
expected that this stack is provided by the calling code, usually in the form of static data, so that the kernel
does not need any dynamic memory allocation facilities.cyg_thread_create takes two arguments related to
the stack, a pointer to the base of the stack and the total size of this stack. On many processors stacks actually
descend from the top down, so the kernel will add the stack size to the base address to determine the starting
location.

The exact stack size requirements for any given thread depend on a number of factors. The most important is
of course the code that will be executed in the context of this code: if this involves significant nesting of
function calls, recursion, or large local arrays, then the stack size needs to be set to a suitably high value.
There are some architectural issues, for example the number of cpu registers and the calling conventions
will have some effect on stack usage. Also, depending on the configuration, it is possible that some other
code such as interrupt handlers will occasionally run on the current thread’s stack. This depends in
part on configuration options such asCYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACKand
CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING.

Determining an application’s actual stack size requirements is the responsibility of the application developer,
since the kernel cannot know in advance what code a given thread will run. However, the system does provide
some hints about reasonable stack sizes in the form of two constants:CYGNUM_HAL_STACK_SIZE_MINIMUMand
CYGNUM_HAL_STACK_SIZE_TYPICAL. These are defined by the appropriate HAL package. TheMINIMUMvalue
is appropriate for a thread that just runs a single function and makes very simple system calls. Trying to create
a thread with a smaller stack than this is illegal. TheTYPICAL value is appropriate for applications where
application calls are nested no more than half a dozen or so levels, and there are no large arrays on the stack.

If the stack sizes are not estimated correctly and a stack overflow occurs, the probably result is some form of
memory corruption. This can be very hard to track down. The kernel does contain some code to help detect
stack overflows, controlled by the configuration optionCYGFUN_KERNEL_THREADS_STACK_CHECKING: a small
amount of space is reserved at the stack limit and filled with a special signature: every time a thread context
switch occurs this signature is checked, and if invalid that is a good indication (but not absolute proof) that
a stack overflow has occurred. This form of stack checking is enabled by default when the system is built
with debugging enabled. A related configuration option isCYGFUN_KERNEL_THREADS_STACK_MEASUREMENT:
enabling this option means that a thread can call the functioncyg_thread_measure_stack_usage to find out

36

Thread creation

the maximum stack usage to date. Note that this is not necessarily the true maximum because, for example, it
is possible that in the current run no interrupt occurred at the worst possible moment.

Valid contexts
cyg_thread_create may be called during initialization and from within thread context. It may not be called
from inside a DSR.

Example
A simple example of thread creation is shown below. This involves creating five threads, one producer and four
consumers or workers. The threads are created in the system’scyg_user_start : depending on the configura-
tion it might be more appropriate to do this elsewhere, for example insidemain .

#include <cyg/hal/hal_arch.h >

#include <cyg/kernel/kapi.h >

// These numbers depend entirely on your application
#define NUMBER_OF_WORKERS 4
#define PRODUCER_PRIORITY 10
#define WORKER_PRIORITY 11
#define PRODUCER_STACKSIZE CYGNUM_HAL_STACK_SIZE_TYPICAL
#define WORKER_STACKSIZE (CYGNUM_HAL_STACK_SIZE_MINIMUM + 1024)

static unsigned char producer_stack[PRODUCER_STACKSIZE];
static unsigned char worker_stacks[NUMBER_OF_WORKERS][WORKER_STACKSIZE];
static cyg_handle_t producer_handle, worker_handles[NUMBER_OF_WORKERS];
static cyg_thread producer_thread, worker_threads[NUMBER_OF_WORKERS];

static void
producer(cyg_addrword_t data)
{

...
}

static void
worker(cyg_addrword_t data)
{

...
}

void
cyg_user_start(void)
{

int i;

cyg_thread_create(PRODUCER_PRIORITY, &producer, 0, "producer",
producer_stack, PRODUCER_STACKSIZE,
&producer_handle, &producer_thread);

cyg_thread_resume(producer_handle);
for (i = 0; i < NUMBER_OF_WORKERS; i++) {

cyg_thread_create(WORKER_PRIORITY, &worker, i, "worker",
worker_stacks[i], WORKER_STACKSIZE,
&(worker_handles[i]), &(worker_threads[i]));

cyg_thread_resume(worker_handles[i]);

37

Thread creation

}
}

Thread Entry Points and C++
For code written in C++ the thread entry function must be either a static member function of a class or an
ordinary function outside any class. It cannot be a normal member function of a class because such member
functions take an implicit additional argumentthis , and the kernel has no way of knowing what value to
use for this argument. One way around this problem is to make use of a special static member function, for
example:

class fred {
public:

void thread_function();
static void static_thread_aux(cyg_addrword_t);

};

void
fred::static_thread_aux(cyg_addrword_t objptr)
{

fred* object = static_cast <fred* >(objptr);
object- >thread_function();

}

static fred instance;

extern "C" void
cyg_start(void)
{

...
cyg_thread_create(...,

&fred::static_thread_aux,
static_cast <cyg_addrword_t >(&instance),
...);

...
}

Effectively this uses theentry_data argument tocyg_thread_create to hold thethis pointer. Unfortu-
nately this approach does require the use of some C++ casts, so some of the type safety that can be achieved
when programming in C++ is lost.

38

Thread information

Name
cyg_thread_self, cyg_thread_idle_thread, cyg_thread_get_stack_base,
cyg_thread_get_stack_size, cyg_thread_measure_stack_usage,
cyg_thread_get_next, cyg_thread_get_info, cyg_thread_get_id,
cyg_thread_find — Get basic thread information

Synopsis

#include <cyg/kernel/kapi.h >

cyg_handle_t cyg_thread_self (void);
cyg_handle_t cyg_thread_idle_thread (void);
cyg_addrword_t cyg_thread_get_stack_base (cyg_handle_t thread);
cyg_uint32 cyg_thread_get_stack_size (cyg_handle_t thread);
cyg_uint32 cyg_thread_measure_stack_usage (cyg_handle_t thread);
cyg_bool cyg_thread_get_next (cyg_handle_t * thread , cyg_uint16 * id);
cyg_bool cyg_thread_get_info (cyg_handle_t thread , cyg_uint16 id , cyg_thread_info
* info);
cyg_uint16 cyg_thread_get_id (cyg_handle_t thread);
cyg_handle_t cyg_thread_find (cyg_uint16 id);

Description
These functions can be used to obtain some basic information about various threads in the system. Typically
they serve little or no purpose in real applications, but they can be useful during debugging.

cyg_thread_self returns a handle corresponding to the current thread. It will be the same as the value filled in
by cyg_thread_create when the current thread was created. This handle can then be passed to other functions
such ascyg_thread_get_priority .

cyg_thread_idle_thread returns the handle corresponding to the idle thread. This thread is created auto-
matically by the kernel, so application-code has no other way of getting hold of this information.

cyg_thread_get_stack_base and cyg_thread_get_stack_size return information about a specific
thread’s stack. The values returned will match the values passed tocyg_thread_create when this thread was
created.

cyg_thread_measure_stack_usage is only available if the configuration option
CYGFUN_KERNEL_THREADS_STACK_MEASUREMENTis enabled. The return value is the maximum number of
bytes of stack space used so far by the specified thread. Note that this should not be considered a true upper
bound, for example it is possible that in the current test run the specified thread has not yet been interrupted at
the deepest point in the function call graph. Never the less the value returned can give some useful indication
of the thread’s stack requirements.

cyg_thread_get_next is used to enumerate all the current threads in the system. It should be called initially
with the locations pointed to bythread andid set to zero. On return these will be set to the handle and ID of
the first thread. On subsequent calls, these parameters should be left set to the values returned by the previous
call. The handle and ID of the next thread in the system will be installed each time, until afalse return value
indicates the end of the list.

39

Thread information

cyg_thread_get_info fills in the cyg_thread_info structure with information about the thread described by
the thread and id arguments. The information returned includes the thread’s handle and id, its state and
name, priorities and stack parameters. If the thread does not exist the function returnsfalse .

The cyg_thread_info structure is defined as follows by<cyg/kernel/kapi.h >, but may be extended in future
with additional members, and so its size should not be relied upon:

typedef struct
{

cyg_handle_t handle ;
cyg_uint16 id ;
cyg_uint32 state ;
char *name ;
cyg_priority_t set_pri ;
cyg_priority_t cur_pri ;
cyg_addrword_t stack_base ;
cyg_uint32 stack_size ;
cyg_uint32 stack_used ;

} cyg_thread_info;

cyg_thread_get_id returns the unique thread ID for the thread identified bythread .

cyg_thread_find returns a handle for the thread whose ID isid . If no such thread exists, a zero handle is
returned.

Valid contexts
cyg_thread_self may only be called from thread context.cyg_thread_idle_thread may be called from
thread or DSR context, but only after the system has been initialized.cyg_thread_get_stack_base ,
cyg_thread_get_stack_size and cyg_thread_measure_stack_usage may be called any time after the
specified thread has been created, but measuring stack usage involves looping over at least part of the thread’s
stack so this should normally only be done from thread context.cyg_thread_get_id may be called from any
context as long as the caller can guarantee that the supplied thread handle remains valid.

Examples
A simple example of the use of thecyg_thread_get_next andcyg_thread_get_info follows:

#include <cyg/kernel/kapi.h >

#include <stdio.h >

void show_threads(void)
{

cyg_handle_t thread = 0;
cyg_uint16 id = 0;

while(cyg_thread_get_next(&thread, &id))
{

cyg_thread_info info;

if(!cyg_thread_get_info(thread, id, &info))
break;

printf("ID: %04x name: %10s pri: %d\n",

40

Thread information

info.id, info.name?info.name:"----", info.set_pri);
}

}

41

Thread information

42

Thread control

Name
cyg_thread_yield, cyg_thread_delay, cyg_thread_suspend,
cyg_thread_resume, cyg_thread_release — Control whether or not a thread is running

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_yield (void);
void cyg_thread_delay (cyg_tick_count_t delay);
void cyg_thread_suspend (cyg_handle_t thread);
void cyg_thread_resume (cyg_handle_t thread);
void cyg_thread_release (cyg_handle_t thread);

Description
These functions provide some control over whether or not a particular thread can run. Apart from the required
use ofcyg_thread_resume to start a newly-created thread, application code should normally use proper syn-
chronization primitives such as condition variables or mail boxes.

Yield
cyg_thread_yield allows a thread to relinquish control of the processor to some other runnable thread which
has the same priority. This can have no effect on any higher-priority thread since, if such a thread were runnable,
the current thread would have been preempted in its favour. Similarly it can have no effect on any lower-priority
thread because the current thread will always be run in preference to those. As a consequence this function is
only useful in configurations with a scheduler that allows multiple threads to run at the same priority, for
example the mlqueue scheduler. If instead the bitmap scheduler was being used thencyg_thread_yield()

would serve no purpose.

Even if a suitable scheduler such as the mlqueue scheduler has been configured,cyg_thread_yield will still
rarely prove useful: instead timeslicing will be used to ensure that all threads of a given priority get a fair
slice of the available processor time. However it is possible to disable timeslicing via the configuration option
CYGSEM_KERNEL_SCHED_TIMESLICE, in which casecyg_thread_yield can be used to implement a form of
cooperative multitasking.

Delay
cyg_thread_delay allows a thread to suspend until the specified number of clock ticks have occurred. For
example, if a value of 1 is used and the system clock runs at a frequency of 100Hz then the thread will sleep
for up to 10 milliseconds. This functionality depends on the presence of a real-time system clock, as controlled
by the configuration optionCYGVAR_KERNEL_COUNTERS_CLOCK.

43

Thread control

If the application requires delays measured in milliseconds or similar units rather than in clock ticks, some
calculations are needed to convert between these units as described inClocks. Usually these calculations can
be done by the application developer, or at compile-time. Performing such calculations prior to every call to
cyg_thread_delay adds unnecessary overhead to the system.

Suspend and Resume
Associated with each thread is a suspend counter. When a thread is first created this counter is initialized to 1.
cyg_thread_suspend can be used to increment the suspend counter, andcyg_thread_resume decrements it.
The scheduler will never run a thread with a non-zero suspend counter. Therefore a newly created thread will
not run until it has been resumed.

An occasional problem with the use of suspend and resume functionality is that a thread gets suspended
more times than it is resumed and hence never becomes runnable again. This can lead to very
confusing behaviour. To help with debugging such problems the kernel provides a configuration option
CYGNUM_KERNEL_MAX_SUSPEND_COUNT_ASSERTwhich imposes an upper bound on the number of suspend
calls without matching resumes, with a reasonable default value. This functionality depends on infrastructure
assertions being enabled.

Releasing a Blocked Thread
When a thread is blocked on a synchronization primitive such as a semaphore or a mutex, or when it is waiting
for an alarm to trigger, it can be forcibly woken up usingcyg_thread_release . Typically this will call the
affected synchronization primitive to return false, indicating that the operation was not completed successfully.
This function has to be used with great care, and in particular it should only be used on threads that have been
designed appropriately and check all return codes. If instead it were to be used on, say, an arbitrary thread that
is attempting to claim a mutex then that thread might not bother to check the result of the mutex lock operation
- usually there would be no reason to do so. Therefore the thread will now continue running in the false belief
that it has successfully claimed a mutex lock, and the resulting behaviour is undefined. If the system has been
built with assertions enabled then it is possible that an assertion will trigger when the thread tries to release the
mutex it does not actually own.

The main use ofcyg_thread_release is in the POSIX compatibility layer, where it is used in the implemen-
tation of per-thread signals and cancellation handlers.

Valid contexts
cyg_thread_yield can only be called from thread context, A DSR must always run to completion and cannot
yield the processor to some thread.cyg_thread_suspend , cyg_thread_resume , andcyg_thread_release

may be called from thread or DSR context.

44

Thread termination

Name
cyg_thread_exit, cyg_thread_kill, cyg_thread_delete — Allow threads to terminate

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_exit (void);
void cyg_thread_kill (cyg_handle_t thread);
cyg_bool_t cyg_thread_delete (cyg_handle_t thread);

Description
In many embedded systems the various threads are allocated statically, created during initialization, and never
need to terminate. This avoids any need for dynamic memory allocation or other resource management fa-
cilities. However if a given application does have a requirement that some threads be created dynamically,
must terminate, and their resources such as the stack be reclaimed, then the kernel provides the functions
cyg_thread_exit , cyg_thread_kill , andcyg_thread_delete .

cyg_thread_exit allows a thread to terminate itself, thus ensuring that it will not be run again by the sched-
uler. However the cyg_thread data structure passed tocyg_thread_create remains in use, and the handle
returned bycyg_thread_create remains valid. This allows other threads to perform certain operations on the
terminated thread, for example to determine its stack usage viacyg_thread_measure_stack_usage . When
the handle and cyg_thread structure are no longer required,cyg_thread_delete should be called to release
these resources. If the stack was dynamically allocated then this should not be freed until after the call to
cyg_thread_delete .

Alternatively, one thread may usecyg_thread_kill on another This has much the same effect as the affected
thread callingcyg_thread_exit . However killing a thread is generally rather dangerous because no attempt
is made to unlock any synchronization primitives currently owned by that thread or release any other resources
that thread may have claimed. Therefore use of this function should be avoided, andcyg_thread_exit is
preferred.cyg_thread_kill cannot be used by a thread to kill itself.

cyg_thread_delete should be used on a thread after it has exited and is no longer required. After this call
the thread handle is no longer valid, and both the cyg_thread structure and the thread stack can be re-used
or freed. If cyg_thread_delete is invoked on a thread that is still running then there is an implicit call to
cyg_thread_kill . This function returnstrue if the delete was successful, andfalse if the delete did not
happen. The delete may not happen for example if the thread being destroyed is a lower priority thread than
the running thread, and will thus not wake up in order to exit until it is rescheduled.

Valid contexts
cyg_thread_exit , cyg_thread_kill andcyg_thread_delete can only be called from thread context.

45

Thread termination

46

Thread priorities

Name
cyg_thread_get_priority, cyg_thread_get_current_priority,
cyg_thread_set_priority — Examine and manipulate thread priorities

Synopsis

#include <cyg/kernel/kapi.h >

cyg_priority_t cyg_thread_get_priority (cyg_handle_t thread);
cyg_priority_t cyg_thread_get_current_priority (cyg_handle_t thread);
void cyg_thread_set_priority (cyg_handle_t thread , cyg_priority_t priority);

Description
Typical schedulers use the concept of a thread priority to determine which thread should run next. Exactly
what this priority consists of will depend on the scheduler, but a typical implementation would be a small
integer in the range 0 to 31, with 0 being the highest priority. Usually only the idle thread will run at the
lowest priority. The exact number of priority levels available depends on the configuration, typically the option
CYGNUM_KERNEL_SCHED_PRIORITIES.

cyg_thread_get_priority can be used to determine the priority of a thread, or more correctly the value last
used in acyg_thread_set_priority call or when the thread was first created. In some circumstances it is
possible that the thread is actually running at a higher priority. For example, if it owns a mutex and priority
ceilings or inheritance is being used to prevent priority inversion problems, then the thread’s priority may have
been boosted temporarily.cyg_thread_get_current_priority returns the real current priority.

In many applications appropriate thread priorities can be determined and allocated statically. However, if it is
necessary for a thread’s priority to change at run-time then thecyg_thread_set_priority function provides
this functionality.

Valid contexts
cyg_thread_get_priority and cyg_thread_get_current_priority can be called from thread or DSR
context, although the latter is rarely useful.cyg_thread_set_priority should also only be called from thread
context.

47

Thread priorities

48

Per-thread data

Name
cyg_thread_new_data_index, cyg_thread_free_data_index,
cyg_thread_get_data, cyg_thread_get_data_ptr, cyg_thread_set_data —
Manipulate per-thread data

Synopsis

#include <cyg/kernel/kapi.h >

cyg_ucount32 cyg_thread_new_data_index (void);
void cyg_thread_free_data_index (cyg_ucount32 index);
cyg_addrword_t cyg_thread_get_data (cyg_ucount32 index);
cyg_addrword_t* cyg_thread_get_data_ptr (cyg_ucount32 index);
void cyg_thread_set_data (cyg_ucount32 index , cyg_addrword_t data);

Description
In some applications and libraries it is useful to have some data that is specific to each thread. For example,
many of the functions in the POSIX compatibility package return -1 to indicate an error and store additional
information in what appears to be a global variableerrno . However, if multiple threads make concurrent calls
into the POSIX library and iferrno were really a global variable then a thread would have no way of knowing
whether the currenterrno value really corresponded to the last POSIX call it made, or whether some other
thread had run in the meantime and made a different POSIX call which updated the variable. To avoid such
confusionerrno is instead implemented as a per-thread variable, and each thread has its own instance.

The support for per-thread data can be disabled via the configuration optionCYGVAR_KERNEL_THREADS_DATA.
If enabled, each cyg_thread data structure holds a small array of words. The size of this array is determined
by the configuration optionCYGNUM_KERNEL_THREADS_DATA_MAX. When a thread is created the array is filled
with zeroes.

If an application needs to use per-thread data then it needs an index into this array which has not yet been
allocated to other code. This index can be obtained by callingcyg_thread_new_data_index , and then used
in subsequent calls tocyg_thread_get_data . Typically indices are allocated during system initialization and
stored in static variables. If for some reason a slot in the array is no longer required and can be re-used then it
can be released by callingcyg_thread_free_data_index ,

The current per-thread data in a given slot can be obtained usingcyg_thread_get_data . This
implicitly operates on the current thread, and its single argument should be an index as returned by
cyg_thread_new_data_index . The per-thread data can be updated usingcyg_thread_set_data . If a
particular item of per-thread data is needed repeatedly thencyg_thread_get_data_ptr can be used to
obtain the address of the data, and indirecting through this pointer allows the data to be examined and updated
efficiently.

Some packages, for example the error and POSIX packages, have pre-allocated slots in the array of per-thread
data. These slots should not normally be used by application code, and instead slots should be allocated during
initialization by a call tocyg_thread_new_data_index . If it is known that, for example, the configuration
will never include the POSIX compatibility package then application code may instead decide to re-use the

49

Per-thread data

slot allocated to that package,CYGNUM_KERNEL_THREADS_DATA_POSIX, but obviously this does involve a risk
of strange and subtle bugs if the application’s requirements ever change.

Valid contexts
Typically cyg_thread_new_data_index is only called during initialization, but may also be called at any time
in thread context.cyg_thread_free_data_index , if used at all, can also be called during initialization or from
thread context.cyg_thread_get_data , cyg_thread_get_data_ptr , andcyg_thread_set_data may only
be called from thread context because they implicitly operate on the current thread.

50

Thread destructors

Name
cyg_thread_add_destructor, cyg_thread_rem_destructor — Call functions on thread
termination

Synopsis

#include <cyg/kernel/kapi.h >

typedef void (*cyg_thread_destructor_fn)(cyg_addrword_t);

cyg_bool_t cyg_thread_add_destructor (cyg_thread_destructor_fn fn , cyg_addrword_t data);
cyg_bool_t cyg_thread_rem_destructor (cyg_thread_destructor_fn fn , cyg_addrword_t data);

Description
These functions are provided for cases when an application requires a function to be automatically called when
a thread exits. This is often useful when, for example, freeing up resources allocated by the thread.

This support must be enabled with the configuration optionCYGPKG_KERNEL_THREADS_DESTRUCTORS. When
enabled, you may register a function of type cyg_thread_destructor_fn to be called on thread termination
using cyg_thread_add_destructor . You may also provide it with a piece of arbitrary information in the
data argument which will be passed to the destructor functionfn when the thread terminates. If you no
longer wish to call a function previous registered withcyg_thread_add_destructor , you may call
cyg_thread_rem_destructor with the same parameters used to register the destructor function. Both these
functions returntrue on success andfalse on failure.

By default, thread destructors are per-thread, which means that registering a destructor function only registers
that function for the current thread. In other words, each thread has its own list of destructors. Alternatively you
may disable the configuration optionCYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREADin which case any
registered destructors will be run whenanythreads exit. In other words, the thread destructor list is global and
all threads have the same destructors.

There is a limit to the number of destructors which may be registered, which can be controlled with the
CYGNUM_KERNEL_THREADS_DESTRUCTORSconfiguration option. Increasing this value will very slightly
increase the amount of memory in use, and whenCYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD

is enabled, the amount of memory used per thread will increase. When the limit has been reached,
cyg_thread_add_destructor will return false .

Valid contexts
When CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREADis enabled, these functions must
only be called from a thread context as they implicitly operate on the current thread. When
CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREADis disabled, these functions may be called from thread
or DSR context, or at initialization time.

51

Thread destructors

52

Exception handling

Name
cyg_exception_set_handler, cyg_exception_clear_handler,
cyg_exception_call_handler — Handle processor exceptions

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_exception_set_handler (cyg_code_t exception_number , cyg_exception_handler_t*
new_handler , cyg_addrword_t new_data , cyg_exception_handler_t** old_handler ,
cyg_addrword_t* old_data);
void cyg_exception_clear_handler (cyg_code_t exception_number);
void cyg_exception_call_handler (cyg_handle_t thread , cyg_code_t exception_number ,
cyg_addrword_t exception_info);

Description
Sometimes code attempts operations that are not legal on the current hardware, for example dividing by zero,
or accessing data through a pointer that is not properly aligned. When this happens the hardware will raise
an exception. This is very similar to an interrupt, but happens synchronously with code execution rather than
asynchronously and hence can be tied to the thread that is currently running.

The exceptions that can be raised depend very much on the hardware, especially the processor. The corre-
sponding documentation should be consulted for more details. Alternatively the architectural HAL header file
hal_intr.h , or one of the variant or platform header files it includes, will contain appropriate definitions. The
details of how to handle exceptions, including whether or not it is possible to recover from them, also depend
on the hardware.

Exception handling is optional, and can be disabled through the configuration option
CYGPKG_KERNEL_EXCEPTIONS. If an application has been exhaustively tested and is trusted never to raise a
hardware exception then this option can be disabled and code and data sizes will be reduced somewhat. If
exceptions are left enabled then the system will provide default handlers for the various exceptions, but
these do nothing. Even the specific type of exception is ignored, so there is no point in attempting to decode
this and distinguish between say a divide-by-zero and an unaligned access. If the application installs
its own handlers and wants details of the specific exception being raised then the configuration option
CYGSEM_KERNEL_EXCEPTIONS_DECODEhas to be enabled.

An alternative handler can be installed usingcyg_exception_set_handler . This requires a code for the
exception, a function pointer for the new exception handler, and a parameter to be passed to this handler. Details
of the previously installed exception handler will be returned via the remaining two arguments, allowing that
handler to be reinstated, or null pointers can be used if this information is of no interest. An exception handling
function should take the following form:

void
my_exception_handler(cyg_addrword_t data, cyg_code_t exception, cyg_addrword_t info)
{

...
}

53

Exception handling

The data argument corresponds to thenew_data parameter supplied tocyg_exception_set_handler . The
exception code is provided as well, in case a single handler is expected to support multiple exceptions. The
info argument will depend on the hardware and on the specific exception.

cyg_exception_clear_handler can be used to restore the default handler, if desired. It is also possible for
software to raise an exception and cause the current handler to be invoked, but generally this is useful only for
testing.

By default the system maintains a single set of global exception handlers. However, since exceptions
occur synchronously it is sometimes useful to handle them on a per-thread basis, and have a different
set of handlers for each thread. This behaviour can be obtained by disabling the configuration
option CYGSEM_KERNEL_EXCEPTIONS_GLOBAL. If per-thread exception handlers are being used then
cyg_exception_set_handler andcyg_exception_clear_handler apply to the current thread. Otherwise
they apply to the global set of handlers.

Caution
In the current implementation cyg_exception_call_handler can only be used on the
current thread. There is no support for delivering an exception to another thread.

Note: Exceptions at the eCos kernel level refer specifically to hardware-related events such as unaligned
accesses to memory or division by zero. There is no relation with other concepts that are also known as
exceptions, for example the throw and catch facilities associated with C++.

Valid contexts
If the system is configured with a single set of global exception handlers thencyg_exception_set_handler

andcyg_exception_clear_handler may be called during initialization or from thread context. If instead
per-thread exception handlers are being used then it is not possible to install new handlers during initialization
because the functions operate implicitly on the current thread, so they can only be called from thread context.
cyg_exception_call_handler should only be called from thread context.

54

Counters

Name
cyg_counter_create, cyg_counter_delete, cyg_counter_current_value,
cyg_counter_set_value, cyg_counter_tick — Count event occurrences

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_counter_create (cyg_handle_t* handle , cyg_counter* counter);
void cyg_counter_delete (cyg_handle_t counter);
cyg_tick_count_t cyg_counter_current_value (cyg_handle_t counter);
void cyg_counter_set_value (cyg_handle_t counter , cyg_tick_count_t new_value);
void cyg_counter_tick (cyg_handle_t counter);

Description
Kernel counters can be used to keep track of how many times a particular event has occurred. Usually this
event is an external signal of some sort. The most common use of counters is in the implementation of clocks,
but they can be useful with other event sources as well. Application code can attachalarmsto counters, causing
a function to be called when some number of events have occurred.

A new counter is initialized by a call tocyg_counter_create . The first argument is used to return a handle to
the new counter which can be used for subsequent operations. The second argument allows the application to
provide the memory needed for the object, thus eliminating any need for dynamic memory allocation within
the kernel. If a counter is no longer required and does not have any alarms attached thencyg_counter_delete

can be used to release the resources, allowing the cyg_counter data structure to be re-used.

Initializing a counter does not automatically attach it to any source of events. Instead some other code needs
to call cyg_counter_tick whenever a suitable event occurs, which will cause the counter to be incremented
and may cause alarms to trigger. The current value associated with the counter can be retrieved using
cyg_counter_current_value and modified withcyg_counter_set_value . Typically the latter function is
only used during initialization, for example to set a clock to wallclock time, but it can be used to reset a
counter if necessary. Howevercyg_counter_set_value will never trigger any alarms. A newly initialized
counter has a starting value of 0.

The kernel provides two different implementations of counters. The default is
CYGIMP_KERNEL_COUNTERS_SINGLE_LISTwhich stores all alarms attached to the counter on a single list.
This is simple and usually efficient. However when a tick occurs the kernel code has to traverse this list,
typically at DSR level, so if there are a significant number of alarms attached to a single counter this will affect
the system’s dispatch latency. The alternative implementation,CYGIMP_KERNEL_COUNTERS_MULTI_LIST,
stores each alarm in one of an array of lists such that at most one of the lists needs to be searched per clock
tick. This involves extra code and data, but can improve real-time responsiveness in some circumstances.
Another configuration option that is relevant here isCYGIMP_KERNEL_COUNTERS_SORT_LIST, which is
disabled by default. This provides a trade off between doing work whenever a new alarm is added to a counter
and doing work whenever a tick occurs. It is application-dependent which of these is more appropriate.

55

Counters

Valid contexts
cyg_counter_create is typically called during system initialization but may also be called in thread
context. Similarly cyg_counter_delete may be called during initialization or in thread context.
cyg_counter_current_value , cyg_counter_set_value and cyg_counter_tick may be called during
initialization or from thread or DSR context. In fact,cyg_counter_tick is usually called from inside a DSR
in response to an external event of some sort.

56

Clocks

Name
cyg_clock_create, cyg_clock_delete, cyg_clock_to_counter,
cyg_clock_set_resolution, cyg_clock_get_resolution, cyg_real_time_clock,
cyg_current_time — Provide system clocks

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_clock_create (cyg_resolution_t resolution , cyg_handle_t* handle , cyg_clock*
clock);
void cyg_clock_delete (cyg_handle_t clock);
void cyg_clock_to_counter (cyg_handle_t clock , cyg_handle_t* counter);
void cyg_clock_set_resolution (cyg_handle_t clock , cyg_resolution_t resolution);
cyg_resolution_t cyg_clock_get_resolution (cyg_handle_t clock);
cyg_handle_t cyg_real_time_clock (void);
cyg_tick_count_t cyg_current_time (void);

Description
In the eCos kernel clock objects are a special form ofcounterobjects. They are attached to a specific type
of hardware, clocks that generate ticks at very specific time intervals, whereas counters can be used with any
event source.

In a default configuration the kernel provides a single clock instance, the real-time clock. This gets used
for timeslicing and for operations that involve a timeout, for examplecyg_semaphore_timed_wait .
If this functionality is not required it can be removed from the system using the configuration option
CYGVAR_KERNEL_COUNTERS_CLOCK. Otherwise the real-time clock can be accessed by a call to
cyg_real_time_clock , allowing applications to attach alarms, and the current counter value can be obtained
usingcyg_current_time .

Applications can create and destroy additional clocks if desired, usingcyg_clock_create and
cyg_clock_delete . The first argument tocyg_clock_create specifies theresolutionthis clock will run
at. The second argument is used to return a handle for this clock object, and the third argument provides
the kernel with the memory needed to hold this object. This clock will not actually tick by itself. Instead
it is the responsibility of application code to initialize a suitable hardware timer to generate interrupts at
the appropriate frequency, install an interrupt handler for this, and callcyg_counter_tick from inside
the DSR. Associated with each clock is a kernel counter, a handle for which can be obtained using
cyg_clock_to_counter .

Clock Resolutions and Ticks
At the kernel level all clock-related operations including delays, timeouts and alarms work in units of clock
ticks, rather than in units of seconds or milliseconds. If the calling code, whether the application or some other
package, needs to operate using units such as milliseconds then it has to convert from these units to clock ticks.

57

Clocks

The main reason for this is that it accurately reflects the hardware: calling something likenanosleep with
a delay of ten nanoseconds will not work as intended on any real hardware because timer interrupts simply
will not happen that frequently; instead callingcyg_thread_delay with the equivalent delay of 0 ticks gives
a much clearer indication that the application is attempting something inappropriate for the target hardware.
Similarly, passing a delay of five ticks tocyg_thread_delay makes it fairly obvious that the current thread
will be suspended for somewhere between four and five clock periods, as opposed to passing 50000000 to
nanosleep which suggests a granularity that is not actually provided.

A secondary reason is that conversion between clock ticks and units such as milliseconds can be somewhat
expensive, and whenever possible should be done at compile-time or by the application developer rather than
at run-time. This saves code size and cpu cycles.

The information needed to perform these conversions is the clock resolution. This is a structure with two
fields, a dividend and a divisor, and specifies the number of nanoseconds between clock ticks. For exam-
ple a clock that runs at 100Hz will have 10 milliseconds between clock ticks, or 10000000 nanoseconds.
The ratio between the resolution’s dividend and divisor will therefore be 10000000 to 1, and typical values
for these might be 1000000000 and 100. If the clock runs at a different frequency, say 60Hz, the numbers
could be 1000000000 and 60 respectively. Given a delay in nanoseconds, this can be converted to clock ticks
by multiplying with the the divisor and then dividing by the dividend. For example a delay of 50 millisec-
onds corresponds to 50000000 nanoseconds, and with a clock frequency of 100Hz this can be converted to
((50000000 * 100) / 1000000000) = 5 clock ticks. Given the large numbers involved this arithmetic normally
has to be done using 64-bit precision and the long long data type, but allows code to run on hardware with
unusual clock frequencies.

The default frequency for the real-time clock on any platform is usually about 100Hz, but platform-specific
documentation should be consulted for this information. Usually it is possible to override this default by con-
figuration options, but again this depends on the capabilities of the underlying hardware. The resolution for
any clock can be obtained usingcyg_clock_get_resolution . For clocks created by application code, there is
also a functioncyg_clock_set_resolution . This does not affect the underlying hardware timer in any way,
it merely updates the information that will be returned in subsequent calls tocyg_clock_get_resolution :
changing the actual underlying clock frequency will require appropriate manipulation of the timer hardware.

Valid contexts
cyg_clock_create is usually only called during system initialization (if at all), but may also be called from
thread context. The same applies tocyg_clock_delete . The remaining functions may be called during initial-
ization, from thread context, or from DSR context, although it should be noted that there is no locking between
cyg_clock_get_resolution andcyg_clock_set_resolution so theoretically it is possible that the former
returns an inconsistent data structure.

58

Alarms

Name
cyg_alarm_create, cyg_alarm_delete, cyg_alarm_initialize,
cyg_alarm_enable, cyg_alarm_disable — Run an alarm function when a number of events have
occurred

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_alarm_create (cyg_handle_t counter , cyg_alarm_t* alarmfn , cyg_addrword_t data ,
cyg_handle_t* handle , cyg_alarm* alarm);
void cyg_alarm_delete (cyg_handle_t alarm);
void cyg_alarm_initialize (cyg_handle_t alarm , cyg_tick_count_t trigger ,
cyg_tick_count_t interval);
void cyg_alarm_enable (cyg_handle_t alarm);
void cyg_alarm_disable (cyg_handle_t alarm);

Description
Kernel alarms are used together with counters and allow for action to be taken when a certain number of events
have occurred. If the counter is associated with a clock then the alarm action happens when the appropriate
number of clock ticks have occurred, in other words after a certain period of time.

Setting up an alarm involves a two-step process. First the alarm must be created with a call to
cyg_alarm_create . This takes five arguments. The first identifies the counter to which the alarm should be
attached. If the alarm should be attached to the system’s real-time clock thencyg_real_time_clock and
cyg_clock_to_counter can be used to get hold of the appropriate handle. The next two arguments specify
the action to be taken when the alarm is triggered, in the form of a function pointer and some data. This
function should take the form:

void
alarm_handler(cyg_handle_t alarm, cyg_addrword_t data)
{

...
}

The data argument passed to the alarm function corresponds to the third argument passed to
cyg_alarm_create . The fourth argument tocyg_alarm_create is used to return a handle to the
newly-created alarm object, and the final argument provides the memory needed for the alarm object and thus
avoids any need for dynamic memory allocation within the kernel.

Once an alarm has been created a further call tocyg_alarm_initialize is needed to activate it. The first
argument specifies the alarm. The second argument indicates the number of events, for example clock ticks,
that need to occur before the alarm triggers. If the third argument is 0 then the alarm will only trigger once. A
non-zero value specifies that the alarm should trigger repeatedly, with an interval of the specified number of
events.

59

Alarms

Alarms can be temporarily disabled and reenabled usingcyg_alarm_disable andcyg_alarm_enable . Alter-
natively another call tocyg_alarm_initialize can be used to modify the behaviour of an existing alarm. If
an alarm is no longer required then the associated resources can be released usingcyg_alarm_delete .

The alarm function is invoked when a counter tick occurs, in other words when there is a call to
cyg_counter_tick , and will happen in the same context. If the alarm is associated with the system’s
real-time clock then this will be DSR context, following a clock interrupt. If the alarm is associated with some
other application-specific counter then the details will depend on how that counter is updated.

If two or more alarms are registered for precisely the same counter tick, the order of execution of the alarm
functions is unspecified.

Valid contexts
cyg_alarm_create cyg_alarm_initialize is typically called during system initialization but may
also be called in thread context. The same applies tocyg_alarm_delete . cyg_alarm_initialize ,
cyg_alarm_disable and cyg_alarm_enable may be called during initialization or from thread or DSR
context, butcyg_alarm_enable andcyg_alarm_initialize may be expensive operations and should only
be called when necessary.

60

Mutexes

Name
cyg_mutex_init, cyg_mutex_destroy, cyg_mutex_lock, cyg_mutex_trylock,
cyg_mutex_unlock, cyg_mutex_release, cyg_mutex_set_ceiling,
cyg_mutex_set_protocol — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_mutex_init (cyg_mutex_t* mutex);
void cyg_mutex_destroy (cyg_mutex_t* mutex);
cyg_bool_t cyg_mutex_lock (cyg_mutex_t* mutex);
cyg_bool_t cyg_mutex_trylock (cyg_mutex_t* mutex);
void cyg_mutex_unlock (cyg_mutex_t* mutex);
void cyg_mutex_release (cyg_mutex_t* mutex);
void cyg_mutex_set_ceiling (cyg_mutex_t* mutex , cyg_priority_t priority);
void cyg_mutex_set_protocol (cyg_mutex_t* mutex , enum cyg_mutex_protocol protocol/);

Description
The purpose of mutexes is to let threads share resources safely. If two or more threads attempt to manipulate
a data structure with no locking between them then the system may run for quite some time without apparent
problems, but sooner or later the data structure will become inconsistent and the application will start behaving
strangely and is quite likely to crash. The same can apply even when manipulating a single variable or some
other resource. For example, consider:

static volatile int counter = 0;

void
process_event(void)
{

...

counter++;
}

Assume that after a certain period of timecounter has a value of 42, and two threads A and B running
at the same priority callprocess_event . Typically thread A will read the value ofcounter into a register,
increment this register to 43, and write this updated value back to memory. Thread B will do the same, so
usuallycounter will end up with a value of 44. However if thread A is timesliced after reading the old value
42 but before writing back 43, thread B will still read back the old value and will also write back 43. The net
result is that the counter only gets incremented once, not twice, which depending on the application may prove
disastrous.

Sections of code like the above which involve manipulating shared data are generally known as critical regions.
Code should claim a lock before entering a critical region and release the lock when leaving. Mutexes provide
an appropriate synchronization primitive for this.

61

Mutexes

static volatile int counter = 0;
static cyg_mutex_t lock;

void
process_event(void)
{

...

cyg_mutex_lock(&lock);
counter++;
cyg_mutex_unlock(&lock);

}

A mutex must be initialized before it can be used, by callingcyg_mutex_init . This takes a pointer to a
cyg_mutex_t data structure which is typically statically allocated, and may be part of a larger data structure. If
a mutex is no longer required and there are no threads waiting on it thencyg_mutex_destroy can be used.

The main functions for using a mutex arecyg_mutex_lock and cyg_mutex_unlock . In normal operation
cyg_mutex_lock will return success after claiming the mutex lock, blocking if another thread currently
owns the mutex. However the lock operation may fail if other code callscyg_mutex_release or
cyg_thread_release , so if these functions may get used then it is important to check the return value. The
current owner of a mutex should callcyg_mutex_unlock when a lock is no longer required. This operation
must be performed by the owner, not by another thread.

cyg_mutex_trylock is a variant ofcyg_mutex_lock that will always return immediately, returning success or
failure as appropriate. This function is rarely useful. Typical code locks a mutex just before entering a critical
region, so if the lock cannot be claimed then there may be nothing else for the current thread to do. Use of
this function may also cause a form of priority inversion if the owner owner runs at a lower priority, because
the priority inheritance code will not be triggered. Instead the current thread continues running, preventing the
owner from getting any cpu time, completing the critical region, and releasing the mutex.

cyg_mutex_release can be used to wake up all threads that are currently blocked inside a call to
cyg_mutex_lock for a specific mutex. These lock calls will return failure. The current mutex owner is not
affected.

Priority Inversion
The use of mutexes gives rise to a problem known as priority inversion. In a typical scenario this requires
three threads A, B, and C, running at high, medium and low priority respectively. Thread A and thread B are
temporarily blocked waiting for some event, so thread C gets a chance to run, needs to enter a critical region,
and locks a mutex. At this point threads A and B are woken up - the exact order does not matter. Thread A
needs to claim the same mutex but has to wait until C has left the critical region and can release the mutex.
Meanwhile thread B works on something completely different and can continue running without problems.
Because thread C is running a lower priority than B it will not get a chance to run until B blocks for some
reason, and hence thread A cannot run either. The overall effect is that a high-priority thread A cannot proceed
because of a lower priority thread B, and priority inversion has occurred.

In simple applications it may be possible to arrange the code such that priority inversion cannot occur, for
example by ensuring that a given mutex is never shared by threads running at different priority levels. However
this may not always be possible even at the application level. In addition mutexes may be used internally by
underlying code, for example the memory allocation package, so careful analysis of the whole system would
be needed to be sure that priority inversion cannot occur. Instead it is common practice to use one of two
techniques: priority ceilings and priority inheritance.

62

Mutexes

Priority ceilings involve associating a priority with each mutex. Usually this will match the highest priority
thread that will ever lock the mutex. When a thread running at a lower priority makes a successful call to
cyg_mutex_lock or cyg_mutex_trylock its priority will be boosted to that of the mutex. For example, given
the previous example the priority associated with the mutex would be that of thread A, so for as long as it
owns the mutex thread C will run in preference to thread B. When C releases the mutex its priority drops to
the normal value again, allowing A to run and claim the mutex. Setting the priority for a mutex involves a call
to cyg_mutex_set_ceiling , which is typically called during initialization. It is possible to change the ceiling
dynamically but this will only affect subsequent lock operations, not the current owner of the mutex.

Priority ceilings are very suitable for simple applications, where for every thread in the system it is
possible to work out which mutexes will be accessed. For more complicated applications this may
prove difficult, especially if thread priorities change at run-time. An additional problem occurs for
any mutexes outside the application, for example used internally within eCos packages. A typical eCos
package will be unaware of the details of the various threads in the system, so it will have no way
of setting suitable ceilings for its internal mutexes. If those mutexes are not exported to application
code then using priority ceilings may not be viable. The kernel does provide a configuration option
CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITYthat can be used to
set the default priority ceiling for all mutexes, which may prove sufficient.

The alternative approach is to use priority inheritance: if a thread callscyg_mutex_lock for a mutex that it
currently owned by a lower-priority thread, then the owner will have its priority raised to that of the current
thread. Often this is more efficient than priority ceilings because priority boosting only happens when nec-
essary, not for every lock operation, and the required priority is determined at run-time rather than by static
analysis. However there are complications when multiple threads running at different priorities try to lock a
single mutex, or when the current owner of a mutex then tries to lock additional mutexes, and this makes the
implementation significantly more complicated than priority ceilings.

There are a number of configuration options associated with priority inversion.
First, if after careful analysis it is known that priority inversion cannot arise then
the component CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL

can be disabled. More commonly this component will be enabled, and one of
either CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT or
CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILINGwill be selected, so that one of
the two protocols is available for all mutexes. It is possible to select multiple protocols, so that some mutexes
can have priority ceilings while others use priority inheritance or no priority inversion protection at all.
Obviously this flexibility will add to the code size and to the cost of mutex operations. The default for all
mutexes will be controlled byCYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT,
and can be changed at run-time usingcyg_mutex_set_protocol .

Priority inversion problems can also occur with other synchronization primitives such as semaphores. For
example there could be a situation where a high-priority thread A is waiting on a semaphore, a low-priority
thread C needs to do just a little bit more work before posting the semaphore, but a medium priority thread
B is running and preventing C from making progress. However a semaphore does not have the concept of an
owner, so there is no way for the system to know that it is thread C which would next post to the semaphore.
Hence there is no way for the system to boost the priority of C automatically and prevent the priority inversion.
Instead situations like this have to be detected by application developers and appropriate precautions have to
be taken, for example making sure that all the threads run at suitable priorities at all times.

63

Mutexes

Warning
The current implementation of priority inheritance within the eCos kernel does not han-
dle certain exceptional circumstances completely correctly. Problems will only arise if
a thread owns one mutex, then attempts to claim another mutex, and there are other
threads attempting to lock these same mutexes. Although the system will continue run-
ning, the current owners of the various mutexes involved may not run at the priority they
should. This situation never arises in typical code because a mutex will only be locked for
a small critical region, and there is no need to manipulate other shared resources inside
this region. A more complicated implementation of priority inheritance is possible but
would add significant overhead and certain operations would no longer be deterministic.

Warning
Support for priority ceilings and priority inheritance is not implemented for all schedulers.
In particular neither priority ceilings nor priority inheritance are currently available for the
bitmap scheduler.

Alternatives
In nearly all circumstances, if two or more threads need to share some data then protecting this data with a
mutex is the correct thing to do. Mutexes are the only primitive that combine a locking mechanism and pro-
tection against priority inversion problems. However this functionality is achieved at a cost, and in exceptional
circumstances such as an application’s most critical inner loop it may be desirable to use some other means of
locking.

When a critical region is very very small it is possible to lock the scheduler, thus ensuring that no other
thread can run until the scheduler is unlocked again. This is achieved with calls tocyg_scheduler_lock

andcyg_scheduler_unlock . If the critical region is sufficiently small then this can actually improve both
performance and dispatch latency becausecyg_mutex_lock also locks the scheduler for a brief period of time.
This approach will not work on SMP systems because another thread may already be running on a different
processor and accessing the critical region.

Another way of avoiding the use of mutexes is to make sure that all threads that access a
particular critical region run at the same priority and configure the system with timeslicing disabled
(CYGSEM_KERNEL_SCHED_TIMESLICE). Without timeslicing a thread can only be preempted by a
higher-priority one, or if it performs some operation that can block. This approach requires that none of the
operations in the critical region can block, so for example it is not legal to callcyg_semaphore_wait . It is
also vulnerable to any changes in the configuration or to the various thread priorities: any such changes may
now have unexpected side effects. It will not work on SMP systems.

Recursive Mutexes
The implementation of mutexes within the eCos kernel does not support recursive locks. If a thread has locked
a mutex and then attempts to lock the mutex again, typically as a result of some recursive call in a complicated
call graph, then either an assertion failure will be reported or the thread will deadlock. This behaviour is
deliberate. When a thread has just locked a mutex associated with some data structure, it can assume that that
data structure is in a consistent state. Before unlocking the mutex again it must ensure that the data structure
is again in a consistent state. Recursive mutexes allow a thread to make arbitrary changes to a data structure,
then in a recursive call lock the mutex again while the data structure is still inconsistent. The net result is that

64

Mutexes

code can no longer make any assumptions about data structure consistency, which defeats the purpose of using
mutexes.

Valid contexts
cyg_mutex_init , cyg_mutex_set_ceiling andcyg_mutex_set_protocol are normally called during ini-
tialization but may also be called from thread context. The remaining functions should only be called from
thread context. Mutexes serve as a mutual exclusion mechanism between threads, and cannot be used to syn-
chronize between threads and the interrupt handling subsystem. If a critical region is shared between a thread
and a DSR then it must be protected usingcyg_scheduler_lock andcyg_scheduler_unlock . If a critical re-
gion is shared between a thread and an ISR, it must be protected by disabling or masking interrupts. Obviously
these operations must be used with care because they can affect dispatch and interrupt latencies.

65

Mutexes

66

Condition Variables

Name
cyg_cond_init, cyg_cond_destroy, cyg_cond_wait, cyg_cond_timed_wait,
cyg_cond_signal, cyg_cond_broadcast — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_cond_init (cyg_cond_t* cond , cyg_mutex_t* mutex);
void cyg_cond_destroy (cyg_cond_t* cond);
cyg_bool_t cyg_cond_wait (cyg_cond_t* cond);
cyg_bool_t cyg_cond_timed_wait (cyg_cond_t* cond , cyg_tick_count_t abstime);
void cyg_cond_signal (cyg_cond_t* cond);
void cyg_cond_broadcast (cyg_cond_t* cond);

Description
Condition variables are used in conjunction with mutexes to implement long-term waits for some condition to
become true. For example consider a set of functions that control access to a pool of resources:

cyg_mutex_t res_lock;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)
{

cyg_mutex_init(&res_lock);
<fill pool with resources >

}

res_t res_allocate(void)
{

res_t res;

cyg_mutex_lock(&res_lock); // lock the mutex

if(res_count == 0) // check for free resource
res = RES_NONE; // return RES_NONE if none

else
{

res_count--; // allocate a resources
res = res_pool[res_count];

}

cyg_mutex_unlock(&res_lock); // unlock the mutex

return res;
}

67

Condition Variables

void res_free(res_t res)
{

cyg_mutex_lock(&res_lock); // lock the mutex

res_pool[res_count] = res; // free the resource
res_count++;

cyg_mutex_unlock(&res_lock); // unlock the mutex
}

These routines use the variableres_count to keep track of the resources available. If there are none then
res_allocate returnsRES_NONE, which the caller must check for and take appropriate error handling actions.

Now suppose that we do not want to returnRES_NONEwhen there are no resources, but want to wait for one to
become available. This is where a condition variable can be used:

cyg_mutex_t res_lock;
cyg_cond_t res_wait;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)
{

cyg_mutex_init(&res_lock);
cyg_cond_init(&res_wait, &res_lock);
<fill pool with resources >

}

res_t res_allocate(void)
{

res_t res;

cyg_mutex_lock(&res_lock); // lock the mutex

while(res_count == 0) // wait for a resources
cyg_cond_wait(&res_wait);

res_count--; // allocate a resource
res = res_pool[res_count];

cyg_mutex_unlock(&res_lock); // unlock the mutex

return res;
}

void res_free(res_t res)
{

cyg_mutex_lock(&res_lock); // lock the mutex

res_pool[res_count] = res; // free the resource
res_count++;

cyg_cond_signal(&res_wait); // wake up any waiting allocators

cyg_mutex_unlock(&res_lock); // unlock the mutex
}

68

Condition Variables

In this version of the code, whenres_allocate detects that there are no resources it callscyg_cond_wait .
This does two things: it unlocks the mutex, and puts the calling thread to sleep on the condition variable. When
res_free is eventually called, it puts a resource back into the pool and callscyg_cond_signal to wake up any
thread waiting on the condition variable. When the waiting thread eventually gets to run again, it will re-lock
the mutex before returning fromcyg_cond_wait .

There are two important things to note about the way in which this code works. The first is that the mutex unlock
and wait incyg_cond_wait are atomic: no other thread can run between the unlock and the wait. If this were
not the case then a call tores_free by that thread would release the resource but the call tocyg_cond_signal

would be lost, and the first thread would end up waiting when there were resources available.

The second feature is that the call tocyg_cond_wait is in awhile loop and not a simpleif statement. This
is because of the need to re-lock the mutex incyg_cond_wait when the signalled thread reawakens. If there
are other threads already queued to claim the lock then this thread must wait. Depending on the scheduler and
the queue order, many other threads may have entered the critical section before this one gets to run. So the
condition that it was waiting for may have been rendered false. Using a loop around all condition variable wait
operations is the only way to guarantee that the condition being waited for is still true after waiting.

Before a condition variable can be used it must be initialized with a call tocyg_cond_init . This requires two
arguments, memory for the data structure and a pointer to an existing mutex. This mutex will not be initialized
by cyg_cond_init , instead a separate call tocyg_mutex_init is required. If a condition variable is no longer
required and there are no threads waiting on it thencyg_cond_destroy can be used.

When a thread needs to wait for a condition to be satisfied it can callcyg_cond_wait . The thread must have
already locked the mutex that was specified in thecyg_cond_init call. This mutex will be unlocked and
the current thread will be suspended in an atomic operation. When some other thread performs a signal or
broadcast operation the current thread will be woken up and automatically reclaim ownership of the mutex
again, allowing it to examine global state and determine whether or not the condition is now satisfied.

The kernel supplies a variant of this function,cyg_cond_timed_wait , which can be used to wait on the
condition variable or until some number of clock ticks have occurred. The number of ticks is specified as
an absolute, not relative tick count, and so in order to wait for a relative number of ticks, the return value of
thecyg_current_time() function should be added to determine the absolute number of ticks. The mutex will
always be reclaimed beforecyg_cond_timed_wait returns, regardless of whether it was a result of a signal
operation or a timeout.

There is nocyg_cond_trywait function because this would not serve any purpose. If a thread has locked the
mutex and determined that the condition is satisfied, it can just release the mutex and return. There is no need
to perform any operation on the condition variable.

When a thread changes shared state that may affect some other thread blocked on a condition variable, it should
call eithercyg_cond_signal or cyg_cond_broadcast . These calls do not require ownership of the mutex, but
usually the mutex will have been claimed before updating the shared state. A signal operation only wakes up
the first thread that is waiting on the condition variable, while a broadcast wakes up all the threads. If there are
no threads waiting on the condition variable at the time, then the signal or broadcast will have no effect: past
signals are not counted up or remembered in any way. Typically a signal should be used when all threads will
check the same condition and at most one thread can continue running. A broadcast should be used if threads
check slightly different conditions, or if the change to the global state might allow multiple threads to proceed.

Valid contexts
cyg_cond_init is typically called during system initialization but may also be called in thread context. The
same applies tocyg_cond_delete . cyg_cond_wait and cyg_cond_timedwait may only be called from
thread context since they may block.cyg_cond_signal andcyg_cond_broadcast may be called from thread
or DSR context.

69

Condition Variables

70

Semaphores

Name
cyg_semaphore_init, cyg_semaphore_destroy, cyg_semaphore_wait,
cyg_semaphore_timed_wait, cyg_semaphore_post, cyg_semaphore_peek —
Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_semaphore_init (cyg_sem_t* sem, cyg_count32 val);
void cyg_semaphore_destroy (cyg_sem_t* sem);
cyg_bool_t cyg_semaphore_wait (cyg_sem_t* sem);
cyg_bool_t cyg_semaphore_timed_wait (cyg_sem_t* sem, cyg_tick_count_t abstime);
cyg_bool_t cyg_semaphore_trywait (cyg_sem_t* sem);
void cyg_semaphore_post (cyg_sem_t* sem);
void cyg_semaphore_peek (cyg_sem_t* sem, cyg_count32* val);

Description
Counting semaphores are asynchronization primitivethat allow threads to wait until an event has occurred.
The event may be generated by a producer thread, or by a DSR in response to a hardware interrupt. Associated
with each semaphore is an integer counter that keeps track of the number of events that have not yet been
processed. If this counter is zero, an attempt by a consumer thread to wait on the semaphore will block until
some other thread or a DSR posts a new event to the semaphore. If the counter is greater than zero then an
attempt to wait on the semaphore will consume one event, in other words decrement the counter, and return
immediately. Posting to a semaphore will wake up the first thread that is currently waiting, which will then
resume inside the semaphore wait operation and decrement the counter again.

Another use of semaphores is for certain forms of resource management. The counter would correspond to
how many of a certain type of resource are currently available, with threads waiting on the semaphore to claim
a resource and posting to release the resource again. In practicecondition variablesare usually much better
suited for operations like this.

cyg_semaphore_init is used to initialize a semaphore. It takes two arguments, a pointer to a cyg_sem_t
structure and an initial value for the counter. Note that semaphore operations, unlike some other parts of the
kernel API, use pointers to data structures rather than handles. This makes it easier to embed semaphores in
a larger data structure. The initial counter value can be any number, zero, positive or negative, but typically a
value of zero is used to indicate that no events have occurred yet.

cyg_semaphore_wait is used by a consumer thread to wait for an event. If the current counter is greater than
0, in other words if the event has already occurred in the past, then the counter will be decremented and the call
will return immediately. Otherwise the current thread will be blocked until there is acyg_semaphore_post

call.

cyg_semaphore_post is called when an event has occurs. This increments the counter and wakes up
the first thread waiting on the semaphore (if any). Usually that thread will then continue running inside
cyg_semaphore_wait and decrement the counter again. However other scenarioes are possible. For example
the thread callingcyg_semaphore_post may be running at high priority, some other thread running at

71

Semaphores

medium priority may be about to callcyg_semaphore_wait when it next gets a chance to run, and a low
priority thread may be waiting on the semaphore. What will happen is that the current high priority thread
continues running until it is descheduled for some reason, then the medium priority thread runs and its call
to cyg_semaphore_wait succeeds immediately, and later on the low priority thread runs again, discovers
a counter value of 0, and blocks until another event is posted. If there are multiple threads blocked on a
semaphore then the configuration optionCYGIMP_KERNEL_SCHED_SORTED_QUEUESdetermines which one will
be woken up by a post operation.

cyg_semaphore_wait returns a boolean. Normally it will block until it has successfully decremented the
counter, retrying as necessary, and return success. However the wait operation may be aborted by a call to
cyg_thread_release , andcyg_semaphore_wait will then return false.

cyg_semaphore_timed_wait is a variant ofcyg_semaphore_wait . It can be used to wait until either an
event has occurred or a number of clock ticks have happened. The number of ticks is specified as an abso-
lute, not relative tick count, and so in order to wait for a relative number of ticks, the return value of the
cyg_current_time() function should be added to determine the absolute number of ticks. The function re-
turns success if the semaphore wait operation succeeded, or false if the operation timed out or was aborted
by cyg_thread_release . If support for the real-time clock has been removed from the current configuration
then this function will not be available.cyg_semaphore_trywait is another variant which will always return
immediately rather than block, again returning success or failure. Ifcyg_semaphore_timedwait is given a
timeout in the past, it operates likecyg_semaphore_trywait .

cyg_semaphore_peek can be used to get hold of the current counter value. This function is rarely useful except
for debugging purposes since the counter value may change at any time if some other thread or a DSR performs
a semaphore operation.

Valid contexts
cyg_semaphore_init is normally called during initialization but may also be called from thread context.
cyg_semaphore_wait and cyg_semaphore_timed_wait may only be called from thread context because
these operations may block.cyg_semaphore_trywait , cyg_semaphore_post and cyg_semaphore_peek

may be called from thread or DSR context.

72

Mail boxes

Name
cyg_mbox_create, cyg_mbox_delete, cyg_mbox_get, cyg_mbox_timed_get,
cyg_mbox_tryget, cyg_mbox_peek_item, cyg_mbox_put, cyg_mbox_timed_put,
cyg_mbox_tryput, cyg_mbox_peek, cyg_mbox_waiting_to_get,
cyg_mbox_waiting_to_put — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_mbox_create (cyg_handle_t* handle , cyg_mbox* mbox);
void cyg_mbox_delete (cyg_handle_t mbox);
void* cyg_mbox_get (cyg_handle_t mbox);
void* cyg_mbox_timed_get (cyg_handle_t mbox, cyg_tick_count_t abstime);
void* cyg_mbox_tryget (cyg_handle_t mbox);
cyg_count32 cyg_mbox_peek (cyg_handle_t mbox);
void* cyg_mbox_peek_item (cyg_handle_t mbox);
cyg_bool_t cyg_mbox_put (cyg_handle_t mbox, void* item);
cyg_bool_t cyg_mbox_timed_put (cyg_handle_t mbox, void* item , cyg_tick_count_t abstime);
cyg_bool_t cyg_mbox_tryput (cyg_handle_t mbox, void* item);
cyg_bool_t cyg_mbox_waiting_to_get (cyg_handle_t mbox);
cyg_bool_t cyg_mbox_waiting_to_put (cyg_handle_t mbox);

Description
Mail boxes are a synchronization primitive. Like semaphores they can be used by a consumer thread to wait
until a certain event has occurred, but the producer also has the ability to transmit some data along with each
event. This data, the message, is normally a pointer to some data structure. It is stored in the mail box itself,
so the producer thread that generates the event and provides the data usually does not have to block until some
consumer thread is ready to receive the event. However a mail box will only have a finite capacity, typically ten
slots. Even if the system is balanced and events are typically consumed at least as fast as they are generated,
a burst of events can cause the mail box to fill up and the generating thread will block until space is available
again. This behaviour is very different from semaphores, where it is only necessary to maintain a counter and
hence an overflow is unlikely.

Before a mail box can be used it must be created with a call tocyg_mbox_create . Each mail box has a unique
handle which will be returned via the first argument and which should be used for subsequent operations.
cyg_mbox_create also requires an area of memory for the kernel structure, which is provided by the cyg_mbox
second argument. If a mail box is no longer required thencyg_mbox_delete can be used. This will simply
discard any messages that remain posted.

The main function for waiting on a mail box iscyg_mbox_get . If there is a pending message because of a
call tocyg_mbox_put thencyg_mbox_get will return immediately with the message that was put into the mail
box. Otherwise this function will block until there is a put operation. Exceptionally the thread can instead be
unblocked by a call tocyg_thread_release , in which casecyg_mbox_get will return a null pointer. It is
assumed that there will never be a call tocyg_mbox_put with a null pointer, because it would not be possible

73

Mail boxes

to distinguish between that and a release operation. Messages are always retrieved in the order in which they
were put into the mail box, and there is no support for messages with different priorities.

There are two variants ofcyg_mbox_get . The first,cyg_mbox_timed_get will wait until either a message
is available or until a number of clock ticks have occurred. The number of ticks is specified as an abso-
lute, not relative tick count, and so in order to wait for a relative number of ticks, the return value of the
cyg_current_time() function should be added to determine the absolute number of ticks. If no message is
posted within the timeout then a null pointer will be returned.cyg_mbox_tryget is a non-blocking operation
which will either return a message if one is available or a null pointer.

New messages are placed in the mail box by callingcyg_mbox_put or one of its variants. The main put function
takes two arguments, a handle to the mail box and a pointer for the message itself. If there is a spare slot in
the mail box then the new message can be placed there immediately, and if there is a waiting thread it will be
woken up so that it can receive the message. If the mail box is currently full thencyg_mbox_put will block
until there has been a get operation and a slot is available. Thecyg_mbox_timed_put variant imposes a time
limit on the put operation, returning false if the operation cannot be completed within the specified number
of clock ticks and as forcyg_mbox_timed_get this is an absolute tick count. Thecyg_mbox_tryput variant
is non-blocking, returning false if there are no free slots available and the message cannot be posted without
blocking.

There are a further four functions available for examining the current state of a mailbox. The results
of these functions must be used with care because usually the state can change at any time as a result
of activity within other threads, but they may prove occasionally useful during debugging or in special
situations.cyg_mbox_peek returns a count of the number of messages currently stored in the mail box.
cyg_mbox_peek_item retrieves the first message, but it remains in the mail box until a get operation is
performed.cyg_mbox_waiting_to_get and cyg_mbox_waiting_to_put indicate whether or not there are
currently threads blocked in a get or a put operation on a given mail box.

The number of slots in each mail box is controlled by a configuration option
CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE, with a default value of 10. All mail boxes are the same size.

Valid contexts
cyg_mbox_create is typically called during system initialization but may also be called in thread context. The
remaining functions are normally called only during thread context. Of special note iscyg_mbox_put which
can be a blocking operation when the mail box is full, and which therefore must never be called from DSR
context. It is permitted to callcyg_mbox_tryput , cyg_mbox_tryget , and the information functions from DSR
context but this is rarely useful.

74

Event Flags

Name
cyg_flag_init, cyg_flag_destroy, cyg_flag_setbits, cyg_flag_maskbits,
cyg_flag_wait, cyg_flag_timed_wait, cyg_flag_poll, cyg_flag_peek,
cyg_flag_waiting — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_flag_init (cyg_flag_t* flag);
void cyg_flag_destroy (cyg_flag_t* flag);
void cyg_flag_setbits (cyg_flag_t* flag , cyg_flag_value_t value);
void cyg_flag_maskbits (cyg_flag_t* flag , cyg_flag_value_t value);
cyg_flag_value_t cyg_flag_wait (cyg_flag_t* flag , cyg_flag_value_t pattern ,
cyg_flag_mode_t mode);
cyg_flag_value_t cyg_flag_timed_wait (cyg_flag_t* flag , cyg_flag_value_t pattern ,
cyg_flag_mode_t mode, cyg_tick_count_t abstime);
cyg_flag_value_t cyg_flag_poll (cyg_flag_t* flag , cyg_flag_value_t pattern ,
cyg_flag_mode_t mode);
cyg_flag_value_t cyg_flag_peek (cyg_flag_t* flag);
cyg_bool_t cyg_flag_waiting (cyg_flag_t* flag);

Description
Event flags allow a consumer thread to wait for one of several different types of event to occur. Alternatively
it is possible to wait for some combination of events. The implementation is relatively straightforward. Each
event flag contains a 32-bit integer. Application code associates these bits with specific events, so for example
bit 0 could indicate that an I/O operation has completed and data is available, while bit 1 could indicate that
the user has pressed a start button. A producer thread or a DSR can cause one or more of the bits to be set, and
a consumer thread currently waiting for these bits will be woken up.

Unlike semaphores no attempt is made to keep track of event counts. It does not matter whether a given event
occurs once or multiple times before being consumed, the corresponding bit in the event flag will change only
once. However semaphores cannot easily be used to handle multiple event sources. Event flags can often be
used as an alternative to condition variables, although they cannot be used for completely arbitrary conditions
and they only support the equivalent of condition variable broadcasts, not signals.

Before an event flag can be used it must be initialized by a call tocyg_flag_init . This takes a pointer to a
cyg_flag_t data structure, which can be part of a larger structure. All 32 bits in the event flag will be set to 0,
indicating that no events have yet occurred. If an event flag is no longer required it can be cleaned up with a
call to cyg_flag_destroy , allowing the memory for thecyg_flag_t structure to be re-used.

A consumer thread can wait for one or more events by callingcyg_flag_wait . This takes three arguments.
The first identifies a particular event flag. The second is some combination of bits, indicating which events are
of interest. The final argument should be one of the following:

75

Event Flags

CYG_FLAG_WAITMODE_AND

The call tocyg_flag_wait will block until all the specified event bits are set. The event flag is not cleared
when the wait succeeds, in other words all the bits remain set.

CYG_FLAG_WAITMODE_OR

The call will block until at least one of the specified event bits is set. The event flag is not cleared on
return.

CYG_FLAG_WAITMODE_AND | CYG_FLAG_WAITMODE_CLR

The call will block until all the specified event bits are set, and the entire event flag is cleared when the
call succeeds. Note that if this mode of operation is used then a single event flag cannot be used to store
disjoint sets of events, even though enough bits might be available. Instead each disjoint set of events
requires its own event flag.

CYG_FLAG_WAITMODE_OR | CYG_FLAG_WAITMODE_CLR

The call will block until at least one of the specified event bits is set, and the entire flag is cleared when
the call succeeds.

A call to cyg_flag_wait normally blocks until the required condition is satisfied. It will return the value of
the event flag at the point that the operation succeeded, which may be a superset of the requested events. If
cyg_thread_release is used to unblock a thread that is currently in a wait operation, thecyg_flag_wait

call will instead return 0.

cyg_flag_timed_wait is a variant ofcyg_flag_wait which adds a timeout: the wait operation must succeed
within the specified number of ticks, or it will fail with a return value of 0. The number of ticks is specified as
an absolute, not relative tick count, and so in order to wait for a relative number of ticks, the return value of the
cyg_current_time() function should be added to determine the absolute number of ticks.cyg_flag_poll is
a non-blocking variant: if the wait operation can succeed immediately it acts likecyg_flag_wait , otherwise
it returns immediately with a value of 0.

cyg_flag_setbits is called by a producer thread or from inside a DSR when an event occurs. The
specified bits are or’d into the current event flag value. This may cause one or more waiting threads to be
woken up, if their conditions are now satisfied. How many threads are awoken depends on the use of
CYG_FLAG_WAITMODE_CLR. The queue of threads waiting on the flag is walked to find threads which now have
their wake condition fulfilled. If the awoken thread has passedCYG_FLAG_WAITMODE_CLRthe walking of the
queue is terminated, otherwise the walk continues. Thus if no threads have passedCYG_FLAG_WAITMORE_CLR

all threads with fulfilled conditions will be awoken. IfCYG_FLAG_WAITMODE_CLRis passed by threads with
fulfilled conditions, the number of awoken threads will depend on the order the threads are in the queue.

cyg_flag_maskbits can be used to clear one or more bits in the event flag. This can be called from a producer
when a particular condition is no longer satisfied, for example when the user is no longer pressing a particular
button. It can also be used by a consumer thread ifCYG_FLAG_WAITMODE_CLRwas not used as part of the wait
operation, to indicate that some but not all of the active events have been consumed. If there are multiple
consumer threads performing wait operations without usingCYG_FLAG_WAITMODE_CLRthen typically some
additional synchronization such as a mutex is needed to prevent multiple threads consuming the same event.

Two additional functions are provided to query the current state of an event flag.cyg_flag_peek returns the
current value of the event flag, andcyg_flag_waiting can be used to find out whether or not there are any
threads currently blocked on the event flag. Both of these functions must be used with care because other
threads may be operating on the event flag.

76

Event Flags

Valid contexts
cyg_flag_init is typically called during system initialization but may also be called in thread context. The
same applies tocyg_flag_destroy . cyg_flag_wait andcyg_flag_timed_wait may only be called from
thread context. The remaining functions may be called from thread or DSR context.

77

Event Flags

78

Spinlocks

Name
cyg_spinlock_create, cyg_spinlock_destroy, cyg_spinlock_spin,
cyg_spinlock_clear, cyg_spinlock_test, cyg_spinlock_spin_intsave,
cyg_spinlock_clear_intsave — Low-level Synchronization Primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_spinlock_init (cyg_spinlock_t* lock , cyg_bool_t locked);
void cyg_spinlock_destroy (cyg_spinlock_t* lock);
void cyg_spinlock_spin (cyg_spinlock_t* lock);
void cyg_spinlock_clear (cyg_spinlock_t* lock);
cyg_bool_t cyg_spinlock_try (cyg_spinlock_t* lock);
cyg_bool_t cyg_spinlock_test (cyg_spinlock_t* lock);
void cyg_spinlock_spin_intsave (cyg_spinlock_t* lock , cyg_addrword_t* istate);
void cyg_spinlock_clear_intsave (cyg_spinlock_t* lock , cyg_addrword_t istate);

Description
Spinlocks provide an additional synchronization primitive for applications running on SMP systems. They
operate at a lower level than the other primitives such as mutexes, and for most purposes the higher-level
primitives should be preferred. However there are some circumstances where a spinlock is appropriate, espe-
cially when interrupt handlers and threads need to share access to hardware, and on SMP systems the kernel
implementation itself depends on spinlocks.

Essentially a spinlock is just a simple flag. When code tries to claim a spinlock it checks whether or not the flag
is already set. If not then the flag is set and the operation succeeds immediately. The exact implementation of
this is hardware-specific, for example it may use a test-and-set instruction to guarantee the desired behaviour
even if several processors try to access the spinlock at the exact same time. If it is not possible to claim
a spinlock then the current thead spins in a tight loop, repeatedly checking the flag until it is clear. This
behaviour is very different from other synchronization primitives such as mutexes, where contention would
cause a thread to be suspended. The assumption is that a spinlock will only be held for a very short time. If
claiming a spinlock could cause the current thread to be suspended then spinlocks could not be used inside
interrupt handlers, which is not acceptable.

This does impose a constraint on any code which uses spinlocks. Specifically it is important that spinlocks are
held only for a short period of time, typically just some dozens of instructions. Otherwise another processor
could be blocked on the spinlock for a long time, unable to do any useful work. It is also important that a thread
which owns a spinlock does not get preempted because that might cause another processor to spin for a whole
timeslice period, or longer. One way of achieving this is to disable interrupts on the current processor, and the
functioncyg_spinlock_spin_intsave is provided to facilitate this.

Spinlocks should not be used on single-processor systems. Consider a high priority thread which attempts to
claim a spinlock already held by a lower priority thread: it will just loop forever and the lower priority thread
will never get another chance to run and release the spinlock. Even if the two threads were running at the same
priority, the one attempting to claim the spinlock would spin until it was timesliced and a lot of cpu time would

79

Spinlocks

be wasted. If an interrupt handler tried to claim a spinlock owned by a thread, the interrupt handler would loop
forever. Therefore spinlocks are only appropriate for SMP systems where the current owner of a spinlock can
continue running on a different processor.

Before a spinlock can be used it must be initialized by a call tocyg_spinlock_init . This takes two arguments,
a pointer to acyg_spinlock_t data structure, and a flag to specify whether the spinlock starts off locked or
unlocked. If a spinlock is no longer required then it can be destroyed by a call tocyg_spinlock_destroy .

There are two routines for claiming a spinlock:cyg_spinlock_spin andcyg_spinlock_spin_intsave . The
former can be used when it is known the current code will not be preempted, for example because it is running
in an interrupt handler or because interrupts are disabled. The latter will disable interrupts in addition to claim-
ing the spinlock, so is safe to use in all circumstances. The previous interrupt state is returned via the second
argument, and should be used in a subsequent call tocyg_spinlock_clear_intsave .

Similarly there are two routines for releasing a spinlock:cyg_spinlock_clear and
cyg_spinlock_clear_intsave . Typically the former will be used if the spinlock was claimed by a call to
cyg_spinlock_spin , and the latter whencyg_spinlock_intsave was used.

There are two additional routines.cyg_spinlock_try is a non-blocking version ofcyg_spinlock_spin :
if possible the lock will be claimed and the function will returntrue ; otherwise the function will return
immediately with failure.cyg_spinlock_test can be used to find out whether or not the spinlock is currently
locked. This function must be used with care because, especially on a multiprocessor system, the state of the
spinlock can change at any time.

Spinlocks should only be held for a short period of time, and attempting to claim a spinlock will never cause
a thread to be suspended. This means that there is no need to worry about priority inversion problems, and
concepts such as priority ceilings and inheritance do not apply.

Valid contexts
All of the spinlock functions can be called from any context, including ISR and DSR context. Typically
cyg_spinlock_init is only called during system initialization.

80

Scheduler Control

Name
cyg_scheduler_start, cyg_scheduler_lock, cyg_scheduler_unlock,
cyg_scheduler_safe_lock, cyg_scheduler_read_lock — Control the state of the scheduler

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_scheduler_start (void);
void cyg_scheduler_lock (void);
void cyg_scheduler_unlock (void);
cyg_ucount32 cyg_scheduler_read_lock (void);

Description
cyg_scheduler_start should only be called once, to mark the end of system initialization. In typical config-
urations it is called automatically by the system startup, but some applications may bypass the standard startup
in which casecyg_scheduler_start will have to be called explicitly. The call will enable system interrupts,
allowing I/O operations to commence. Then the scheduler will be invoked and control will be transferred to
the highest priority runnable thread. The call will never return.

The various data structures inside the eCos kernel must be protected against concurrent updates. Consider a
call to cyg_semaphore_post which causes a thread to be woken up: the semaphore data structure must be
updated to remove the thread from its queue; the scheduler data structure must also be updated to mark the
thread as runnable; it is possible that the newly runnable thread has a higher priority than the current one, in
which case preemption is required. If in the middle of the semaphore post call an interrupt occurred and the
interrupt handler tried to manipulate the same data structures, for example by making another thread runnable,
then it is likely that the structures will be left in an inconsistent state and the system will fail.

To prevent such problems the kernel contains a special lock known as the scheduler lock. A typical kernel
function such ascyg_semaphore_post will claim the scheduler lock, do all its manipulation of kernel data
structures, and then release the scheduler lock. The current thread cannot be preempted while it holds the
scheduler lock. If an interrupt occurs and a DSR is supposed to run to signal that some event has occurred,
that DSR is postponed until the scheduler unlock operation. This prevents concurrent updates of kernel data
structures.

The kernel exports three routines for manipulating the scheduler lock.cyg_scheduler_lock can be called to
claim the lock. On return it is guaranteed that the current thread will not be preempted, and that no other code is
manipulating any kernel data structures.cyg_scheduler_unlock can be used to release the lock, which may
cause the current thread to be preempted.cyg_scheduler_read_lock can be used to query the current state
of the scheduler lock. This function should never be needed because well-written code should always know
whether or not the scheduler is currently locked, but may prove useful during debugging.

The implementation of the scheduler lock involves a simple counter. Code can callcyg_scheduler_lock

multiple times, causing the counter to be incremented each time, as long ascyg_scheduler_unlock is called
the same number of times. This behaviour is different from mutexes where an attempt by a thread to lock a
mutex multiple times will result in deadlock or an assertion failure.

81

Scheduler Control

Typical application code should not use the scheduler lock. Instead other synchronization primitives such as
mutexes and semaphores should be used. While the scheduler is locked the current thread cannot be preempted,
so any higher priority threads will not be able to run. Also no DSRs can run, so device drivers may not be able
to service I/O requests. However there is one situation where locking the scheduler is appropriate: if some data
structure needs to be shared between an application thread and a DSR associated with some interrupt source,
the thread can use the scheduler lock to prevent concurrent invocations of the DSR and then safely manipulate
the structure. It is desirable that the scheduler lock is held for only a short period of time, typically some
tens of instructions. In exceptional cases there may also be some performance-critical code where it is more
appropriate to use the scheduler lock rather than a mutex, because the former is more efficient.

Valid contexts
cyg_scheduler_start can only be called during system initialization, since it marks the end of that phase.
The remaining functions may be called from thread or DSR context. Locking the scheduler from inside the
DSR has no practical effect because the lock is claimed automatically by the interrupt subsystem before running
DSRs, but allows functions to be shared between normal thread code and DSRs.

82

Interrupt Handling

Name
cyg_interrupt_create, cyg_interrupt_delete, cyg_interrupt_attach,
cyg_interrupt_detach, cyg_interrupt_configure, cyg_interrupt_acknowledge,
cyg_interrupt_enable, cyg_interrupt_disable, cyg_interrupt_mask,
cyg_interrupt_mask_intunsafe, cyg_interrupt_unmask,
cyg_interrupt_unmask_intunsafe, cyg_interrupt_set_cpu,
cyg_interrupt_get_cpu, cyg_interrupt_get_vsr, cyg_interrupt_set_vsr —
Manage interrupt handlers

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_interrupt_create (cyg_vector_t vector , cyg_priority_t priority , cyg_addrword_t
data , cyg_ISR_t* isr , cyg_DSR_t* dsr , cyg_handle_t* handle , cyg_interrupt* intr);
void cyg_interrupt_delete (cyg_handle_t interrupt);
void cyg_interrupt_attach (cyg_handle_t interrupt);
void cyg_interrupt_detach (cyg_handle_t interrupt);
void cyg_interrupt_configure (cyg_vector_t vector , cyg_bool_t level , cyg_bool_t up);
void cyg_interrupt_acknowledge (cyg_vector_t vector);
void cyg_interrupt_disable (void);
void cyg_interrupt_enable (void);
void cyg_interrupt_mask (cyg_vector_t vector);
void cyg_interrupt_mask_intunsafe (cyg_vector_t vector);
void cyg_interrupt_unmask (cyg_vector_t vector);
void cyg_interrupt_unmask_intunsafe (cyg_vector_t vector);
void cyg_interrupt_set_cpu (cyg_vector_t vector , cyg_cpu_t cpu);
cyg_cpu_t cyg_interrupt_get_cpu (cyg_vector_t vector);
void cyg_interrupt_get_vsr (cyg_vector_t vector , cyg_VSR_t** vsr);
void cyg_interrupt_set_vsr (cyg_vector_t vector , cyg_VSR_t* vsr);

Description
The kernel provides an interface for installing interrupt handlers and controlling when interrupts occur. This
functionality is used primarily by eCos device drivers and by any application code that interacts directly with
hardware. However in most cases it is better to avoid using this kernel functionality directly, and instead the de-
vice driver API provided by the common HAL package should be used. Use of the kernel package is optional,
and some applications such as RedBoot work with no need for multiple threads or synchronization primitives.
Any code which calls the kernel directly rather than the device driver API will not function in such a configura-
tion. When the kernel package is present the device driver API is implemented as#define ’s to the equivalent
kernel calls, otherwise it is implemented inside the common HAL package. The latter implementation can be
simpler than the kernel one because there is no need to consider thread preemption and similar issues.

The exact details of interrupt handling vary widely between architectures. The functionality provided by the
kernel abstracts away from many of the details of the underlying hardware, thus simplifying application devel-
opment. However this is not always successful. For example, if some hardware does not provide any support
at all for masking specific interrupts then callingcyg_interrupt_mask may not behave as intended: instead

83

Interrupt Handling

of masking just the one interrupt source it might disable all interrupts, because that is as close to the desired
behaviour as is possible given the hardware restrictions. Another possibility is that masking a given interrupt
source also affects all lower-priority interrupts, but still allows higher-priority ones. The documentation for the
appropriate HAL packages should be consulted for more information about exactly how interrupts are handled
on any given hardware. The HAL header files will also contain useful information.

Interrupt Handlers
Interrupt handlers are created by a call tocyg_interrupt_create . This takes the following arguments:

cyg_vector_tvector

The interrupt vector, a small integer, identifies the specific interrupt source. The appropriate hardware
documentation or HAL header files should be consulted for details of which vector corresponds to which
device.

cyg_priority_tpriority

Some hardware may support interrupt priorities, where a low priority interrupt handler can in turn be
interrupted by a higher priority one. Again hardware-specific documentation should be consulted for
details about what the valid interrupt priority levels are.

cyg_addrword_tdata

When an interrupt occurs eCos will first call the associated interrupt service routine or ISR, then optionally
a deferred service routine or DSR. Thedata argument tocyg_interrupt_create will be passed to both
these functions. Typically it will be a pointer to some data structure.

cyg_ISR_tisr

When an interrupt occurs the hardware will transfer control to the appropriate vector service routine or
VSR, which is usually provided by eCos. This performs any appropriate processing, for example to work
out exactly which interrupt occurred, and then as quickly as possible transfers control the installed ISR.
An ISR is a C function which takes the following form:

cyg_uint32
isr_function(cyg_vector_t vector, cyg_addrword_t data)
{

cyg_bool_t dsr_required = 0;

...

return dsr_required ? CYG_ISR_CALL_DSR : CYG_ISR_HANDLED;
}

The first argument identifies the particular interrupt source, especially useful if there multiple instances of
a given device and a single ISR can be used for several different interrupt vectors. The second argument
is thedata field passed tocyg_interrupt_create , usually a pointer to some data structure. The exact
conditions under which an ISR runs will depend partly on the hardware and partly on configuration
options. Interrupts may currently be disabled globally, especially if the hardware does not support interrupt
priorities. Alternatively interrupts may be enabled such that higher priority interrupts are allowed through.
The ISR may be running on a separate interrupt stack, or on the stack of whichever thread was running at
the time the interrupt happened.

A typical ISR will do as little work as possible, just enough to meet the needs of the hardware and then
acknowledge the interrupt by callingcyg_interrupt_acknowledge . This ensures that interrupts will be

84

Interrupt Handling

quickly reenabled, so higher priority devices can be serviced. For some applications there may be one
device which is especially important and whose ISR can take much longer than normal. However eCos
device drivers usually will not assume that they are especially important, so their ISRs will be as short as
possible.

The return value of an ISR is normally one ofCYG_ISR_CALL_DSRor CYG_ISR_HANDLED. The former
indicates that further processing is required at DSR level, and the interrupt handler’s DSR will be run
as soon as possible. The latter indicates that the interrupt has been fully handled and no further effort is
required.

An ISR is allowed to make very few kernel calls. It can manipulate the interrupt mask, and on SMP
systems it can use spinlocks. However an ISR must not make higher-level kernel calls such as posting to
a semaphore, instead any such calls must be made from the DSR. This avoids having to disable interrupts
throughout the kernel and thus improves interrupt latency.

cyg_DSR_tdsr

If an interrupt has occurred and the ISR has returned a valueCYG_ISR_CALL_DSR, the system will call
the deferred service routine or DSR associated with this interrupt handler. If the scheduler is not currently
locked then the DSR will run immediately. However if the interrupted thread was in the middle of a kernel
call and had locked the scheduler, then the DSR will be deferred until the scheduler is again unlocked.
This allows the DSR to make certain kernel calls safely, for example posting to a semaphore or signalling
a condition variable. A DSR is a C function which takes the following form:

void
dsr_function(cyg_vector_t vector,

cyg_ucount32 count,
cyg_addrword_t data)

{
}

The first argument identifies the specific interrupt that has caused the DSR to run. The second argument
indicates the number of these interrupts that have occurred and for which the ISR requested a DSR.
Usually this will be1, unless the system is suffering from a very heavy load. The third argument is the
data field passed tocyg_interrupt_create .

cyg_handle_t*handle

The kernel will return a handle to the newly created interrupt handler via this argument. Subsequent
operations on the interrupt handler such as attaching it to the interrupt source will use this handle.

cyg_interrupt*intr

This provides the kernel with an area of memory for holding this interrupt handler and associated data.

The call to cyg_interrupt_create simply fills in a kernel data structure. A typical next step is to call
cyg_interrupt_attach using the handle returned by the create operation. This makes it possible to have
several different interrupt handlers for a given vector, attaching whichever one is currently appropriate.
Replacing an interrupt handler requires a call tocyg_interrupt_detach , followed by another call to
cyg_interrupt_attach for the replacement handler.cyg_interrupt_delete can be used if an interrupt
handler is no longer required.

Some hardware may allow for further control over specific interrupts, for example whether an interrupt is level
or edge triggered. Any such hardware functionality can be accessed usingcyg_interrupt_configure : the

85

Interrupt Handling

level argument selects between level versus edge triggered; theup argument selects between high and low
level, or between rising and falling edges.

Usually interrupt handlers are created, attached and configured during system initialization, while global inter-
rupts are still disabled. On most hardware it will also be necessary to callcyg_interrupt_unmask , since the
sensible default for interrupt masking is to ignore any interrupts for which no handler is installed.

Controlling Interrupts
eCos provides two ways of controlling whether or not interrupts happen. It is possible to disable and reenable
all interrupts globally, usingcyg_interrupt_disable andcyg_interrupt_enable . Typically this works by
manipulating state inside the cpu itself, for example setting a flag in a status register or executing special
instructions. Alternatively it may be possible to mask a specific interrupt source by writing to one or to several
interrupt mask registers. Hardware-specific documentation should be consulted for the exact details of how
interrupt masking works, because a full implementation is not possible on all hardware.

The primary use for these functions is to allow data to be shared between ISRs and other code such as DSRs
or threads. If both a thread and an ISR need to manipulate either a data structure or the hardware itself, there
is a possible conflict if an interrupt happens just when the thread is doing such manipulation. Problems can
be avoided by the thread either disabling or masking interrupts during the critical region. If this critical region
requires only a few instructions then usually it is more efficient to disable interrupts. For larger critical regions
it may be more appropriate to use interrupt masking, allowing other interrupts to occur. There are other uses
for interrupt masking. For example if a device is not currently being used by the application then it may be
desirable to mask all interrupts generated by that device.

There are two functions for masking a specific interrupt source,cyg_interrupt_mask and
cyg_interrupt_mask_intunsafe . On typical hardware masking an interrupt is not an atomic operation,
so if two threads were to perform interrupt masking operations at the same time there could be problems.
cyg_interrupt_mask disables all interrupts while it manipulates the interrupt mask. In situations where
interrupts are already know to be disabled,cyg_interrupt_mask_intunsafe can be used instead. There are
matching functionscyg_interrupt_unmask andcyg_interrupt_unmask_intsafe .

SMP Support
On SMP systems the kernel provides an additional two functions related to interrupt handling.
cyg_interrupt_set_cpu specifies that a particular hardware interrupt should always be handled on one
specific processor in the system. In other words when the interrupt triggers it is only that processor which
detects it, and it is only on that processor that the VSR and ISR will run. If a DSR is requested then it will also
run on the same CPU. The functioncyg_interrupt_get_cpu can be used to find out which interrupts are
handled on which processor.

VSR Support
When an interrupt occurs the hardware will transfer control to a piece of code known as the VSR, or Vector
Service Routine. By default this code is provided by eCos. Usually it is written in assembler, but on some
architectures it may be possible to implement VSRs in C by specifying an interrupt attribute. Compiler docu-
mentation should be consulted for more information on this. The default eCos VSR will work out which ISR
function should process the interrupt, and set up a C environment suitable for this ISR.

For some applications it may be desirable to replace the default eCos VSR and handle some interrupts directly.
This minimizes interrupt latency, but it requires application developers to program at a lower level. Usually

86

Interrupt Handling

the best way to write a custom VSR is to copy the existing one supplied by eCos and then make appropriate
modifications. The functioncyg_interrupt_get_vsr can be used to get hold of the current VSR for a given
interrupt vector, allowing it to be restored if the custom VSR is no longer required.cyg_interrupt_set_vsr

can be used to install a replacement VSR. Usually thevsr argument will correspond to an exported label in
an assembler source file.

Valid contexts
In a typical configuration interrupt handlers are created and attached during system initialization, and
never detached or deleted. However it is possible to perform these operations at thread level, if desired.
Similarly cyg_interrupt_configure , cyg_interrupt_set_vsr , and cyg_interrupt_set_cpu are
usually called only during system initialization, but on typical hardware may be called at any time.
cyg_interrupt_get_vsr andcyg_interrupt_get_cpu may be called at any time.

The functions for enabling, disabling, masking and unmasking interrupts can be called in any context, when
appropriate. It is the responsibility of application developers to determine when the use of these functions is
appropriate.

87

Interrupt Handling

88

Kernel Real-time Characterization

Name
tm_basic — Measure the performance of the eCos kernel

Description
When building a real-time system, care must be taken to ensure that the system will be able to perform properly
within the constraints of that system. One of these constraints may be how fast certain operations can be
performed. Another might be how deterministic the overall behavior of the system is. Lastly the memory
footprint (size) and unit cost may be important.

One of the major problems encountered while evaluating a system will be how to compare it with possible
alternatives. Most manufacturers of real-time systems publish performance numbers, ostensibly so that users
can compare the different offerings. However, what these numbers mean and how they were gathered is often
not clear. The values are typically measured on a particular piece of hardware, so in order to truly compare,
one must obtain measurements for exactly the same set of hardware that were gathered in a similar fashion.

Two major items need to be present in any given set of measurements. First, the raw values for the various
operations; these are typically quite easy to measure and will be available for most systems. Second, the deter-
minacy of the numbers; in other words how much the value might change depending on other factors within
the system. This value is affected by a number of factors: how long interrupts might be masked, whether or not
the function can be interrupted, even very hardware-specific effects such as cache locality and pipeline usage.
It is very difficult to measure the determinacy of any given operation, but that determinacy is fundamentally
important to proper overall characterization of a system.

In the discussion and numbers that follow, three key measurements are provided. The first measurement is
an estimate of the interrupt latency: this is the length of time from when a hardware interrupt occurs until its
Interrupt Service Routine (ISR) is called. The second measurement is an estimate of overall interrupt overhead:
this is the length of time average interrupt processing takes, as measured by the real-time clock interrupt (other
interrupt sources will certainly take a different amount of time, but this data cannot be easily gathered). The
third measurement consists of the timings for the various kernel primitives.

Methodology
Key operations in the kernel were measured by using a simple test program which exercises the various kernel
primitive operations. A hardware timer, normally the one used to drive the real-time clock, was used for these
measurements. In most cases this timer can be read with quite high resolution, typically in the range of a few
microseconds. For each measurement, the operation was repeated a number of times. Time stamps were ob-
tained directly before and after the operation was performed. The data gathered for the entire set of operations
was then analyzed, generating average (mean), maximum and minimum values. The sample variance (a mea-
sure of how close most samples are to the mean) was also calculated. The cost of obtaining the real-time clock
timer values was also measured, and was subtracted from all other times.

Most kernel functions can be measured separately. In each case, a reasonable number of iterations are per-
formed. Where the test case involves a kernel object, for example creating a task, each iteration is performed
on a different object. There is also a set of tests which measures the interactions between multiple tasks and
certain kernel primitives. Most functions are tested in such a way as to determine the variations introduced by
varying numbers of objects in the system. For example, the mailbox tests measure the cost of a ’peek’ operation
when the mailbox is empty, has a single item, and has multiple items present. In this way, any effects of the
state of the object or how many items it contains can be determined.

89

Kernel Real-time Characterization

There are a few things to consider about these measurements. Firstly, they are quite micro in scale and only
measure the operation in question. These measurements do not adequately describe how the timings would be
perturbed in a real system with multiple interrupting sources. Secondly, the possible aberration incurred by the
real-time clock (system heartbeat tick) is explicitly avoided. Virtually all kernel functions have been designed
to be interruptible. Thus the times presented are typical, but best case, since any particular function may be
interrupted by the clock tick processing. This number is explicitly calculated so that the value may be included
in any deadline calculations required by the end user. Lastly, the reported measurements were obtained from
a system built with all options at their default values. Kernel instrumentation and asserts are also disabled for
these measurements. Any number of configuration options can change the measured results, sometimes quite
dramatically. For example, mutexes are using priority inheritance in these measurements. The numbers will
change if the system is built with priority inheritance on mutex variables turned off.

The final value that is measured is an estimate of interrupt latency. This particular value is not explicitly
calculated in the test program used, but rather by instrumenting the kernel itself. The raw number of timer ticks
that elapse between the time the timer generates an interrupt and the start of the timer ISR is kept in the kernel.
These values are printed by the test program after all other operations have been tested. Thus this should be a
reasonable estimate of the interrupt latency over time.

Using these Measurements
These measurements can be used in a number of ways. The most typical use will be to compare different real-
time kernel offerings on similar hardware, another will be to estimate the cost of implementing a task using
eCos (applications can be examined to see what effect the kernel operations will have on the total execution
time). Another use would be to observe how the tuning of the kernel affects overall operation.

Influences on Performance
A number of factors can affect real-time performance in a system. One of the most common factors, yet
most difficult to characterize, is the effect of device drivers and interrupts on system timings. Different device
drivers will have differing requirements as to how long interrupts are suppressed, for example. The eCos
system has been designed with this in mind, by separating the management of interrupts (ISR handlers) and
the processing required by the interrupt (DSR—Deferred Service Routine— handlers). However, since there
is so much variability here, and indeed most device drivers will come from the end users themselves, these
effects cannot be reliably measured. Attempts have been made to measure the overhead of the single interrupt
that eCos relies on, the real-time clock timer. This should give you a reasonable idea of the cost of executing
interrupt handling for devices.

Measured Items
This section describes the various tests and the numbers presented. All tests use the C kernel API (available
by way ofcyg/kernel/kapi.h). There is a single main thread in the system that performs the various tests.
Additional threads may be created as part of the testing, but these are short lived and are destroyed between
tests unless otherwise noted. The terminology “lower priority” means a priority that is less important, not
necessarily lower in numerical value. A higher priority thread will run in preference to a lower priority thread
even though the priority value of the higher priority thread may be numerically less than that of the lower
priority thread.

90

Kernel Real-time Characterization

Thread Primitives

Create thread

This test measures thecyg_thread_create() call. Each call creates a totally new thread. The set of
threads created by this test will be reused in the subsequent thread primitive tests.

Yield thread

This test measures thecyg_thread_yield() call. For this test, there are no other runnable threads, thus
the test should just measure the overhead of trying to give up the CPU.

Suspend [suspended] thread

This test measures thecyg_thread_suspend() call. A thread may be suspended multiple times; each
thread is already suspended from its initial creation, and is suspended again.

Resume thread

This test measures thecyg_thread_resume() call. All of the threads have a suspend count of 2, thus this
call does not make them runnable. This test just measures the overhead of resuming a thread.

Set priority

This test measures thecyg_thread_set_priority() call. Each thread, currently suspended, has its pri-
ority set to a new value.

Get priority

This test measures thecyg_thread_get_priority() call.

Kill [suspended] thread

This test measures thecyg_thread_kill() call. Each thread in the set is killed. All threads are known
to be suspended before being killed.

Yield [no other] thread

This test measures thecyg_thread_yield() call again. This is to demonstrate that the
cyg_thread_yield() call has a fixed overhead, regardless of whether there are other threads in the
system.

Resume [suspended low priority] thread

This test measures thecyg_thread_resume() call again. In this case, the thread being resumed is lower
priority than the main thread, thus it will simply become ready to run but not be granted the CPU. This
test measures the cost of making a thread ready to run.

Resume [runnable low priority] thread

This test measures thecyg_thread_resume() call again. In this case, the thread being resumed is lower
priority than the main thread and has already been made runnable, so in fact the resume call has no effect.

Suspend [runnable] thread

This test measures thecyg_thread_suspend() call again. In this case, each thread has already been
made runnable (by previous tests).

91

Kernel Real-time Characterization

Yield [only low priority] thread

This test measures thecyg_thread_yield() call. In this case, there are many other runnable threads, but
they are all lower priority than the main thread, thus no thread switches will take place.

Suspend [runnable->not runnable] thread

This test measures thecyg_thread_suspend() call again. The thread being suspended will become non-
runnable by this action.

Kill [runnable] thread

This test measures thecyg_thread_kill() call again. In this case, the thread being killed is currently
runnable, but lower priority than the main thread.

Resume [high priority] thread

This test measures thecyg_thread_resume() call. The thread being resumed is higher priority than the
main thread, thus a thread switch will take place on each call. In fact there will be two thread switches; one
to the new higher priority thread and a second back to the test thread. The test thread exits immediately.

Thread switch

This test attempts to measure the cost of switching from one thread to another. Two equal priority threads
are started and they will each yield to the other for a number of iterations. A time stamp is gathered in one
thread before thecyg_thread_yield() call and after the call in the other thread.

Scheduler Primitives

Scheduler lock

This test measures thecyg_scheduler_lock() call.

Scheduler unlock [0 threads]

This test measures thecyg_scheduler_unlock() call. There are no other threads in the system and the
unlock happens immediately after a lock so there will be no pending DSR’s to run.

Scheduler unlock [1 suspended thread]

This test measures thecyg_scheduler_unlock() call. There is one other thread in the system which is
currently suspended.

Scheduler unlock [many suspended threads]

This test measures thecyg_scheduler_unlock() call. There are many other threads in the system which
are currently suspended. The purpose of this test is to determine the cost of having additional threads in
the system when the scheduler is activated by way ofcyg_scheduler_unlock() .

Scheduler unlock [many low priority threads]

This test measures thecyg_scheduler_unlock() call. There are many other threads in the system
which are runnable but are lower priority than the main thread. The purpose of this test is to deter-
mine the cost of having additional threads in the system when the scheduler is activated by way of
cyg_scheduler_unlock() .

92

Kernel Real-time Characterization

Mutex Primitives

Init mutex

This test measures thecyg_mutex_init() call. A number of separate mutex variables are created. The
purpose of this test is to measure the cost of creating a new mutex and introducing it to the system.

Lock [unlocked] mutex

This test measures thecyg_mutex_lock() call. The purpose of this test is to measure the cost of locking
a mutex which is currently unlocked. There are no other threads executing in the system while this test
runs.

Unlock [locked] mutex

This test measures thecyg_mutex_unlock() call. The purpose of this test is to measure the cost of
unlocking a mutex which is currently locked. There are no other threads executing in the system while
this test runs.

Trylock [unlocked] mutex

This test measures thecyg_mutex_trylock() call. The purpose of this test is to measure the cost of
locking a mutex which is currently unlocked. There are no other threads executing in the system while
this test runs.

Trylock [locked] mutex

This test measures thecyg_mutex_trylock() call. The purpose of this test is to measure the cost of
locking a mutex which is currently locked. There are no other threads executing in the system while this
test runs.

Destroy mutex

This test measures thecyg_mutex_destroy() call. The purpose of this test is to measure the cost of
deleting a mutex from the system. There are no other threads executing in the system while this test runs.

Unlock/Lock mutex

This test attempts to measure the cost of unlocking a mutex for which there is another higher priority
thread waiting. When the mutex is unlocked, the higher priority waiting thread will immediately take
the lock. The time from when the unlock is issued until after the lock succeeds in the second thread is
measured, thus giving the round-trip or circuit time for this type of synchronizer.

Mailbox Primitives

Create mbox

This test measures thecyg_mbox_create() call. A number of separate mailboxes is created. The purpose
of this test is to measure the cost of creating a new mailbox and introducing it to the system.

Peek [empty] mbox

This test measures thecyg_mbox_peek() call. An attempt is made to peek the value in each mailbox,
which is currently empty. The purpose of this test is to measure the cost of checking a mailbox for a value
without blocking.

93

Kernel Real-time Characterization

Put [first] mbox

This test measures thecyg_mbox_put() call. One item is added to a currently empty mailbox. The pur-
pose of this test is to measure the cost of adding an item to a mailbox. There are no other threads currently
waiting for mailbox items to arrive.

Peek [1 msg] mbox

This test measures thecyg_mbox_peek() call. An attempt is made to peek the value in each mailbox,
which contains a single item. The purpose of this test is to measure the cost of checking a mailbox which
has data to deliver.

Put [second] mbox

This test measures thecyg_mbox_put() call. A second item is added to a mailbox. The purpose of this
test is to measure the cost of adding an additional item to a mailbox. There are no other threads currently
waiting for mailbox items to arrive.

Peek [2 msgs] mbox

This test measures thecyg_mbox_peek() call. An attempt is made to peek the value in each mailbox,
which contains two items. The purpose of this test is to measure the cost of checking a mailbox which has
data to deliver.

Get [first] mbox

This test measures thecyg_mbox_get() call. The first item is removed from a mailbox that currently
contains two items. The purpose of this test is to measure the cost of obtaining an item from a mailbox
without blocking.

Get [second] mbox

This test measures thecyg_mbox_get() call. The last item is removed from a mailbox that currently
contains one item. The purpose of this test is to measure the cost of obtaining an item from a mailbox
without blocking.

Tryput [first] mbox

This test measures thecyg_mbox_tryput() call. A single item is added to a currently empty mailbox.
The purpose of this test is to measure the cost of adding an item to a mailbox.

Peek item [non-empty] mbox

This test measures thecyg_mbox_peek_item() call. A single item is fetched from a mailbox that contains
a single item. The purpose of this test is to measure the cost of obtaining an item without disturbing the
mailbox.

Tryget [non-empty] mbox

This test measures thecyg_mbox_tryget() call. A single item is removed from a mailbox that contains
exactly one item. The purpose of this test is to measure the cost of obtaining one item from a non-empty
mailbox.

Peek item [empty] mbox

This test measures thecyg_mbox_peek_item() call. An attempt is made to fetch an item from a mailbox
that is empty. The purpose of this test is to measure the cost of trying to obtain an item when the mailbox
is empty.

94

Kernel Real-time Characterization

Tryget [empty] mbox

This test measures thecyg_mbox_tryget() call. An attempt is made to fetch an item from a mailbox that
is empty. The purpose of this test is to measure the cost of trying to obtain an item when the mailbox is
empty.

Waiting to get mbox

This test measures thecyg_mbox_waiting_to_get() call. The purpose of this test is to measure the cost
of determining how many threads are waiting to obtain a message from this mailbox.

Waiting to put mbox

This test measures thecyg_mbox_waiting_to_put() call. The purpose of this test is to measure the cost
of determining how many threads are waiting to put a message into this mailbox.

Delete mbox

This test measures thecyg_mbox_delete() call. The purpose of this test is to measure the cost of de-
stroying a mailbox and removing it from the system.

Put/Get mbox

In this round-trip test, one thread is sending data to a mailbox that is being consumed by another thread.
The time from when the data is put into the mailbox until it has been delivered to the waiting thread is
measured. Note that this time will contain a thread switch.

Semaphore Primitives

Init semaphore

This test measures thecyg_semaphore_init() call. A number of separate semaphore objects are created
and introduced to the system. The purpose of this test is to measure the cost of creating a new semaphore.

Post [0] semaphore

This test measures thecyg_semaphore_post() call. Each semaphore currently has a value of 0 and there
are no other threads in the system. The purpose of this test is to measure the overhead cost of posting to a
semaphore. This cost will differ if there is a thread waiting for the semaphore.

Wait [1] semaphore

This test measures thecyg_semaphore_wait() call. The semaphore has a current value of 1 so the call
is non-blocking. The purpose of the test is to measure the overhead of “taking” a semaphore.

Trywait [0] semaphore

This test measures thecyg_semaphore_trywait() call. The semaphore has a value of 0 when the call
is made. The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without
blocking. In this case, the answer would be no.

Trywait [1] semaphore

This test measures thecyg_semaphore_trywait() call. The semaphore has a value of 1 when the call
is made. The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without
blocking. In this case, the answer would be yes.

95

Kernel Real-time Characterization

Peek semaphore

This test measures thecyg_semaphore_peek() call. The purpose of this test is to measure the cost of
obtaining the current semaphore count value.

Destroy semaphore

This test measures thecyg_semaphore_destroy() call. The purpose of this test is to measure the cost of
deleting a semaphore from the system.

Post/Wait semaphore

In this round-trip test, two threads are passing control back and forth by using a semaphore. The
time from when one thread callscyg_semaphore_post() until the other thread completes its
cyg_semaphore_wait() is measured. Note that each iteration of this test will involve a thread switch.

Counters

Create counter

This test measures thecyg_counter_create() call. A number of separate counters are created. The
purpose of this test is to measure the cost of creating a new counter and introducing it to the system.

Get counter value

This test measures thecyg_counter_current_value() call. The current value of each counter is ob-
tained.

Set counter value

This test measures thecyg_counter_set_value() call. Each counter is set to a new value.

Tick counter

This test measures thecyg_counter_tick() call. Each counter is “ticked” once.

Delete counter

This test measures thecyg_counter_delete() call. Each counter is deleted from the system. The pur-
pose of this test is to measure the cost of deleting a counter object.

Alarms

Create alarm

This test measures thecyg_alarm_create() call. A number of separate alarms are created, all attached
to the same counter object. The purpose of this test is to measure the cost of creating a new counter and
introducing it to the system.

Initialize alarm

This test measures thecyg_alarm_initialize() call. Each alarm is initialized to a small value.

Disable alarm

This test measures thecyg_alarm_disable() call. Each alarm is explicitly disabled.

96

Kernel Real-time Characterization

Enable alarm

This test measures thecyg_alarm_enable() call. Each alarm is explicitly enabled.

Delete alarm

This test measures thecyg_alarm_delete() call. Each alarm is destroyed. The purpose of this test is to
measure the cost of deleting an alarm and removing it from the system.

Tick counter [1 alarm]

This test measures thecyg_counter_tick() call. A counter is created that has a single alarm attached
to it. The purpose of this test is to measure the cost of “ticking” a counter when it has a single attached
alarm. In this test, the alarm is not activated (fired).

Tick counter [many alarms]

This test measures thecyg_counter_tick() call. A counter is created that has multiple alarms attached
to it. The purpose of this test is to measure the cost of “ticking” a counter when it has many attached
alarms. In this test, the alarms are not activated (fired).

Tick & fire counter [1 alarm]

This test measures thecyg_counter_tick() call. A counter is created that has a single alarm attached to
it. The purpose of this test is to measure the cost of “ticking” a counter when it has a single attached alarm.
In this test, the alarm is activated (fired). Thus the measured time will include the overhead of calling the
alarm callback function.

Tick & fire counter [many alarms]

This test measures thecyg_counter_tick() call. A counter is created that has multiple alarms attached
to it. The purpose of this test is to measure the cost of “ticking” a counter when it has many attached
alarms. In this test, the alarms are activated (fired). Thus the measured time will include the overhead of
calling the alarm callback function.

Alarm latency [0 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock
interrupt until the alarm function is called is measured. In this test, there are no threads that can be run,
other than the system idle thread, when the clock interrupt occurs (all threads are suspended).

Alarm latency [2 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock
interrupt until the alarm function is called is measured. In this test, there are exactly two threads which
are running when the clock interrupt occurs. They are simply passing back and forth by way of the
cyg_thread_yield() call. The purpose of this test is to measure the variations in the latency when there
are executing threads.

Alarm latency [many threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock
interrupt until the alarm function is called is measured. In this test, there are a number of threads which
are running when the clock interrupt occurs. They are simply passing back and forth by way of the
cyg_thread_yield() call. The purpose of this test is to measure the variations in the latency when there
are many executing threads.

97

Kernel Real-time Characterization

98

II. The eCos Hardware Abstraction Layer
(HAL)

xcix

Kernel Real-time Characterization

c

Chapter 1. Introduction
This is an initial specification of theeCosHardware Abstraction Layer (HAL). The HAL abstracts the under-
lying hardware of a processor architecture and/or the platform to a level sufficient for the eCos kernel to be
ported onto that platform.

Caveat: This document is an informal description of the HAL capabilities and is not intended to be full
documentation, although it may be used as a source for such. It also describes the HAL as it is currently
implemented for the architectures targeted in this release. It most closely describes the HALs for the MIPS,
I386 and PowerPC HALs. Other architectures are similar but may not be organized precisely as described
here.

1

Chapter 1. Introduction

2

Chapter 2. Architecture, Variant and Platform
We have identified three levels at which the HAL must operate.

• Thearchitecture HALabstracts the basic CPU architecture and includes things like interrupt delivery, context
switching, CPU startup etc.

• Thevariant HALencapsulates features of the CPU variant such as caches, MMU and FPU features. It also
deals with any on-chip peripherals such as memory and interrupt controllers. For architectural variations,
the actual implementation of the variation is often in the architectural HAL, and the variant HAL simply
provides the correct configuration definitions.

• Theplatform HALabstracts the properties of the current platform and includes things like platform startup,
timer devices, I/O register access and interrupt controllers.

The boundaries between these three HAL levels are necessarily blurred since functionality shifts between levels
on a target-by-target basis. For example caches and MMU may be either an architecture feature or a variant
feature. Similarly, memory and interrupt controllers may be on-chip and in the variant HAL, or off-chip and in
the platform HAL.

Generally there is a separate package for each of the architecture, variant and package HALs for a target. For
some of the older targets, or where it would be essentially empty, the variant HAL is omitted.

3

Chapter 2. Architecture, Variant and Platform

4

Chapter 3. General principles
The HAL has been implemented according to the following general principles:

1. The HAL is implemented in C and assembler, although the eCos kernel is largely implemented in C++.
This is to permit the HAL the widest possible applicability.

2. All interfaces to the HAL are implemented by CPP macros. This allows them to be implemented as inline
C code, inline assembler or function calls to external C or assembler code. This allows the most efficient
implementation to be selected without affecting the interface. It also allows them to be redefined if the
platform or variant HAL needs to replace or enhance a definition from the architecture HAL.

3. The HAL provides simple, portable mechanisms for dealing with the hardware of a wide range of archi-
tectures and platforms. It is always possible to bypass the HAL and program the hardware directly, but
this may lead to a loss of portability.

5

Chapter 3. General principles

6

Chapter 4. HAL Interfaces
This section describes the main HAL interfaces.

Base Definitions
These are definitions that characterize the properties of the base architecture that are used to compile the
portable parts of the kernel. They are concerned with such things a portable type definitions, endianness, and
labeling.

These definitions are supplied by thecyg/hal/basetype.h header file which is supplied by the architecture
HAL. It is included automatically bycyg/infra/cyg_type.h .

Byte order

CYG_BYTEORDER

This defines the byte order of the target and must be set to eitherCYG_LSBFIRSTor CYG_MSBFIRST.

Label Translation

CYG_LABEL_NAME(name)

This is a wrapper used in some C and C++ files which use labels defined in assembly code or the linker
script. It need only be defined if the default implementation incyg/infra/cyg_type.h , which passes the
name argument unaltered, is inadequate. It should be paired withCYG_LABEL_DEFN().

CYG_LABEL_DEFN(name)

This is a wrapper used in assembler sources and linker scripts which define labels. It need only be defined
if the default implementation incyg/infra/cyg_type.h , which passes the name argument unaltered, is
inadequate. The most usual alternative definition of this macro prepends an underscore to the label name.

Base types
cyg_halint8
cyg_halint16
cyg_halint32
cyg_halint64
cyg_halcount8
cyg_halcount16
cyg_halcount32
cyg_halcount64
cyg_halbool

7

Chapter 4. HAL Interfaces

These macros define the C base types that should be used to define variables of the given size. They only need
to be defined if the default types specified incyg/infra/cyg_type.h cannot be used. Note that these are only
the base types, they will be composed withsigned andunsigned to form full type specifications.

Atomic types
cyg_halatomic CYG_ATOMIC

These types are guaranteed to be read or written in a single uninterruptible operation. It is architecture defined
what size this type is, but it will be at least a byte.

Architecture Characterization
These are definition that are related to the basic architecture of the CPU. These include the CPU context save
format, context switching, bit twiddling, breakpoints, stack sizes and address translation.

Most of these definition are found incyg/hal/hal_arch.h . This file is supplied by the architecture HAL.
If there are variant or platform specific definitions then these will be found incyg/hal/var_arch.h or
cyg/hal/plf_arch.h . These files are include automatically by this header, so need not be included explicitly.

Register Save Format
typedef struct HAL_SavedRegisters
{

/* architecture-dependent list of registers to be saved */
} HAL_SavedRegisters;

This structure describes the layout of a saved machine state on the stack. Such states are saved during thread
context switches, interrupts and exceptions. Different quantities of state may be saved during each of these, but
usually a thread context state is a subset of the interrupt state which is itself a subset of an exception state. For
debugging purposes, the same structure is used for all three purposes, but where these states are significantly
different, this structure may contain a union of the three states.

Thread Context Initialization
HAL_THREAD_INIT_CONTEXT(sp, arg, entry, id)

This macro initializes a thread’s context so that it may be switched to byHAL_THREAD_SWITCH_CONTEXT().
The arguments are:

sp

A location containing the current value of the thread’s stack pointer. This should be a variable or a structure
field. The SP value will be read out of here and an adjusted value written back.

arg

A value that is passed as the first argument to the entry point function.

8

Chapter 4. HAL Interfaces

entry

The address of an entry point function. This will be called according the C calling conventions, and the
value ofarg will be passed as the first argument. This function should have the following type signature
void entry(CYG_ADDRWORD arg) .

id

A thread id value. This is only used for debugging purposes, it is ORed into the initialization pattern for
unused registers and may be used to help identify the thread from its register dump. The least significant
16 bits of this value should be zero to allow space for a register identifier.

Thread Context Switching
HAL_THREAD_LOAD_CONTEXT(to)
HAL_THREAD_SWITCH_CONTEXT(from, to)

These macros implement the thread switch code. The arguments are:

from

A pointer to a location where the stack pointer of the current thread will be stored.

to

A pointer to a location from where the stack pointer of the next thread will be read.

ForHAL_THREAD_LOAD_CONTEXT()the current CPU state is discarded and the state of the destination thread is
loaded. This is only used once, to load the first thread when the scheduler is started.

For HAL_THREAD_SWITCH_CONTEXT()the state of the current thread is saved onto its stack, using the current
value of the stack pointer, and the address of the saved state placed in*from . The value in*to is then read
and the state of the new thread is loaded from it.

While these two operations may be implemented with inline assembler, they are normally implemented as calls
to assembly code functions in the HAL. There are two advantages to doing it this way. First, the return link of
the call provides a convenient PC value to be used in the saved context. Second, the calling conventions mean
that the compiler will have already saved the caller-saved registers before the call, so the HAL need only save
the callee-saved registers.

The implementation ofHAL_THREAD_SWITCH_CONTEXT()saves the current CPU state on the stack, including
the current interrupt state (or at least the register that contains it). For debugging purposes it is useful to save
the entire register set, but for performance only the ABI-defined callee-saved registers need be saved. If it
is implemented, the optionCYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUMcontrols how many registers are
saved.

The implementation ofHAL_THREAD_LOAD_CONTEXT()loads a thread context, destroying the current context.
With a little care this can be implemented by sharing code withHAL_THREAD_SWITCH_CONTEXT(). To load a
thread context simply requires the saved registers to be restored from the stack and a jump or return made back
to the saved PC.

Note that interrupts are not disabled during this process, any interrupts that occur will be delivered onto the
stack to which the current CPU stack pointer points. Hence the stack pointer should never be invalid, or loaded
with a value that might cause the saved state to become corrupted by an interrupt. However, the current interrupt
state is saved and restored as part of the thread context. If a thread disables interrupts and does something to
cause a context switch, interrupts may be re-enabled on switching to another thread. Interrupts will be disabled
again when the original thread regains control.

9

Chapter 4. HAL Interfaces

Bit indexing
HAL_LSBIT_INDEX(index, mask)
HAL_MSBIT_INDEX(index, mask)

These macros place inindex the bit index of the least significant bit inmask. Some architectures have
instruction level support for one or other of these operations. If no architectural support is available, then these
macros may call C functions to do the job.

Idle thread activity
HAL_IDLE_THREAD_ACTION(count)

It may be necessary under some circumstances for the HAL to execute code in the kernel idle thread’s loop.
An example might be to execute a processor halt instruction. This macro provides a portable way of doing this.
The argument is a copy of the idle thread’s loop counter, and may be used to trigger actions at longer intervals
than every loop.

Reorder barrier
HAL_REORDER_BARRIER()

When optimizing the compiler can reorder code. In some parts of multi-threaded systems, where the order of
actions is vital, this can sometimes cause problems. This macro may be inserted into places where reordering
should not happen and prevents code being migrated across it by the compiler optimizer. It should be placed
between statements that must be executed in the order written in the code.

Breakpoint support
HAL_BREAKPOINT(label)
HAL_BREAKINST
HAL_BREAKINST_SIZE

These macros provide support for breakpoints.

HAL_BREAKPOINT() executes a breakpoint instruction. The label is defined at the breakpoint instruction so that
exception code can detect which breakpoint was executed.

HAL_BREAKINSTcontains the breakpoint instruction code as an integer value.HAL_BREAKINST_SIZE is the size
of that breakpoint instruction in bytes. Together these may be used to place a breakpoint in any code.

GDB support
HAL_THREAD_GET_SAVED_REGISTERS(sp, regs)
HAL_GET_GDB_REGISTERS(regval, regs)
HAL_SET_GDB_REGISTERS(regs, regval)

These macros provide support for interfacing GDB to the HAL.

HAL_THREAD_GET_SAVED_REGISTERS()extracts a pointer to a HAL_SavedRegisters structure from a stack
pointer value. The stack pointer passed in should be the value saved by the thread context macros. The macro
will assign a pointer to the HAL_SavedRegisters structure to the variable passed as the second argument.

10

Chapter 4. HAL Interfaces

HAL_GET_GDB_REGISTERS()translates a register state as saved by the HAL and into a register dump in the
format expected by GDB. It takes a pointer to a HAL_SavedRegisters structure in theregs argument and a
pointer to the memory to contain the GDB register dump in theregval argument.

HAL_SET_GDB_REGISTERS()translates a GDB format register dump into a the format expected by the HAL. It
takes a pointer to the memory containing the GDB register dump in theregval argument and a pointer to a
HAL_SavedRegisters structure in theregs argument.

Setjmp and longjmp support
CYGARC_JMP_BUF_SIZE
hal_jmp_buf[CYGARC_JMP_BUF_SIZE]
hal_setjmp(hal_jmp_buf env)
hal_longjmp(hal_jmp_buf env, int val)

These functions provide support for the Csetjmp() and longjmp() functions. Refer to the C library for
further information.

Stack Sizes
CYGNUM_HAL_STACK_SIZE_MINIMUM
CYGNUM_HAL_STACK_SIZE_TYPICAL

The values of these macros define the minimum and typical sizes of thread stacks.

CYGNUM_HAL_STACK_SIZE_MINIMUMdefines the minimum size of a thread stack. This is enough for the thread
to function correctly within eCos and allows it to take interrupts and context switches. There should also be
enough space for a simple thread entry function to execute and call basic kernel operations on objects like
mutexes and semaphores. However there will not be enough room for much more than this. When creating
stacks for their own threads, applications should determine the stack usage needed for application purposes
and then addCYGNUM_HAL_STACK_SIZE_MINIMUM.

CYGNUM_HAL_STACK_SIZE_TYPICALis a reasonable increment overCYGNUM_HAL_STACK_SIZE_MINIMUM, usu-
ally about 1kB. This should be adequate for most modest thread needs. Only threads that need to define signif-
icant amounts of local data, or have very deep call trees should need to use a larger stack size.

Address Translation
CYGARC_CACHED_ADDRESS(addr)
CYGARC_UNCACHED_ADDRESS(addr)
CYGARC_PHYSICAL_ADDRESS(addr)

These macros provide address translation between different views of memory. In many architectures a given
memory location may be visible at different addresses in both cached and uncached forms. It is also possible
that the MMU or some other address translation unit in the CPU presents memory to the program at a different
virtual address to its physical address on the bus.

CYGARC_CACHED_ADDRESS()translates the given address to its location in cached memory. This is typically
where the application will access the memory.

CYGARC_UNCACHED_ADDRESS()translates the given address to its location in uncached memory. This is typi-
cally where device drivers will access the memory to avoid cache problems. It may additionally be necessary
for the cache to be flushed before the contents of this location is fully valid.

11

Chapter 4. HAL Interfaces

CYGARC_PHYSICAL_ADDRESS()translates the given address to its location in the physical address space. This
is typically the address that needs to be passed to device hardware such as a DMA engine, ethernet device or
PCI bus bridge. The physical address may not be directly accessible to the program, it may be re-mapped by
address translation.

Global Pointer
CYGARC_HAL_SAVE_GP()
CYGARC_HAL_RESTORE_GP()

These macros insert code to save and restore any global data pointer that the ABI uses. These are necessary
when switching context between two eCos instances - for example between an eCos application and RedBoot.

Interrupt Handling
These interfaces contain definitions related to interrupt handling. They include definitions of exception and
interrupt numbers, interrupt enabling and masking.

These definitions are normally found incyg/hal/hal_intr.h . This file is supplied by the architecture HAL.
Any variant or platform specific definitions will be found incyg/hal/var_intr.h , cyg/hal/plf_intr.h or
cyg/hal/hal_platform_ints.h in the variant or platform HAL, depending on the exact target. These files
are include automatically by this header, so need not be included explicitly.

Vector numbers
CYGNUM_HAL_VECTOR_XXXX
CYGNUM_HAL_VSR_MIN
CYGNUM_HAL_VSR_MAX
CYGNUM_HAL_VSR_COUNT

CYGNUM_HAL_INTERRUPT_XXXX
CYGNUM_HAL_ISR_MIN
CYGNUM_HAL_ISR_MAX
CYGNUM_HAL_ISR_COUNT

CYGNUM_HAL_EXCEPTION_XXXX
CYGNUM_HAL_EXCEPTION_MIN
CYGNUM_HAL_EXCEPTION_MAX
CYGNUM_HAL_EXCEPTION_COUNT

All possible VSR, interrupt and exception vectors are specified here, together with maximum and minimum
values for range checking. While the VSR and exception numbers will be defined in this file, the interrupt
numbers will normally be defined in the variant or platform HAL file that is included by this header.

There are two ranges of numbers, those for the vector service routines and those for the interrupt service
routines. The relationship between these two ranges is undefined, and no equivalence should be assumed if
vectors from the two ranges coincide.

The VSR vectors correspond to the set of exception vectors that can be delivered by the CPU architecture,
many of these will be internal exception traps. The ISR vectors correspond to the set of external interrupts that
can be delivered and are usually determined by extra decoding of the interrupt controller by the interrupt VSR.

12

Chapter 4. HAL Interfaces

Where a CPU supports synchronous exceptions, the range of such exceptions allowed are defined by
CYGNUM_HAL_EXCEPTION_MINand CYGNUM_HAL_EXCEPTION_MAX. The CYGNUM_HAL_EXCEPTION_XXXX

definitions are standard names used by target independent code to test for the presence of particular
exceptions in the architecture. The actual exception numbers will normally correspond to the VSR exception
range. In future other exceptions generated by the system software (such as stack overflow) may be added.

CYGNUM_HAL_ISR_COUNT, CYGNUM_HAL_VSR_COUNTandCYGNUM_HAL_EXCEPTION_COUNTdefine the number of
ISRs, VSRs and EXCEPTIONs respectively for the purposes of defining arrays etc. There might be a transla-
tion from the supplied vector numbers into array offsets. HenceCYGNUM_HAL_XXX_COUNTmay not simply be
CYGNUM_HAL_XXX_MAX- CYGNUM_HAL_XXX_MINor CYGNUM_HAL_XXX_MAX+1.

Interrupt state control
CYG_INTERRUPT_STATE
HAL_DISABLE_INTERRUPTS(old)
HAL_RESTORE_INTERRUPTS(old)
HAL_ENABLE_INTERRUPTS()
HAL_QUERY_INTERRUPTS(state)

These macros provide control over the state of the CPUs interrupt mask mechanism. They should normally
manipulate a CPU status register to enable and disable interrupt delivery. They should not access an interrupt
controller.

CYG_INTERRUPT_STATEis a data type that should be used to store the interrupt state returned by
HAL_DISABLE_INTERRUPTS() andHAL_QUERY_INTERRUPTS()and passed toHAL_RESTORE_INTERRUPTS().

HAL_DISABLE_INTERRUPTS() disables the delivery of interrupts and stores the original state of the interrupt
mask in the variable passed in theold argument.

HAL_RESTORE_INTERRUPTS()restores the state of the interrupt mask to that recorded inold .

HAL_ENABLE_INTERRUPTS()simply enables interrupts regardless of the current state of the mask.

HAL_QUERY_INTERRUPTS()stores the state of the interrupt mask in the variable passed in thestate argument.
The state stored here should also be capable of being passed toHAL_RESTORE_INTERRUPTS()at a later point.

It is at the HAL implementer’s discretion exactly which interrupts are masked by this mechanism. Where a
CPU has more than one interrupt type that may be masked separately (e.g. the ARM’s IRQ and FIQ) only
those that can raise DSRs need to be masked here. A separate architecture specific mechanism may then be
used to control the other interrupt types.

ISR and VSR management
HAL_INTERRUPT_IN_USE(vector, state)
HAL_INTERRUPT_ATTACH(vector, isr, data, object)
HAL_INTERRUPT_DETACH(vector, isr)
HAL_VSR_SET(vector, vsr, poldvsr)
HAL_VSR_GET(vector, pvsr)
HAL_VSR_SET_TO_ECOS_HANDLER(vector, poldvsr)

These macros manage the attachment of interrupt and vector service routines to interrupt and exception vectors
respectively.

HAL_INTERRUPT_IN_USE() tests the state of the supplied interrupt vector and sets the value of the state pa-
rameter to either 1 or 0 depending on whether there is already an ISR attached to the vector. The HAL

13

Chapter 4. HAL Interfaces

will only allow one ISR to be attached to each vector, so it is a good idea to use this function before using
HAL_INTERRUPT_ATTACH().

HAL_INTERRUPT_ATTACH()attaches the ISR, data pointer and object pointer to the givenvector . When an
interrupt occurs on this vector the ISR is called using the C calling convention and the vector number and data
pointer are passed to it as the first and second arguments respectively.

HAL_INTERRUPT_DETACH()detaches the ISR from the vector.

HAL_VSR_SET() replaces the VSR attached to thevector with the replacement supplied invsr . The old
VSR is returned in the location pointed to bypvsr .

HAL_VSR_GET() assigns a copy of the VSR to the location pointed to bypvsr .

HAL_VSR_SET_TO_ECOS_HANDLER()ensures that the VSR for a specific exception is pointing at the eCos ex-
ception VSR and not one for RedBoot or some other ROM monitor. The default when running under RedBoot
is for exceptions to be handled by RedBoot and passed to GDB. This macro diverts the exception to eCos so
that it may be handled by application code. The arguments are the VSR vector to be replaces, and a location in
which to store the old VSR pointer, so that it may be replaced at a later point.

Interrupt controller management
HAL_INTERRUPT_MASK(vector)
HAL_INTERRUPT_UNMASK(vector)
HAL_INTERRUPT_ACKNOWLEDGE(vector)
HAL_INTERRUPT_CONFIGURE(vector, level, up)
HAL_INTERRUPT_SET_LEVEL(vector, level)

These macros exert control over any prioritized interrupt controller that is present. If no priority controller
exists, then these macros should be empty.

Note: These macros may not be reentrant, so care should be taken to prevent them being called while
interrupts are enabled. This means that they can be safely used in initialization code before interrupts are
enabled, and in ISRs. In DSRs, ASRs and thread code, however, interrupts must be disabled before these
macros are called. Here is an example for use in a DSR where the interrupt source is unmasked after data
processing:

...
HAL_DISABLE_INTERRUPTS(old);
HAL_INTERRUPT_UNMASK(CYGNUM_HAL_INTERRUPT_ETH);
HAL_RESTORE_INTERRUPTS(old);
...

HAL_INTERRUPT_MASK()causes the interrupt associated with the given vector to be blocked.

HAL_INTERRUPT_UNMASK()causes the interrupt associated with the given vector to be unblocked.

HAL_INTERRUPT_ACKNOWLEDGE()acknowledges the current interrupt from the given vector. This is usually
executed from the ISR for this vector when it is prepared to allow further interrupts. Most interrupt controllers
need some form of acknowledge action before the next interrupt is allowed through. Executing this macro may
cause another interrupt to be delivered. Whether this interrupts the current code depends on the state of the
CPU interrupt mask.

HAL_INTERRUPT_CONFIGURE()provides control over how an interrupt signal is detected. The arguments are:

14

Chapter 4. HAL Interfaces

vector

The interrupt vector to be configured.

level

Set totrue if the interrupt is detected by level, andfalse if it is edge triggered.

up

If the interrupt is set to level detect, then if this istrue it is detected by a high signal level, and iffalse

by a low signal level. If the interrupt is set to edge triggered, then if this istrue it is triggered by a rising
edge and iffalse by a falling edge.

HAL_INTERRUPT_SET_LEVEL() provides control over the hardware priority of the interrupt. The arguments
are:

vector

The interrupt whose level is to be set.

level

The priority level to which the interrupt is to set. In some architectures the masking of an interrupt
is achieved by changing its priority level. Hence this function,HAL_INTERRUPT_MASK() and
HAL_INTERRUPT_UNMASK()may interfere with each other.

Clocks and Timers
These interfaces contain definitions related to clock and timer handling. They include interfaces to initialize
and read a clock for generating regular interrupts, definitions for setting the frequency of the clock, and support
for short timed delays.

Clock Control
HAL_CLOCK_INITIALIZE(period)
HAL_CLOCK_RESET(vector, period)
HAL_CLOCK_READ(pvalue)

These macros provide control over a clock or timer device that may be used by the kernel to provide time-out,
delay and scheduling services. The clock is assumed to be implemented by some form of counter that is incre-
mented or decremented by some external source and which raises an interrupt when it reaches a predetermined
value.

HAL_CLOCK_INITIALIZE() initializes the timer device to interrupt at the given period. The period is essentially
the value used to initialize the timer counter and must be calculated from the timer frequency and the desired
interrupt rate. The timer device should generate an interrupt everyperiod cycles.

HAL_CLOCK_RESET()re-initializes the timer to provoke the next interrupt. This macro is only really necessary
when the timer device needs to be reset in some way after each interrupt.

HAL_CLOCK_READ()reads the current value of the timer counter and puts the value in the location pointed to
by pvalue . The value stored will always be the number of timer cycles since the last interrupt, and hence
ranges between zero and the initial period value. If this is a count-down cyclic timer, some arithmetic may be
necessary to generate this value.

15

Chapter 4. HAL Interfaces

Microsecond Delay
HAL_DELAY_US(us)

This macro provides a busy loop delay for the given number of microseconds. It is intended mainly for con-
trolling hardware that needs short delays between operations. Code which needs longer delays, of the order of
milliseconds, should instead use higher-level functions such ascyg_thread_delay . The macro implementa-
tion should be thread-safe. It can also be used in ISRs or DSRs, although such usage is undesirable because of
the impact on interrupt and dispatch latency.

The macro should never delay for less than the specified amount of time. It may delay for somewhat longer,
although since the macro uses a busy loop this is a waste of cpu cycles. Of course the code invoking
HAL_DELAY_USmay get interrupted or timesliced, in which case the delay may be much longer than intended.
If this is unacceptable then the calling code must take preventative action such as disabling interrupts or
locking the scheduler.

There are three main ways of implementating the macro:

1. a counting loop, typically written in inline assembler, using an outer loop for the microseconds and an
inner loop that consumes approximately 1us. This implementation is automatically thread-safe and does
not impose any dependencies on the rest of the system, for example it does not depend on the system
clock having been started. However it assumes that the cpu clock speed is known at compile-time or can
be easily determined at run-time.

2. monitor one of the hardware clocks, usually the system clock. Usually this clock ticks at a rate indepen-
dent of the cpu so calibration is easier. However the implementation relies on the system clock having
been started, and assumes that no other code is manipulating the clock hardware. There can also be com-
plications when the system clock wraps around.

3. a combination of the previous two. The system clock is used during system initialization to determine
the cpu clock speed, and the result is then used to calibrate a counting loop. This has the disadvantage
of significantly increasing the system startup time, which may be unacceptable to some applications.
There are also complications if the system startup code normally runs with the cache disabled because the
instruction cache will greatly affect any calibration loop.

Clock Frequency Definition
CYGNUM_HAL_RTC_NUMERATOR
CYGNUM_HAL_RTC_DENOMINATOR
CYGNUM_HAL_RTC_PERIOD

These macros are defined in the CDL for each platform and supply the necessary parameters to specify the
frequency at which the clock interrupts. These parameters are usually found in the CDL definitions for the
target platform, or in some cases the CPU variant.

CYGNUM_HAL_RTC_NUMERATORandCYGNUM_HAL_RTC_DENOMINATORspecify the resolution of the clock inter-
rupt. This resolution involves two separate values, the numerator and the denominator. The result of dividing
the numerator by the denominator should correspond to the number of nanoseconds between clock interrupts.
For example a numerator of 1000000000 and a denominator of 100 means that there are 10000000 nanosec-
onds (or 10 milliseconds) between clock interrupts. Expressing the resolution as a fraction minimizes clock
drift even for frequencies that cannot be expressed as a simple integer. For example a frequency of 60Hz corre-
sponds to a clock resolution of 16666666.66... nanoseconds. This can be expressed accurately as 1000000000
over 60.

16

Chapter 4. HAL Interfaces

CYGNUM_HAL_RTC_PERIODspecifies the exact value used to initialize the clock hardware, it is the value passed
as a parameter toHAL_CLOCK_INITIALIZE() andHAL_CLOCK_RESET(). The exact meaning of the value and
the range of legal values therefore depends on the target hardware, and the hardware documentation should be
consulted for further details.

The default values for these macros in all HALs are calculated to give a clock interrupt frequency of 100Hz,
or 10ms between interrupts. To change the clock frequency, the period needs to be changed, and the resolution
needs to be adjusted accordingly. As an example consider the i386 PC target. The default values for these
macros are:

CYGNUM_HAL_RTC_NUMERATOR 1000000000
CYGNUM_HAL_RTC_DENOMINATOR 100
CYGNUM_HAL_RTC_PERIOD 11932

To change to, say, a 200Hz clock the period needs to be halved to 5966, and to compensate the denominator
needs to be doubled to 200. To change to a 1KHz interrupt rate change the period to 1193 and the denominator
to 1000.

Some HALs make this process a little easier by deriving the period arithmetically from the denominator. This
calculation may also involve the CPU clock frequency and possibly other factors. For example in the ARM
AT91 variant HAL the period is defined by the following expression:

((CYGNUM_HAL_ARM_AT91_CLOCK_SPEED/32) / CYGNUM_HAL_RTC_DENOMINATOR)

In this case it is not necessary to change the period at all, just change the denominator to select the desired
clock frequency. However, note that for certain choices of frequency, rounding errors in this calculation may
result in a small clock drift over time. This is usually negligible, but if perfect accuracy is required, it may be
necessary to adjust the frequency or period by hand.

HAL I/O
This section contains definitions for supporting access to device control registers in an architecture neutral
fashion.

These definitions are normally found in the header filecyg/hal/hal_io.h . This file itself contains macros
that are generic to the architecture. If there are variant or platform specific IO access macros then these will
be found incyg/hal/var_io.h andcyg/hal/plf_io.h in the variant or platform HALs respectively. These
files are include automatically by this header, so need not be included explicitly.

This header (or more likelycyg/hal/plf_io.h) also defines the PCI access macros. For more information on
these seethe Section calledPCI Library referencein Chapter 25.

Register address
HAL_IO_REGISTER

This type is used to store the address of an I/O register. It will normally be a memory address, an integer port
address or an offset into an I/O space. More complex architectures may need to code an address space plus
offset pair into a single word, or may represent it as a structure.

Values of variables and constants of this type will usually be supplied by configuration mechanisms or in target
specific headers.

17

Chapter 4. HAL Interfaces

Register read
HAL_READ_XXX(register, value)
HAL_READ_XXX_VECTOR(register, buffer, count, stride)

These macros support the reading of I/O registers in various sizes. TheXXX component of the name may be
UINT8 , UINT16 , UINT32 .

HAL_READ_XXX() reads the appropriately sized value from the register and stores it in the variable passed as
the second argument.

HAL_READ_XXX_VECTOR()readscount values of the appropriate size intobuffer . Thestride controls
how the pointer advances through the register space. A stride of zero will read the same register repeatedly,
and a stride of one will read adjacent registers of the given size. Greater strides will step by larger amounts, to
allow for sparsely mapped registers for example.

Register write
HAL_WRITE_XXX(register, value)
HAL_WRITE_XXX_VECTOR(register, buffer,count, stride)

These macros support the writing of I/O registers in various sizes. TheXXX component of the name may be
UINT8 , UINT16 , UINT32 .

HAL_WRITE_XXX() writes the appropriately sized value from the variable passed as the second argument stored
it in the register.

HAL_WRITE_XXX_VECTOR()writescount values of the appropriate size frombuffer . Thestride controls
how the pointer advances through the register space. A stride of zero will write the same register repeatedly,
and a stride of one will write adjacent registers of the given size. Greater strides will step by larger amounts,
to allow for sparsely mapped registers for example.

Cache Control
This section contains definitions for supporting control of the caches on the CPU.

These definitions are usually found in the header filecyg/hal/hal_cache.h . This file may be defined in the
architecture, variant or platform HAL, depending on where the caches are implemented for the target. Often
there will be a generic implementation of the cache control macros in the architecture HAL with the ability
to override or undefine them in the variant or platform HAL. Even when the implementation of the cache
macros is in the architecture HAL, the cache dimensions will be defined in the variant or platform HAL.
As with other files, the variant or platform specific definitions are usually found incyg/hal/var_cache.h

andcyg/hal/plf_cache.h respectively. These files are include automatically by this header, so need not be
included explicitly.

There are versions of the macros defined here for both the Data and Instruction caches. these are distinguished
by the use of eitherDCACHEor ICACHE in the macro names. Some architectures have a unified cache, where
both data and instruction share the same cache. In these cases the control macros useUCACHEand theDCACHE

andICACHE macros will just be calls to theUCACHEversion. In the following descriptions,XCACHEis used to
stand for any of these. Where there are issues specific to a particular cache, this will be explained in the text.

There might be target specific restrictions on the use of some of the macros which it is the user’s responsibility
to comply with. Such restrictions are documented in the header file with the macro definition.

18

Chapter 4. HAL Interfaces

Note that destructive cache macros should be used with caution. Preceding a cache invalidation with a cache
synchronization is not safe in itself since an interrupt may happen after the synchronization but before the
invalidation. This might cause the state of dirty data lines created during the interrupt to be lost.

Depending on the architecture’s capabilities, it may be possible to temporarily disable the cache while doing the
synchronization and invalidation which solves the problem (no new data would be cached during an interrupt).
Otherwise it is necessary to disable interrupts while manipulating the cache which may take a long time.

Some platform HALs now support a pair of cache state query macros:HAL_ICACHE_IS_ENABLED(x) and
HAL_DCACHE_IS_ENABLED(x) which set the argument to true if the instruction or data cache is enabled,
respectively. Like most cache control macros, these are optional, because the capabilities of different targets
and boards can vary considerably. Code which uses them, if it is to be considered portable, should test for their
existence first by means of#ifdef . Be sure to include<cyg/hal/hal_cache.h > in order to do this test and
(maybe) use the macros.

Cache Dimensions
HAL_XCACHE_SIZE
HAL_XCACHE_LINE_SIZE
HAL_XCACHE_WAYS
HAL_XCACHE_SETS

These macros define the size and dimensions of the Instruction and Data caches.

HAL_XCACHE_SIZE

Defines the total size of the cache in bytes.

HAL_XCACHE_LINE_SIZE

Defines the cache line size in bytes.

HAL_XCACHE_WAYS

Defines the number of ways in each set and defines its level of associativity. This would be 1 for a direct
mapped cache, 2 for a 2-way cache, 4 for 4-way and so on.

HAL_XCACHE_SETS

Defines the number of sets in the cache, and is calculated from the previous values.

Global Cache Control
HAL_XCACHE_ENABLE()
HAL_XCACHE_DISABLE()
HAL_XCACHE_INVALIDATE_ALL()
HAL_XCACHE_SYNC()
HAL_XCACHE_BURST_SIZE(size)
HAL_DCACHE_WRITE_MODE(mode)
HAL_XCACHE_LOCK(base, size)
HAL_XCACHE_UNLOCK(base, size)
HAL_XCACHE_UNLOCK_ALL()

These macros affect the state of the entire cache, or a large part of it.

19

Chapter 4. HAL Interfaces

HAL_XCACHE_ENABLE() and HAL_XCACHE_DISABLE()

Enable and disable the cache.

HAL_XCACHE_INVALIDATE_ALL()

Causes the entire contents of the cache to be invalidated. Depending on the hardware, this may
require the cache to be disabled during the invalidation process. If so, the implementation must use
HAL_XCACHE_IS_ENABLED()to save and restore the previous state.

Note: If this macro is called after HAL_XCACHE_SYNC()with the intention of clearing the cache (invali-
dating the cache after writing dirty data back to memory), you must prevent interrupts from happening
between the two calls:

...
HAL_DISABLE_INTERRUPTS(old);
HAL_XCACHE_SYNC();
HAL_XCACHE_INVALIDATE_ALL();
HAL_RESTORE_INTERRUPTS(old);
...

Since the operation may take a very long time, real-time responsiveness could be affected, so only
do this when it is absolutely required and you know the delay will not interfere with the operation of
drivers or the application.

HAL_XCACHE_SYNC()

Causes the contents of the cache to be brought into synchronization with the contents of memory. In some
implementations this may be equivalent toHAL_XCACHE_INVALIDATE_ALL() .

HAL_XCACHE_BURST_SIZE()

Allows the size of cache to/from memory bursts to be controlled. This macro will only be defined if this
functionality is available.

HAL_DCACHE_WRITE_MODE()

Controls the way in which data cache lines are written back to memory. There will be
definitions for the possible modes. Typical definitions areHAL_DCACHE_WRITEBACK_MODEand
HAL_DCACHE_WRITETHRU_MODE. This macro will only be defined if this functionality is available.

HAL_XCACHE_LOCK()

Causes data to be locked into the cache. The base and size arguments define the memory region that will
be locked into the cache. It is architecture dependent whether more than one locked region is allowed at
any one time, and whether this operation causes the cache to cease acting as a cache for addresses outside
the region during the duration of the lock. This macro will only be defined if this functionality is available.

HAL_XCACHE_UNLOCK()

Cancels the locking of the memory region given. This should normally correspond to a region supplied in
a matching lock call. This macro will only be defined if this functionality is available.

HAL_XCACHE_UNLOCK_ALL()

Cancels all existing locked memory regions. This may be required as part of the cache initialization on
some architectures. This macro will only be defined if this functionality is available.

20

Chapter 4. HAL Interfaces

Cache Line Control
HAL_DCACHE_ALLOCATE(base , size)
HAL_DCACHE_FLUSH(base , size)
HAL_XCACHE_INVALIDATE(base , size)
HAL_DCACHE_STORE(base , size)
HAL_DCACHE_READ_HINT(base , size)
HAL_DCACHE_WRITE_HINT(base , size)
HAL_DCACHE_ZERO(base , size)

All of these macros apply a cache operation to all cache lines that match the memory address region defined
by the base and size arguments. These macros will only be defined if the described functionality is available.
Also, it is not guaranteed that the cache function will only be applied to just the described regions, in some
architectures it may be applied to the whole cache.

HAL_DCACHE_ALLOCATE()

Allocates lines in the cache for the given region without reading their contents from memory, hence
the contents of the lines is undefined. This is useful for preallocating lines which are to be completely
overwritten, for example in a block copy operation.

HAL_DCACHE_FLUSH()

Invalidates all cache lines in the region after writing any dirty lines to memory.

HAL_XCACHE_INVALIDATE()

Invalidates all cache lines in the region. Any dirty lines are invalidated without being written to memory.

HAL_DCACHE_STORE()

Writes all dirty lines in the region to memory, but does not invalidate any lines.

HAL_DCACHE_READ_HINT()

Hints to the cache that the region is going to be read from in the near future. This may cause the region to
be speculatively read into the cache.

HAL_DCACHE_WRITE_HINT()

Hints to the cache that the region is going to be written to in the near future. This may have the identical
behavior to HAL_DCACHE_READ_HINT().

HAL_DCACHE_ZERO()

Allocates and zeroes lines in the cache for the given region without reading memory. This is useful if a
large area of memory is to be cleared.

Linker Scripts
When an eCos application is linked it must be done under the control of a linker script. This script defines
the memory areas, addresses and sized, into which the code and data are to be put, and allocates the various
sections generated by the compiler to these.

The linker script actually used is inlib/target.ld in the install directory. This is actually manufactured out
of two other files: a base linker script and an.ldi file that was generated by the memory layout tool.

21

Chapter 4. HAL Interfaces

The base linker script is usually supplied either by the architecture HAL or the variant HAL. It consists of a
set of linker script fragments, in the form of C preprocessor macros, that define the major output sections to
be generated by the link operation. The.ldi file, which is#include’ed by the base linker script, uses these
macro definitions to assign the output sections to the required memory areas and link addresses.

The .ldi file is supplied by the platform HAL, and contains knowledge of the memory layout of the target
platform. These files generally conform to a standard naming convention, each file being of the form:

pkgconf/mlt_ <architecture >_<variant >_<platform >_<startup >.ldi

where <architecture >, <variant > and <platform > are the respective HAL package names and
<startup > is the startup type which is usually one ofROM, RAMor ROMRAM.

In addition to the.ldi file, there is also a congruously name.h file. This may be used by the application to
access information defined in the.ldi file. Specifically it contains the memory layout defined there, together
with any additional section names defined by the user. Examples of the latter are heap areas or PCI bus memory
access windows.

The.ldi is manufactured by the Memory Layout Tool (MLT). The MLT saves the memory configuration into
a file named

include/pkgconf/mlt_ <architecture >_<variant >_<platform >_<startup >.mlt

in the platform HAL. This file is used by the MLT to manufacture both the.ldi and .h files. Users should
beware that direct edits the either of these files may be overwritten if the MLT is run and regenerates them
from the.mlt file.

The names of the.ldi and .h files are defined by macro definitions inpkgconf/system.h . These are
CYGHWR_MEMORY_LAYOUT_LDIandCYGHWR_MEMORY_LAYOUT_Hrespectively. While there will be little need for
the application to refer to the.ldi file directly, it may include the.h file as follows:

#include CYGHWR_MEMORY_LAYOUT_H

Diagnostic Support
The HAL provides support for low level diagnostic IO. This is particularly useful during early development
as an aid to bringing up a new platform. Usually this diagnostic channel is a UART or some other serial IO
device, but it may equally be a a memory buffer, a simulator supported output channel, a ROM emulator virtual
UART, and LCD panel, a memory mapped video buffer or any other output device.

HAL_DIAG_INIT() performs any initialization required on the device being used to generate diagnostic output.
This may include, for a UART, setting baud rate, and stop, parity and character bits. For other devices it may
include initializing a controller or establishing contact with a remote device.

HAL_DIAG_WRITE_CHAR(c) writes the character supplied to the diagnostic output device.

HAL_DIAG_READ_CHAR(c)reads a character from the diagnostic device into the supplied variable. This is not
supported for all diagnostic devices.

These macros are defined in the header filecyg/hal/hal_diag.h . This file is usually supplied by the variant
or platform HAL, depending on where the IO device being used is located. For example for on-chip UARTs it
would be in the variant HAL, but for a board-level LCD panel it would be in the platform HAL.

22

Chapter 4. HAL Interfaces

SMP Support
eCos contains support for limited Symmetric Multi-Processing (SMP). This is only available on selected ar-
chitectures and platforms.

Target Hardware Limitations
To allow a reasonable implementation of SMP, and to reduce the disruption to the existing source base, a
number of assumptions have been made about the features of the target hardware.

• Modest multiprocessing. The typical number of CPUs supported is two to four, with an upper limit around
eight. While there are no inherent limits in the code, hardware and algorithmic limitations will probably
become significant beyond this point.

• SMP synchronization support. The hardware must supply a mechanism to allow software on two CPUs to
synchronize. This is normally provided as part of the instruction set in the form of test-and-set, compare-
and-swap or load-link/store-conditional instructions. An alternative approach is the provision of hardware
semaphore registers which can be used to serialize implementations of these operations. Whatever hardware
facilities are available, they are used in eCos to implement spinlocks.

• Coherent caches. It is assumed that no extra effort will be required to access shared memory from any
processor. This means that either there are no caches, they are shared by all processors, or are maintained in
a coherent state by the hardware. It would be too disruptive to the eCos sources if every memory access had
to be bracketed by cache load/flush operations. Any hardware that requires this is not supported.

• Uniform addressing. It is assumed that all memory that is shared between CPUs is addressed at the same
location from all CPUs. Like non-coherent caches, dealing with CPU-specific address translation is con-
sidered too disruptive to the eCos source base. This does not, however, preclude systems with non-uniform
access costs for different CPUs.

• Uniform device addressing. As with access to memory, it is assumed that all devices are equally accessible
to all CPUs. Since device access is often made from thread contexts, it is not possible to restrict access to
device control registers to certain CPUs, since there is currently no support for binding or migrating threads
to CPUs.

• Interrupt routing. The target hardware must have an interrupt controller that can route interrupts to specific
CPUs. It is acceptable for all interrupts to be delivered to just one CPU, or for some interrupts to be bound to
specific CPUs, or for some interrupts to be local to each CPU. At present dynamic routing, where a different
CPU may be chosen each time an interrupt is delivered, is not supported. ECos cannot support hardware
where all interrupts are delivered to all CPUs simultaneously with the expectation that software will resolve
any conflicts.

• Inter-CPU interrupts. A mechanism to allow one CPU to interrupt another is needed. This is necessary so
that events on one CPU can cause rescheduling on other CPUs.

• CPU Identifiers. Code running on a CPU must be able to determine which CPU it is running on. The CPU
Id is usually provided either in a CPU status register, or in a register associated with the inter-CPU interrupt
delivery subsystem. ECos expects CPU Ids to be small positive integers, although alternative representations,
such as bitmaps, can be converted relatively easily. Complex mechanisms for getting the CPU Id cannot be
supported. Getting the CPU Id must be a cheap operation, since it is done often, and in performance critical
places such as interrupt handlers and the scheduler.

23

Chapter 4. HAL Interfaces

HAL Support
SMP support in any platform depends on the HAL supplying the appropriate operations. All HAL SMP
support is defined in thecyg/hal/hal_smp.h header. Variant and platform specific definitions will be in
cyg/hal/var_smp.h and cyg/hal/plf_smp.h respectively. These files are include automatically by this
header, so need not be included explicitly.

SMP support falls into a number of functional groups.

CPU Control

This group consists of descriptive and control macros for managing the CPUs in an SMP system.

HAL_SMP_CPU_TYPE

A type that can contain a CPU id. A CPU id is usually a small integer that is used to index arrays of
variables that are managed on an per-CPU basis.

HAL_SMP_CPU_MAX

The maximum number of CPUs that can be supported. This is used to provide the size of any arrays that
have an element per CPU.

HAL_SMP_CPU_COUNT()

Returns the number of CPUs currently operational. This may differ from HAL_SMP_CPU_MAX de-
pending on the runtime environment.

HAL_SMP_CPU_THIS()

Returns the CPU id of the current CPU.

HAL_SMP_CPU_NONE

A value that does not match any real CPU id. This is uses where a CPU type variable must be set to a null
value.

HAL_SMP_CPU_START(cpu)

Starts the given CPU executing at a defined HAL entry point. After performing any HAL level initializa-
tion, the CPU calls up into the kernel atcyg_kernel_cpu_startup() .

HAL_SMP_CPU_RESCHEDULE_INTERRUPT(cpu, wait)

Sends the CPU a reschedule interrupt, and ifwait is non-zero, waits for an acknowledgment. The inter-
rupted CPU should callcyg_scheduler_set_need_reschedule() in its DSR to cause the reschedule to
occur.

HAL_SMP_CPU_TIMESLICE_INTERRUPT(cpu, wait)

Sends the CPU a timeslice interrupt, and ifwait is non-zero, waits for an acknowledgment. The inter-
rupted CPU should callcyg_scheduler_timeslice_cpu() to cause the timeslice event to be processed.

Test-and-set Support

Test-and-set is the foundation of the SMP synchronization mechanisms.

24

Chapter 4. HAL Interfaces

HAL_TAS_TYPE

The type for all test-and-set variables. The test-and-set macros only support operations on a single bit
(usually the least significant bit) of this location. This allows for maximum flexibility in the implementa-
tion.

HAL_TAS_SET(tas, oldb)

Performs a test and set operation on the locationtas . oldb will contain true if the location was already
set, andfalse if it was clear.

HAL_TAS_CLEAR(tas, oldb)

Performs a test and clear operation on the locationtas . oldb will contain true if the location was
already set, andfalse if it was clear.

Spinlocks

Spinlocks provide inter-CPU locking. Normally they will be implemented on top of the test-and-set mechanism
above, but may also be implemented by other means if, for example, the hardware has more direct support for
spinlocks.

HAL_SPINLOCK_TYPE

The type for all spinlock variables.

HAL_SPINLOCK_INIT_CLEAR

A value that may be assigned to a spinlock variable to initialize it to clear.

HAL_SPINLOCK_INIT_SET

A value that may be assigned to a spinlock variable to initialize it to set.

HAL_SPINLOCK_SPIN(lock)

The caller spins in a busy loop waiting for the lock to become clear. It then sets it and continues. This is
all handled atomically, so that there are no race conditions between CPUs.

HAL_SPINLOCK_CLEAR(lock)

The caller clears the lock. One of any waiting spinners will then be able to proceed.

HAL_SPINLOCK_TRY(lock, val)

Attempts to set the lock. The value put inval will be true if the lock was claimed successfully, and
false if it was not.

HAL_SPINLOCK_TEST(lock, val)

Tests the current value of the lock. The value put inval will be true if the lock is claimed andfalse of
it is clear.

Scheduler Lock

The scheduler lock is the main protection for all kernel data structures. By default the kernel implements the
scheduler lock itself using a spinlock. However, if spinlocks cannot be supported by the hardware, or there is a
more efficient implementation available, the HAL may provide macros to implement the scheduler lock.

25

Chapter 4. HAL Interfaces

HAL_SMP_SCHEDLOCK_DATA_TYPE

A data type, possibly a structure, that contains any data items needed by the scheduler lock implemen-
tation. A variable of this type will be instantiated as a static member of the Cyg_Scheduler_SchedLock
class and passed to all the following macros.

HAL_SMP_SCHEDLOCK_INIT(lock, data)

Initialize the scheduler lock. Thelock argument is the scheduler lock counter and thedata argument
is a variable of HAL_SMP_SCHEDLOCK_DATA_TYPE type.

HAL_SMP_SCHEDLOCK_INC(lock, data)

Increment the scheduler lock. The first increment of the lock from zero to one for any CPU may cause
it to wait until the lock is zeroed by another CPU. Subsequent increments should be less expensive since
this CPU already holds the lock.

HAL_SMP_SCHEDLOCK_ZERO(lock, data)

Zero the scheduler lock. This operation will also clear the lock so that other CPUs may claim it.

HAL_SMP_SCHEDLOCK_SET(lock, data, new)

Set the lock to a different value, innew. This is only called when the lock is already known to be owned
by the current CPU. It is never called to zero the lock, or to increment it from zero.

Interrupt Routing

The routing of interrupts to different CPUs is supported by two new interfaces in hal_intr.h.

Once an interrupt has been routed to a new CPU, the existing vector masking and configuration operations
should take account of the CPU routing. For example, if the operation is not invoked on the destination CPU
itself, then the HAL may need to arrange to transfer the operation to the destination CPU for correct application.

HAL_INTERRUPT_SET_CPU(vector, cpu)

Route the interrupt for the givenvector to the givencpu .

HAL_INTERRUPT_GET_CPU(vector, cpu)

Setcpu to the id of the CPU to which this vector is routed.

26

Chapter 5. Exception Handling
Most of the HAL consists of simple macros or functions that are called via the interfaces described in the
previous section. These just perform whatever operation is required by accessing the hardware and then return.
The exception to this is the handling of exceptions: either synchronous hardware traps or asynchronous device
interrupts. Here control is passed first to the HAL, which then passed it on to eCos or the application. After
eCos has finished with it, control is then passed back to the HAL for it to tidy up the CPU state and resume
processing from the point at which the exception occurred.

The HAL exceptions handling code is usually found in the filevectors.S in the architecture HAL. Since the
reset entry point is usually implemented as one of these it also deals with system startup.

The exact implementation of this code is under the control of the HAL implementer. So long as it interacts
correctly with the interfaces defined previously it may take any form. However, all current implementation
follow the same pattern, and there should be a very good reason to break with this. The rest of this section
describes these operate.

Exception handling normally deals with the following broad areas of functionality:

• Startup and initialization.

• Hardware exception delivery.

• Default handling of synchronous exceptions.

• Default handling of asynchronous interrupts.

HAL Startup
Execution normally begins at the reset vector with the machine in a minimal startup state. From here the HAL
needs to get the machine running, set up the execution environment for the application, and finally invoke its
entry point.

The following is a list of the jobs that need to be done in approximately the order in which they should be
accomplished. Many of these will not be needed in some configurations.

• Initialize the hardware. This may involve initializing several subsystems in both the architecture, variant and
platform HALs. These include:

• Initialize various CPU status registers. Most importantly, the CPU interrupt mask should be set to disable
interrupts.

• Initialize the MMU, if it is used. On many platforms it is only possible to control the cacheability of
address ranges via the MMU. Also, it may be necessary to remap RAM and device registers to locations
other than their defaults. However, for simplicity, the mapping should be kept as close to one-to-one
physical-to-virtual as possible.

• Set up the memory controller to access RAM, ROM and I/O devices correctly. Until this is done it may
not be possible to access RAM. If this is a ROMRAM startup then the program code can now be copied
to its RAM address and control transferred to it.

• Set up any bus bridges and support chips. Often access to device registers needs to go through various bus
bridges and other intermediary devices. In many systems these are combined with the memory controller,

27

Chapter 5. Exception Handling

so it makes sense to set these up together. This is particularly important if early diagnostic output needs
to go through one of these devices.

• Set up diagnostic mechanisms. If the platform includes an LED or LCD output device, it often makes
sense to output progress indications on this during startup. This helps with diagnosing hardware and
software errors.

• Initialize floating point and other extensions such as SIMD and multimedia engines. It is usually necessary
to enable these and maybe initialize control and exception registers for these extensions.

• Initialize interrupt controller. At the very least, it should be configured to mask all interrupts. It may also
be necessary to set up the mapping from the interrupt controller’s vector number space to the CPU’s ex-
ception number space. Similar mappings may need to be set up between primary and secondary interrupt
controllers.

• Disable and initialize the caches. The caches should not normally be enabled at this point, but it may be
necessary to clear or initialize them so that they can be enabled later. Some architectures require that the
caches be explicitly reinitialized after a power-on reset.

• Initialize the timer, clock etc. While the timer used for RTC interrupts will be initialized later, it may be
necessary to set up the clocks that drive it here.

The exact order in which these initializations is done is architecture or variant specific. It is also often not
necessary to do anything at all for some of these options. These fragments of code should concentrate on
getting the target up and running so that C function calls can be made and code can be run. More complex
initializations that cannot be done in assembly code may be postponed until calls tohal_variant_init()

or hal_platform_init() are made.

Not all of these initializations need to be done for all startup types. In particular, RAM startups can reason-
ably assume that the ROM monitor or loader has already done most of this work.

• Set up the stack pointer, this allows subsequent initialization code to make proper procedure calls. Usually
the interrupt stack is used for this purpose since it is available, large enough, and will be reused for other
purposes later.

• Initialize any global pointer register needed for access to globally defined variables. This allows subsequent
initialization code to access global variables.

• If the system is starting from ROM, copy the ROM template of the.data section out to its correct position
in RAM. (the Section calledLinker Scriptsin Chapter 4).

• Zero the.bss section.

• Create a suitable C call stack frame. This may involve making stack space for call frames, and arguments,
and initializing the back pointers to halt a GDB backtrace operation.

• Call hal_variant_init() and hal_platform_init() . These will perform any additional initialization
needed by the variant and platform. This typically includes further initialization of the interrupt controller,
PCI bus bridges, basic IO devices and enabling the caches.

• Call cyg_hal_invoke_constructors() to run any static constructors.

• Call cyg_start() . If cyg_start() returns, drop into an infinite loop.

Vectors and VSRs
The CPU delivers all exceptions, whether synchronous faults or asynchronous interrupts, to a set of hardware
defined vectors. Depending on the architecture, these may be implemented in a number of different ways.

28

Chapter 5. Exception Handling

Examples of existing mechanisms are:

PowerPC

Exceptions are vectored to locations 256 bytes apart starting at either zero or0xFFF00000 . There are 16
such vectors defined by the basic architecture and extra vectors may be defined by specific variants. One
of the base vectors is for all external interrupts, and another is for the architecture defined timer.

MIPS

Most exceptions and all interrupts are vectored to a single address at either0x80000000 or 0xBFC00180 .
Software is responsible for reading the exception code from the CPUcause register to discover its true
source. Some TLB and debug exceptions are delivered to different vector addresses, but these are not
used currently by eCos. One of the exception codes in thecause register indicates an external interrupt.
Additional bits in thecause register provide a first-level decode for the interrupt source, one of which
represents an architecture defined timer.

IA32

Exceptions are delivered via an Interrupt Descriptor Table (IDT) which is essentially an indirection table
indexed by exception number. The IDT may be placed anywhere in memory. In PC hardware the standard
interrupt controller can be programmed to deliver the external interrupts to a block of 16 vectors at any
offset in the IDT. There is no hardware supplied mechanism for determining the vector taken, other than
from the address jumped to.

ARM

All exceptions, including the FIQ and IRQ interrupts, are vectored to locations four bytes apart starting
at zero. There is only room for one instruction here, which must immediately jump out to handling code
higher in memory. Interrupt sources have to be decoded entirely from the interrupt controller.

With such a wide variety of hardware approaches, it is not possible to provide a generic mechanism for the
substitution of exception vectors directly. Therefore, eCos translates all of these mechanisms in to a common
approach that can be used by portable code on all platforms.

The mechanism implemented is to attach to each hardware vector a short piece of trampoline code that makes
an indirect jump via a table to the actual handler for the exception. This handler is called the Vector Service
Routine (VSR) and the table is called the VSR table.

The trampoline code performs the absolute minimum processing necessary to identify the exception source,
and jump to the VSR. The VSR is then responsible for saving the CPU state and taking the necessary actions to
handle the exception or interrupt. The entry conditions for the VSR are as close to the raw hardware exception
entry state as possible - although on some platforms the trampoline will have had to move or reorganize some
registers to do its job.

To make this more concrete, consider how the trampoline code operates in each of the architectures described
above:

PowerPC

A separate trampoline is contained in each of the vector locations. This code saves a few work registers
away to the special purposes registers available, loads the exception number into a register and then uses
that to index the VSR table and jump to the VSR. The VSR is entered with some registers move to the
SPRs, and one of the data register containing the number of the vector taken.

29

Chapter 5. Exception Handling

MIPS

A single trampoline routine attached to the common vector reads the exception code out of thecause

register and uses that value to index the VSR table and jump to the VSR. The trampoline uses the two
registers defined in the ABI for kernel use to do this, one of these will contain the exception vector number
for the VSR.

IA32

There is a separate 3 or 4 instruction trampoline pointed to by each active IDT table entry. The trampoline
for exceptions that also have an error code pop it from the stack and put it into a memory location.
Trampolines for non-error-code exceptions just zero the memory location. Then all trampolines push an
interrupt/exception number onto the stack, and take an indirect jump through a precalculated offset in
the VSR table. This is all done without saving any registers, using memory-only operations. The VSR is
entered with the vector number pushed onto the stack on top of the standard hardware saved state.

ARM

The trampoline consists solely of the single instruction at the exception entry point. This is an indirect
jump via a location 32 bytes higher in memory. These locations, from0x20 up, form the VSR table.
Since each VSR is entered in a different CPU mode (SVC,UNDEF,ABORT,IRQ or FIQ) there has to be a
different VSR for each exception that knows how to save the CPU state correctly.

Default Synchronous Exception Handling
Most synchronous exception VSR table entries will point to a default exception VSR which is responsible
for handling all exceptions in a generic manner. The default VSR simply saves the CPU state, makes any
adjustments to the CPU state that is necessary, and callscyg_hal_exception_handler() .

cyg_hal_exception_handler() needs to pass the exception on to some handling code. There are two basic
destinations: enter GDB or pass the exception up to eCos. Exactly which destination is taken depends on the
configuration. When the GDB stubs are included then the exception is passed to them, otherwise it is passed
to eCos.

If an eCos application has been loaded by RedBoot then the VSR table entries will all point into RedBoot’s
exception VSR, and will therefore enter GDB if an exception occurs. If the eCos application wants to handle
an exception itself, it needs to replace the the VSR table entry with one pointing to its own VSR. It can do this
with theHAL_VSR_SET_TO_ECOS_HANDLER()macro.

Default Interrupt Handling
Most asynchronous external interrupt vectors will point to a default interrupt VSR which decodes the actual
interrupt being delivered from the interrupt controller and invokes the appropriate ISR.

The default interrupt VSR has a number of responsibilities if it is going to interact with the Kernel cleanly and
allow interrupts to cause thread preemption.

To support this VSR an ISR vector table is needed. For each valid vector three pointers need to be stored: the
ISR, its data pointer and an opaque (to the HAL) interrupt object pointer needed by the kernel. It is implemen-
tation defined whether these are stored in a single table of triples, or in three separate tables.

The VSR follows the following approximate plan:

30

Chapter 5. Exception Handling

1. Save the CPU state. In non-debug configurations, it may be possible to get away with saving less than
the entire machine state. The optionCYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXTis sup-
ported in some targets to do this.

2. Increment the kernel scheduler lock. This is a static member of the Cyg_Scheduler class, however it has
also been aliased tocyg_scheduler_sched_lock so that it can be accessed from assembly code.

3. (Optional) Switch to an interrupt stack if not already running on it. This allows nested interrupts to be
delivered without needing every thread to have a stack large enough to take the maximum possible nest-
ing. It is implementation defined how to detect whether this is a nested interrupt but there are two basic
techniques. The first is to inspect the stack pointer and switch only if it is not currently within the interrupt
stack range; the second is to maintain a counter of the interrupt nesting level and switch only if it is zero.
The optionCYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACKcontrols whether this happens.

4. Decode the actual external interrupt being delivered from the interrupt controller. This will yield the ISR
vector number. The code to do this usually needs to come from the variant or platform HAL, so is usually
present in the form of a macro or procedure callout.

5. (Optional) Re-enable interrupts to permit nesting. At this point we can potentially allow higher priority
interrupts to occur. It depends on the interrupt architecture of the CPU and platform whether more inter-
rupts will occur at this point, or whether they will only be delivered after the current interrupt has been
acknowledged (by a call toHAL_INTERRUPT_ACKNOWLEDGE()in the ISR).

6. Using the ISR vector number as an index, retrieve the ISR pointer and its data pointer from the ISR vector
table.

7. Construct a C call stack frame. This may involve making stack space for call frames, and arguments, and
initializing the back pointers to halt a GDB backtrace operation.

8. Call the ISR, passing the vector number and data pointer. The vector number and a pointer to the saved
state should be preserved across this call, preferably by storing them in registers that are defined to be
callee-saved by the calling conventions.

9. If this is an un-nested interrupt and a separate interrupt stack is being used, switch back to the interrupted
thread’s own stack.

10.Use the saved ISR vector number to get the interrupt object pointer from the ISR vector table.

11.Call interrupt_end() passing it the return value from the ISR, the interrupt object pointer and a pointer
to the saved CPU state. This function is implemented by the Kernel and is responsible for finishing off the
interrupt handling. Specifically, it may post a DSR depending on the ISR return value, and will decrement
the scheduler lock. If the lock is zeroed by this operation then any posted DSRs may be called and may in
turn result in a thread context switch.

12.The return frominterrupt_end() may occur some time after the call. Many other threads may have
executed in the meantime. So here all we may do is restore the machine state and resume execution of the
interrupted thread. Depending on the architecture, it may be necessary to disable interrupts again for part
of this.

The detailed order of these steps may vary slightly depending on the architecture, in particular where interrupts
are enabled and disabled.

31

Chapter 5. Exception Handling

32

Chapter 6. Porting Guide

Introduction
eCos has been designed to be fairly easy to port to new targets. A target is a specific platform (board) using a
given architecture (CPU type). The porting is facilitated by the hierarchical layering of the eCos sources - all
architecture and platform specific code is implemented in a HAL (hardware abstraction layer).

By porting the eCos HAL to a new target the core functionality of eCos (infra, kernel, uITRON, etc) will be
able to run on the target. It may be necessary to add further platform specific code such as serial drivers, display
drivers, ethernet drivers, etc. to get a fully capable system.

This document is intended as a help to the HAL porting process. Due to the nature of a porting job, it is
impossible to give a complete description of what has to be done for each and every potential target. This
should not be considered a clear-cut recipe - you will probably need to make some implementation decisions,
tweak a few things, and just plain have to rely on common sense.

However, what is covered here should be a large part of the process. If you get stuck, you are advised
to read the ecos-discuss archive (http://ecos.sourceware.org/ml/ecos-discuss/) where you may find
discussions which apply to the problem at hand. You are also invited to ask questions on the ecos-discuss
mailing list (http://ecos.sourceware.org/intouch.html) to help you resolve problems - but as is always
the case with community lists, do not consider it an oracle for any and all questions. Use common
sense - if you ask too many questions which could have been answered by reading the documentation
(http://ecos.sourceware.org/ecos/docs-latest/), FAQ (http://ecos.sourceware.org/fom/ecos) or source code
(http://ecos.sourceware.org/cgi-bin/cvsweb.cgi/ecos/packages/?cvsroot=ecos), you are likely to be ignored.

This document will be continually improved by Red Hat engineers as time allows. Feedback and help with
improving the document is sought, so if you have any comments at all, please do not hesitate to post them on
ecos-discuss (mailto:ecos-discuss@ecos.sourceware.org?subject=[porting]<subject>) (please prefix the sub-
ject with [porting]).

At the moment this document is mostly an outline. There are many details to fill in before it becomes complete.
Many places you’ll just find a list of keywords / concepts that should be described (please post on ecos-discuss
if there are areas you think are not covered).

All pages or sections where the caption ends in [TBD] contain little more than key words and/or random
thoughts - there has been no work done as such on the content. The word FIXME may appear in the text to
highlight places where information is missing.

HAL Structure
In order to write an eCos HAL it’s a good idea to have at least a passing understanding of how the HAL
interacts with the rest of the system.

HAL Classes
The eCos HAL consists of four HAL sub-classes. This table gives a brief description of each class and partly
reiterates the description inChapter 2. The links refer to the on-line CVS tree (specifically to the sub-HALs

33

Chapter 6. Porting Guide

used by the PowerPC MBX target).

HAL type Description Functionality Overview

Common HAL (hal/common)
(http://ecos.sourceware.org/cgi-
bin/cvsweb.cgi/ecos/packages/hal/common/current?cvsroot=ecos)

Configuration options and
functionality shared by all HALs.

Generic debugging functionality,
driver API, eCos/ROM monitor
calling interface, and tests.

Architecture HAL
(hal/<architecture>/arch)
(http://ecos.sourceware.org/cgi-
bin/cvsweb.cgi/ecos/packages/hal/powerpc/arch/current?cvsroot=ecos)

Functionality specific to the given
architecture. Also default
implementations of some
functionality which can be
overridden by variant or platform
HALs.

Architecture specific debugger
functionality (handles single
stepping, exception-to-signal
conversion, etc.),
exception/interrupt vector
definitions and handlers, cache
definition and control macros,
context switching code, assembler
functions for early system
initialization, configuration
options, and possibly tests.

Variant HAL
(hal/<architecture>/<variant>)
(http://ecos.sourceware.org/cgi-
bin/cvsweb.cgi/ecos/packages/hal/powerpc/mpc8xx/current?cvsroot=ecos)

Some CPU architectures consist of
a number variants, for example
MIPS CPUs come in both 32 and
64 bit versions, and some variants
have embedded features additional
to the CPU core.

Variant extensions to the
architecture code (cache,
exception/interrupt), configuration
options, possibly drivers for
variant on-core devices, and
possibly tests.

Platform HAL
(hal/<architecture>/<platform>)
(http://ecos.sourceware.org/cgi-
bin/cvsweb.cgi/ecos/packages/hal/powerpc/mbx/current?cvsroot=ecos)

Contains functionality and
configuration options specific to
the platform.

Early platform initialization code,
platform memory layout
specification, configuration
options (processor speed, compiler
options), diagnostic IO functions,
debugger IO functions, platform
specific extensions to architecture
or variant code (off-core interrupt
controller), and possibly tests.

Auxiliary HAL
(hal/<architecture>/<module>)
(http://ecos.sourceware.org/cgi-
bin/cvsweb.cgi/ecos/packages/hal/powerpc/quicc/current?cvsroot=ecos)

Some variants share common
modules on the core. Motorola’s
PowerPC QUICC is an example of
such a module.

Module specific functionality
(interrupt controller, simple device
drivers), possibly tests.

File Descriptions
Listed below are the files found in various HALs, with a short description of what each file contains. When
looking in existing HALs beware that they do not necessarily follow this naming scheme. If you are writing
a new HAL, please try to follow it as closely as possible. Still, no two targets are the same, so sometimes it
makes sense to use additional files.

Common HAL

34

Chapter 6. Porting Guide

File Description

include/dbg-thread-syscall.h Defines the thread debugging syscall function. This
is used by the ROM monitor to access the thread
debugging API in the RAM application. .

include/dbg-threads-api.h Defines the thread debugging API. .

include/drv_api.h Defines the driver API.

include/generic-stub.h Defines the generic stub features.

include/hal_if.h Defines the ROM/RAM calling interface API.

include/hal_misc.h Defines miscellaneous helper functions shared by all
HALs.

include/hal_stub.h Defines eCos mappings of GDB stub features.

src/dbg-threads-syscall.c Thread debugging implementation.

src/drv_api.c Driver API implementation. Depending on
configuration this provides either wrappers for the
kernel API, or a minimal implementation of these
features. This allows drivers to be written relying
only on HAL features.

src/dummy.c Empty dummy file ensuring creation of libtarget.a.

src/generic-stub.c Generic GDB stub implementation. This provides the
communication protocol used to communicate with
GDB over a serial device or via the network.

src/hal_if.c ROM/RAM calling interface implementation.
Provides wrappers from the calling interface API to
the eCos features used for the implementation.

src/hal_misc.c Various helper functions shared by all platforms and
architectures.

src/hal_stub.c Wrappers from eCos HAL features to the features
required by the generic GDB stub.

src/stubrom/stubrom.c The file used to build eCos GDB stub images.
Basically a cyg_start function with a hard coded
breakpoint.

src/thread-packets.c More thread debugging related functions.

src/thread-pkts.h Defines more thread debugging related function.

Architecture HAL

Some architecture HALs may add extra files for architecture specific serial drivers, or for handling interrupts
and exceptions if it makes sense.

Note that many of the definitions in these files are only conditionally defined - if the equivalent variant or
platform headers provide the definitions, those override the generic architecture definitions.

File Description

include/arch.inc Various assembly macros used during system
initialization.

35

Chapter 6. Porting Guide

File Description

include/basetype.h Endian, label, alignment, and type size definitions.
These override common defaults in
CYGPKG_INFRA.

include/hal_arch.h Saved register frame format, various thread, register
and stack related macros.

include/hal_cache.h Cache definitions and cache control macros.

include/hal_intr.h Exception and interrupt definitions. Macros for
configuring and controlling interrupts. eCos real-time
clock control macros.

include/hal_io.h Macros for accessing IO devices.

include/ <arch >_regs.h Architecture register definitions.

include/ <arch >_stub.h Architecture stub definitions. In particular the
register frame layout used by GDB. This may differ
from the one used by eCos.

include/ <arch >.inc Architecture convenience assembly macros.

src/ <arch >.ld Linker macros.

src/context.S Functions handling context switching and
setjmp/longjmp.

src/hal_misc.c Exception and interrupt handlers in C. Various other
utility functions.

src/hal_mk_defs.c Used to export definitions from C header files to
assembler header files.

src/hal_intr.c Any necessary interrupt handling functions.

src/ <arch >stub.c Architecture stub code. Contains functions for
translating eCos exceptions to UNIX signals and
functions for single-stepping.

src/vectors.S Exception, interrupt and early initialization code.

Variant HAL

Some variant HALs may add extra files for variant specific serial drivers, or for handling interrupts/exceptions
if it makes sense.

Note that these files may be mostly empty if the CPU variant can be controlled by the generic architecture
macros. The definitions present are only conditionally defined - if the equivalent platform headers provide the
definitions, those override the variant definitions.

File Description

include/var_arch.h Saved register frame format, various thread, register
and stack related macros.

include/var_cache.h Cache related macros.

include/var_intr.h Interrupt related macros.

include/var_regs.h Extra register definitions for the CPU variant.

include/variant.inc Various assembly macros used during system
initialization.

src/var_intr.c Interrupt functions if necessary.

36

Chapter 6. Porting Guide

File Description

src/var_misc.c hal_variant_init function and any necessary extra
functions.

src/variant.S Interrupt handler table definition.

src/ <arch >_<variant >.ld Linker macros.

Platform HAL

Extras files may be added for platform specific serial drivers. Extra files for handling interrupts and exceptions
will be present if it makes sense.

File Description

include/hal_diag.h Defines functions used for HAL diagnostics output.
This would normally be the ROM calling interface
wrappers, but may also be the low-level IO functions
themselves, saving a little overhead.

include/platform.inc Platform initialization code. This includes memory
controller, vectors, and monitor initialization.
Depending on the architecture, other things may
need defining here as well: interrupt decoding, status
register initialization value, etc.

include/plf_cache.h Platform specific cache handling.

include/plf_intr.h Platform specific interrupt handling.

include/plf_io.h PCI IO definitions and macros. May also be used to
override generic HAL IO macros if the platform
endianness differs from that of the CPU.

include/plf_stub.h Defines stub initializer and board reset details.

src/hal_diag.c May contain the low-level device drivers. But these
may also reside in plf_stub.c

src/platform.S Memory controller setup macro, and if necessary
interrupt springboard code.

src/plf_misc.c Platform initialization code.

src/plf_mk_defs.c Used to export definitions from C header files to
assembler header files.

src/plf_stub.c Platform specific stub initialization and possibly the
low-level device driver.

The platform HAL also contains files specifying the platform’s memory layout. These files are located in
include/pkgconf .

Auxiliary HAL

Auxiliary HALs contain whatever files are necessary to provide the required functionality. There are no prede-
fined set of files required in an auxiliary HAL.

37

Chapter 6. Porting Guide

Virtual Vectors (eCos/ROM Monitor Calling Interface)
Virtually all eCos platforms provide full debugging capabilities via RedBoot. This enviroment contains not
only debug stubs based on GDB, but also rich I/O support which can be exported to loaded programs. Such
programs can take advantage of the I/O capabilities using a special ROM/RAM calling interface (also referred
to as virtual vector table). eCos programs make use of the virtual vector mechanism implicitly. Non-eCos
programs can access these functions using the support from thenewlib library.

Virtual Vectors
What are virtual vectors, what do they do, and why are they needed?

"Virtual vectors" is the name of a table located at a static location in the target address space. This table contains
64 vectors that point toservicefunctions or data.

The fact that the vectors are always placed at the same location in the address space means that both ROM and
RAM startup configurations can access these and thus the services pointed to.

The primary goal is to allow services to be provided by ROM configurations (ROM monitors such as RedBoot
in particular) withclientsin RAM configurations being able to use these services.

Without the table of pointers this would be impossible since the ROM and RAM applications would be linked
separately - in effect having separate name spaces - preventing direct references from one to the other.

This decoupling of service from client is needed by RedBoot, allowing among other things debugging of
applications which do not contain debugging client code (stubs).

Initialization (or Mechanism vs. Policy)

Virtual vectors are amechanismfor decoupling services from clients in the address space.

The mechanism allows services to be implemented by a ROM monitor, a RAM application, to be switched out
at run-time, to be disabled by installing pointers to dummy functions, etc.

The appropriate use of the mechanism is specified loosely by apolicy. The general policy dictates that the
vectors are initialized in whole by ROM monitors (built for ROM or RAM), or by stand-alone applications.

For configurations relying on a ROM monitor environment, the policy is to allow initialization on a service
by service basis. The default is to initialize all services, except COMMS services since these are presumed
to already be carrying a communication session to the debugger / console which was used for launching the
application. This means that the bulk of the code gets tested in normal builds, and not just once in a blue moon
when building new stubs or a ROM configuration.

The configuration options are written to comply with this policy by default, but can be overridden by the user
if desired. Defaults are:

• For application development: the ROM monitor provides debugging and diagnostic IO services, the RAM
application relies on these by default.

• For production systems: the application contains all the necessary services.

Pros and Cons of Virtual Vectors

There are pros and cons associated with the use of virtual vectors. We do believe that the pros generally
outweigh the cons by a great margin, but there may be situations where the opposite is true.

38

Chapter 6. Porting Guide

The use of the services are implemented by way of macros, meaning that it is possible to circumvent the virtual
vectors if desired. There is (as yet) no implementation for doing this, but it is possible.

Here is a list of pros and cons:

Pro: Allows debugging without including stubs

This is the primary reason for using virtual vectors. It allows the ROM monitor to provide most of the
debugging infrastructure, requiring only the application to provide hooks for asynchronous debugger in-
terrupts and for accessing kernel thread information.

Pro: Allows debugging to be initiated from arbitrary channel

While this is only true where the application does not actively override the debugging channel setup,
it is a very nice feature during development. In particular it makes it possible to launch (and/or debug)
applications via Ethernet even though the application configuration does not contain networking support.

Pro: Image smaller due to services being provided by ROM monitor

All service functions except HAL IO are included in the default configuration. But if these are all disabled
the image for download will be a little smaller. Probably doesn’t matter much for regular development,
but it is a worthwhile saving for the 20000 daily tests run in the Red Hat eCos test farm.

Con: The vectors add a layer of indirection, increasing application size and reducing performance.

The size increase is a fraction of what is required to implement the services. So for RAM configurations
there is a net saving, while for ROM configurations there is a small overhead.

The performance loss means little for most of the services (of which the most commonly used is diagnostic
IO which happens via polled routines anyway).

Con: The layer of indirection is another point of failure.

The concern primarily being that of vectors being trashed by rogue writes from bad code, causing a
complete loss of the service and possibly a crash. But this does not differ much from a rogue write to
anywhere else in the address space which could cause the same amount of mayhem. But it is arguably an
additional point of failure for the service in question.

Con: All the indirection stuff makes it harder to bring a HAL up

This is a valid concern. However, seeing as most of the code in question is shared between all HALs and
should remain unchanged over time, the risk of it being broken when a new HAL is being worked on
should be minimal.

When starting a new port, be sure to implement the HAL IO drivers according to the scheme used in other
drivers, and there should be no problem.

However, it is still possible to circumvent the vectors if they are suspect of causing problems: simply
change the HAL_DIAG_INIT and HAL_DIAG_WRITE_CHAR macros to use the raw IO functions.

Available services

Thehal_if.h file in the common HAL defines the complete list of available services. A few worth mentioning
in particular:

39

Chapter 6. Porting Guide

• COMMS services. All HAL IO happens via the communication channels.

• uS delay. Fine granularity (busy wait) delay function.

• Reset. Allows a software initiated reset of the board.

The COMMS channels
As all HAL IO happens via the COMMS channels these deserve to be described in a little more detail. In par-
ticular the controls of where diagnostic output is routed and how it is treated to allow for display in debuggers.

Console and Debugging Channels

There are two COMMS channels - one for console IO and one for debugging IO. They can be individually
configured to use any of the actual IO ports (serial or Ethernet) available on the platform.

The console channel is used for any IO initiated by calling thediag_*() functions. Note that these should
only be used during development for debugging, assertion and possibly tracing messages. All proper IO should
happen via proper devices. This means it should be possible to remove the HAL device drivers from production
configurations where assertions are disabled.

The debugging channel is used for communication between the debugger and the stub which remotely controls
the target for the debugger (the stub runs on the target). This usually happens via some protocol, encoding
commands and replies in some suitable form.

Having two separate channels allows, e.g., for simple logging without conflicts with the debugger or interactive
IO which some debuggers do not allow.

Mangling

As debuggers usually have a protocol using specialized commands when communicating with the stub on the
target, sending out text as raw ASCII from the target on the same channel will either result in protocol errors
(with loss of control over the target) or the text may just be ignored as junk by the debugger.

To get around this, some debuggers have a special command for text output. Mangling is the process of encod-
ing diagnostic ASCII text output in the form specified by the debugger protocol.

When it is necessary to use mangling, i.e. when writing console output to the same port used for debugging, a
mangler function is installed on the console channel which mangles the text and passes it on to the debugger
channel.

Controlling the Console Channel

Console output configuration is either inherited from the ROM monitor launching the
application, or it is specified by the application. This is controlled by the new option
CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLEwhich defaults to enabled when the configuration is set to
use a ROM monitor.

If the user wants to specify the console configuration in the application image, there are two new options that
are used for this.

Defaults are to direct diagnostic output via a mangler to the debugging channel
(CYGDBG_HAL_DIAG_TO_DEBUG_CHANenabled). The mangler type is controlled by the option
CYGSEM_HAL_DIAG_MANGLER. At present there are only two mangler types:

40

Chapter 6. Porting Guide

GDB

This causes a mangler appropriate for debugging with GDB to be installed on the console channel.

None

This causes a NULL mangler to be installed on the console channel. It will redirect the IO to/from the
debug channel without mangling of the data. This option differs from setting the console channel to the
same IO port as the debugging channel in that it will keep redirecting data to the debugging channel even
if that is changed to some other port.

Finally, by disablingCYGDBG_HAL_DIAG_TO_DEBUG_CHAN, the diagnostic output is directed in raw form to the
specified console IO port.

In summary this results in the following common configuration scenarios for RAM startup configurations:

• For regular debugging with diagnostic output appearing in the debugger, mangling is enabled and stubs
disabled.

Diagnostic output appears via the debugging channel as initiated by the ROM monitor, allowing for correct
behavior whether the application was launched via serial or Ethernet, from the RedBoot command line or
from a debugger.

• For debugging with raw diagnostic output, mangling is disabled.

Debugging session continues as initiated by the ROM monitor, whether the application was launched via
serial or Ethernet. Diagnostic output is directed at the IO port configured in the application configuration.

Note:: There is one caveat to be aware of. If the application uses proper devices (be it serial or Ethernet)
on the same ports as those used by the ROM monitor, the connections initiated by the ROM monitor will
be terminated.

And for ROM startup configurations:

• Production configuration with raw output and no debugging features (configured for RAM or ROM), man-
gling is disabled, no stubs are included.

Diagnostic output appears (in unmangled form) on the specified IO port.

• RedBoot configuration, includes debugging features and necessary mangling.

Diagnostic and debugging output port is auto-selected by the first connection to any of the supported IO
ports. Can change from interactive mode to debugging mode when a debugger is detected - when this hap-
pens a mangler will be installed as required.

• GDB stubs configuration (obsoleted by RedBoot configuration), includes debugging features, mangling is
hardwired to GDB protocol.

Diagnostic and debugging output is hardwired to configured IO ports, mangling is hardwired.

41

Chapter 6. Porting Guide

Footnote: Design Reasoning for Control of Console Channel

The current code for controlling the console channel is a replacement for an older implementation which had
some shortcomings which addressed by the new implementation.

This is what the old implementation did: on initialization it would check if the CDL configured console channel
differed from the active debug channel - and if so, set the console channel, thereby disabling mangling.

The idea was that whatever channel was configured to be used for console (i.e., diagnostic output) in the
application was what should be used. Also, it meant that if debug and console channels were normally the
same, a changed console channel would imply a request for unmangled output.

But this prevented at least two things:

• It was impossible to inherit the existing connection by which the application was launched (either by Red-
Boot commands via telnet, or by via a debugger).

This was mostly a problem on targets supporting Ethernet access since the diagnostic output would not be
returned via the Ethernet connection, but on the configured serial port.

The problem also occurred on any targets with multiple serial ports where the ROM monitor was configured
to use a different port than the CDL defaults.

• Proper control of when to mangle or just write out raw ASCII text.

Sometimes it’s desirable to disable mangling, even if the channel specified is the same as that used for
debugging. This usually happens if GDB is used to download the application, but direct interaction with the
application on the same channel is desired (GDB protocol only allows output from the target, no input).

The calling Interface API
The calling interface API is defined by hal_if.h and hal_if.c in hal/common.

The API provides a set of services. Different platforms, or different versions of the ROM monitor for a single
platform, may implement fewer or extra service. The table has room for growth, and any entries which are not
supported map to a NOP-service (when called it returns 0 (false)).

A client of a service should either be selected by configuration, or have suitable fall back alternatives in case
the feature is not implemented by the ROM monitor.

Note:: Checking for unimplemented service when this may be a data field/pointer instead of a function:
suggest reserving the last entry in the table as the NOP-service pointer. Then clients can compare a
service entry with this pointer to determine whether it’s initialized or not.

The header filecyg/hal/hal_if.h defines the table layout and accessor macros (allowing primitive type
checking and alternative implementations should it become necessary).

The source filehal_if.c defines the table initialization function. All HALs should call this during platform
initialization - the table will get initialized according to configuration. Also defined here are wrapper functions
which map between the calling interface API and the API of the used eCos functions.

42

Chapter 6. Porting Guide

Implemented Services

This is a brief description of the services, some of which are described in further detail below.

VERSION

Version of table. Serves as a way to check for how many features are available in the table. This is the
index of the last service in the table.

KILL_VECTOR

[Presently unused by the stub code, but initialized] This vector defines a function to execute when the
system receives a kill signal from the debugger. It is initialized with the reset function (see below), but the
application (or eCos) can override it if necessary.

CONSOLE_PROCS

The communication procedure table used for console IO (seethe Section calledIO channels.

DEBUG_PROCS

The communication procedure table used for debugger IO (seethe Section calledIO channels).

FLUSH_DCACHE

Flushes the data cache for the specified region. Some implementations may flush the entire data cache.

FLUSH_ICACHE

Flushes (invalidates) the instruction cache for the specified region. Some implementations may flush the
entire instruction cache.

SET_DEBUG_COMM

Change debugging communication channel.

SET_CONSOLE_COMM

Change console communication channel.

DBG_SYSCALL

Vector used to communication between debugger functions in ROM and in RAM. RAM eCos configura-
tions may install a function pointer here which the ROM monitor uses to get thread information from the
kernel running in RAM.

RESET

Resets the board on call. If it is not possible to reset the board from software, it will jump to the ROM
entry point which will perform a "software" reset of the board.

CONSOLE_INTERRUPT_FLAG

Set if a debugger interrupt request was detected while processing console IO. Allows the actual breakpoint
action to be handled after return to RAM, ensuring proper backtraces etc.

DELAY_US

Will delay the specified number of microseconds. The precision is platform dependent to some extend - a
small value (<100us) is likely to cause bigger delays than requested.

43

Chapter 6. Porting Guide

FLASH_CFG_OP

For accessing configuration settings kept in flash memory.

INSTALL_BPT_FN

Installs a breakpoint at the specified address. This is used by the asynchronous breakpoint support (see).

Compatibility

When a platform is changed to support the calling interface, applications will use it if so configured. That
means that if an application is run on a platform with an older ROM monitor, the service is almost guaranteed
to fail.

For this reason, applications should only use Console Comm for HAL diagnostics output if explicitly config-
ured to do so (CYGSEM_HAL_VIRTUAL_VECTOR_DIAG).

As for asynchronous GDB interrupts, the service will always be used. This is likely to cause a crash under
older ROM monitors, but this crash may be caught by the debugger. The old workaround still applies: if you
need asynchronous breakpoints or thread debugging under older ROM monitors, you may have to include the
debugging support when configuring eCos.

Implementation details

During the startup of a ROM monitor, the calling table will be initialized. This also happens if eCos is config-
urednot to rely on a ROM monitor.

Note:: There is reserved space (256 bytes) for the vector table whether it gets used or not. This may be
something that we want to change if we ever have to shave off every last byte for a given target.

If thread debugging features are enabled, the function for accessing the thread information gets registered in
the table during startup of a RAM startup configuration.

Further implementation details are described where the service itself is described.

New Platform Ports

Thehal_platform_init() function must callhal_if_init() .

The HAL serial driver must, when called viacyg_hal_plf_comms_init() must initialize the communication
channels.

The reset() function defined inhal_if.c will attempt to do a hardware reset, but if this fails it will fall
back to simply jumping to the reset entry-point. On most platforms the startup initialization will go a long way
to reset the target to a sane state (there will be exceptions, of course). For this reason, make sure to define
HAL_STUB_PLATFORM_RESET_ENTRYin plf_stub.h.

All debugging features must be in place in order for the debugging services to be functional. See general
platform porting notes.

44

Chapter 6. Porting Guide

New architecture ports

There are no specific requirements for a new architecture port in order to support the calling interface, but the
basic debugging features must be in place. See general architecture porting notes.

IO channels
The calling interface provides procedure tables for all IO channels on the platform. These are used for console
(diagnostic) and debugger IO, allowing a ROM monitor to provided all the needed IO routines. At the same
time, this makes it easy to switch console/debugger channels at run-time (the old implementation had hardwired
drivers for console and debugger IO, preventing these to change at run-time).

The hal_if provides wrappers which interface these services to the eCos infrastructure diagnostics routines.
This is done in a way which ensures proper string mangling of the diagnostics output when required (e.g.
O-packetization when using a GDB compatible ROM monitor).

Available Procedures

This is a brief description of the procedures

CH_DATA

Pointer to the controller IO base (or a pointer to a per-device structure if more data than the IO base is
required). All the procedures below are called with this data item as the first argument.

WRITE

Writes the buffer to the device.

READ

Fills a buffer from the device.

PUTC

Write a character to the device.

GETC

Read a character from the device.

CONTROL

Device feature control. Second argument specifies function:

SETBAUD

Changes baud rate.

GETBAUD

Returns the current baud rate.

INSTALL_DBG_ISR

[Unused]

45

Chapter 6. Porting Guide

REMOVE_DBG_ISR

[Unused]

IRQ_DISABLE

Disable debugging receive interrupts on the device.

IRQ_ENABLE

Enable debugging receive interrupts on the device.

DBG_ISR_VECTOR

Returns the ISR vector used by the device for debugging receive interrupts.

SET_TIMEOUT

Set GETC timeout in milliseconds.

FLUSH_OUTPUT

Forces driver to flush data in its buffers. Note that this may not affect hardware buffers (e.g. FIFOs).

DBG_ISR

ISR used to handle receive interrupts from the device (see).

GETC_TIMEOUT

Read a character from the device with timeout.

Usage

The standard eCos diagnostics IO functions use the channel procedure table when
CYGSEM_HAL_VIRTUAL_VECTOR_DIAGis enabled. That means that when you use diag_printf (or the libc printf
function) the stream goes through the selected console procedure table. If you use the virtual vector function
SET_CONSOLE_COMM you can change the device which the diagnostics output goes to at run-time.

You can also use the table functions directly if desired (regardless of theCYGSEM_HAL_VIRTUAL_VECTOR_DIAG

setting - assuming the ROM monitor provides the services). Here is a small example which changes the console
to use channel 2, fetches the comm procs pointer and calls the write function from that table, then restores the
console to the original channel:

#define T "Hello World!\n"

int
main(void)
{

hal_virtual_comm_table_t* comm;
int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT);

CYGACC_CALL_IF_SET_CONSOLE_COMM(2);

comm = CYGACC_CALL_IF_CONSOLE_PROCS();
CYGACC_COMM_IF_WRITE(*comm, T, strlen(T));

CYGACC_CALL_IF_SET_CONSOLE_COMM(cur);
}

46

Chapter 6. Porting Guide

Beware that if doing something like the above, you should only do it to a channel which does not have GDB at
the other end: GDB ignores raw data, so you would not see the output.

Compatibility

The use of this service is controlled by the optionCYGSEM_HAL_VIRTUAL_VECTOR_DIAGwhich is disabled per
default on most older platforms (thus preserving backwards compatibility with older stubs). On newer ports,
this option should always be set.

Implementation Details

There is an array of procedure tables (raw comm channels) for each IO device of the platform which get ini-
tialized by the ROM monitor, or optionally by a RAM startup configuration (allowing the RAM configuration
to take full control of the target). In addition to this, there’s a special table which is used to hold mangler
procedures.

The vector table defines which of these channels are selected for console and debugging IO respectively:
console entry can be empty, point to mangler channel, or point to a raw channel. The debugger entry should
always point to a raw channel.

During normal console output (i.e., diagnostic output) the console table will be used to handle IO if defined. If
not defined, the debug table will be used.

This means that debuggers (such as GDB) which require text streams to be mangled (O-packetized in the case
of GDB), can rely on the ROM monitor install mangling IO routines in the special mangler table and select
this for console output. The mangler will pass the mangled data on to the selected debugging channel.

If the eCos configuration specifies a different console channel from that used by the debugger, the console
entry will point to the selected raw channel, thus overriding any mangler provided by the ROM monitor.

See hal_if_diag_* routines in hal_if.c for more details of the stream path of diagnostic output. See
cyg_hal_gdb_diag_*() routines inhal_stub.c for the mangler used for GDB communication.

New Platform Ports

Define CDL options CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS,
CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL, andCYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL.

If CYGSEM_HAL_VIRTUAL_VECTOR_DIAGis set, make sure the infra diag code uses the hal_if diag functions:

#define HAL_DIAG_INIT() hal_if_diag_init()
#define HAL_DIAG_WRITE_CHAR(_c_) hal_if_diag_write_char(_c_)
#define HAL_DIAG_READ_CHAR(_c_) hal_if_diag_read_char(&_c_)

In addition to the above functions, the platform HAL must also provide a function cyg_hal_plf_comms_init
which initializes the drivers and the channel procedure tables.

Most of the other functionality in the table is more or less possible to copy unchanged from existing ports.
Some care is necessary though to ensure the proper handling of interrupt vectors and timeouts for various
devices handled by the same driver. See PowerPC/Cogent platform HAL for an example implementation.

Note:: When vector table console code is not used, the platform HAL must map the HAL_DIAG_INIT,
HAL_DIAG_WRITE_CHAR and HAL_DIAG_READ_CHAR macros directly to the low-level IO functions,
hardwired to use a compile-time configured channel.

47

Chapter 6. Porting Guide

Note:: On old ports the hardwired HAL_DIAG_INIT , HAL_DIAG_WRITE_CHARand HAL_DIAG_READ_CHARimple-
mentations will also contain code to O-packetize the output for GDB. This should not be adopted for new
ports! On new ports the ROM monitor is guaranteed to provide the necessary mangling via the vector
table. The hardwired configuration should be reserved for ROM startups where achieving minimal image
size is crucial.

HAL Coding Conventions
To get changes and larger submissions included into the eCos source repository, we ask that you adhere to a
set of coding conventions. The conventions are defined as an attempt to make a consistent tree. Consistency
makes it easier for people to read, understand and maintain the code, which is important when many people
work on the same project.

The below is only a brief, and probably incomplete, summary of the rules. Please look through files in the area
where you are making changes to get a feel for any additional conventions. Also feel free to ask on the list if
you have specific questions.

Implementation issues
There are a few implementation issues that should be kept in mind:

HALs

HALs must be written in C and assembly only. C++ must not be used. This is in part to keep the HALs
simple since this is usually the first part of eCos a newcomer will see, and in part to maintain the existing
de facto standard.

IO access

Use HAL IO access macros for code that might be reused on different platforms than the one you are
writing it for.

MMU

If it is necessary to use the MMU (e.g., to prevent caching of IO areas), use a simple 1-1 mapping of
memory if possible. On most platforms where using the MMU is necessary, it will be possible to achieve
the 1-1 mapping using the MMU’s provision for mapping large continuous areas (hardwired TLBs or
BATs). This reduces the footprint (no MMU table) and avoids execution overhead (no MMU-related
exceptions).

Assertions

The code should contain assertions to validate argument values, state information and any assumptions the
code may be making. Assertions are not enabled in production builds, so liberally sprinkling assertions
throughout the code is good.

Testing

The ability to test your code is very important. In general, do not add new code to the eCos runtime unless
you also add a new test to exercise that code. The test also serves as an example of how to use the new
code.

48

Chapter 6. Porting Guide

Source code details

Line length

Keep line length below 78 columns whenever possible.

Comments

Whenever possible, use // comments instead of /**/.

Indentation

Use spaces instead of TABs. Indentation level is 4. Braces start on the same line as the expression. See
below for emacs mode details.

;;===
;; eCos C/C++ mode Setup.
;;
;; bsd mode: indent = 4
;; tail comments are at col 40.
;; uses spaces not tabs in C

(defun ecos-c-mode ()
"C mode with adjusted defaults for use with the eCos sources."
(interactive)
(c++-mode)
(c-set-style "bsd")
(setq comment-column 40)
(setq indent-tabs-mode nil)
(show-paren-mode 1)
(setq c-basic-offset 4)

(set-variable ’add-log-full-name "Your Name")
(set-variable ’add-log-mailing-address "Your email address"))

(defun ecos-asm-mode ()
"ASM mode with adjusted defaults for use with the eCos sources."
(interactive)
(setq comment-column 40)
(setq indent-tabs-mode nil)
(asm-mode)
(setq c-basic-offset 4)

(set-variable ’add-log-full-name "Your Name")
(set-variable ’add-log-mailing-address "Your email address"))

(setq auto-mode-alist
(append ’(("/local/ecc/.*\\.C$" . ecos-c-mode)

("/local/ecc/.*\\.cc$" . ecos-c-mode)
("/local/ecc/.*\\.cpp$" . ecos-c-mode)
("/local/ecc/.*\\.inl$" . ecos-c-mode)
("/local/ecc/.*\\.c$" . ecos-c-mode)
("/local/ecc/.*\\.h$" . ecos-c-mode)

("/local/ecc/.*\\.S$" . ecos-asm-mode)
("/local/ecc/.*\\.inc$" . ecos-asm-mode)
("/local/ecc/.*\\.cdl$" . tcl-mode)

) auto-mode-alist))

49

Chapter 6. Porting Guide

Nested Headers
In order to allow platforms to define all necessary details, while still maintaining the ability to share code
between common platforms, all HAL headers are included in a nested fashion.

The architecture header (usuallyhal_XXX.h) includes the variant equivalent of the header (var_XXX.h) which
in turn includes the platform equivalent of the header (plf_XXX.h).

All definitions that may need to be overridden by a platform are then only conditionally defined, depending on
whether a lower layer has already made the definition:

hal_intr.h: #include <var_intr.h >

#ifndef MACRO_DEFINED
define MACRO ...
define MACRO_DEFINED
#endif

var_intr.h: #include <plf_intr.h >

#ifndef MACRO_DEFINED
define MACRO ...
define MACRO_DEFINED
#endif

plf_intr.h:

define MACRO ...
define MACRO_DEFINED

This means a platform can opt to rely on the variant or architecture implementation of a feature, or implement
it itself.

Platform HAL Porting
This is the type of port that takes the least effort. It basically consists of describing the platform (board) for the
HAL: memory layout, early platform initialization, interrupt controllers, and a simple serial device driver.

Doing a platform port requires a preexisting architecture and possibly a variant HAL port.

HAL Platform Porting Process

Brief overview

The easiest way to make a new platform HAL is simply to copy an existing platform HAL of the same archi-
tecture/variant and change all the files to match the new one. In case this is the first platform for the architec-
ture/variant, a platform HAL from another architecture should be used as a template.

The best way to start a platform port is to concentrate on getting RedBoot to run. RedBoot is a simpler envi-
ronment than full eCos, it does not use interrupts or threads, but covers most of the basic startup requirements.

50

Chapter 6. Porting Guide

RedBoot normally runs out of FLASH or ROM and provides program loading and debugging facilities. This
allows further HAL development to happen using RAM startup configurations, which is desirable for the simple
reason that downloading an image which you need to test is often many times faster than either updating a flash
part, or indeed, erasing and reprogramming an EPROM.

There are two approaches to getting to this first goal:

1. The board is equipped with a ROM monitor which allows "load and go" of ELF, binary, S-record or some
other image type which can be created using objcopy. This allows you to develop RedBoot by downloading
and running the code (saving time).

When the stub is running it is a good idea to examine the various hardware registers to help you write the
platform initialization code.

Then you may have to fiddle a bit going through step two (getting it to run from ROM startup). If at all
possible, preserve the original ROM monitor so you can revert to it if necessary.

2. The board has no ROM monitor. You need to get the platform initialization and stub working by repeatedly
making changes, updating flash or EPROM and testing the changes. If you are lucky, you have a JTAG or
similar CPU debugger to help you. If not, you will probably learn to appreciate LEDs. This approach may
also be needed during the initial phase of moving RedBoot from RAM startup to ROM, since it is very
unlikely to work first time.

Step-by-step

Given that no two platforms are exactly the same, you may have to deviate from the below. Also, you should
expect a fair amount of fiddling - things almost never go right the first time. See the hints section below for
some suggestions that might help debugging.

The description below is based on the HAL layout used in the MIPS, PC and MN10300 HALs. Eventually all
HALs should be converted to look like these - but in a transition period there will be other HALs which look
substantially different. Please try to adhere to the following as much is possible without causing yourself too
much grief integrating with a HAL which does not follow this layout.

Minimal requirements

These are the changes you must make before you attempt to build RedBoot. You are advised to read all the
sources though.

1. Copy an existing platform HAL from the same or another architecture. Rename the files as necessary
to follow the standard: CDL and MLT related files should contain the<arch>_<variant>_<platform>

triplet.

2. Adjust CDL options. Primarily option naming, real-time clock/counter, and
CYGHWR_MEMORY_LAYOUT variables, but also other options may need editing. Look through the
architecture/variant CDL files to see if there are any requirements/features which where not used on the
platform you copied. If so, add appropriate ones. Seethe Section calledHAL Platform CDLfor more
details.

3. Add the necessary packages and target descriptions to the top-levelecos.db file. Seethe Section called
eCos Database. Initially, the target entry should only contain the HAL packages. Other hardware support
packages will be added later.

51

Chapter 6. Porting Guide

4. Adjust the MLT files ininclude/pkgconf to match the memory layout on the platform. For initial testing
it should be enough to just hand edit .h and .ldi files, but eventually you should generate all files using the
memory layout editor in the configuration tool. Seethe Section calledPlatform Memory Layoutfor more
details.

5. Edit themisc/redboot_ <STARTUP>.ecm for the startup type you have chosen to begin with. Rename
any platform specific options and remove any that do not apply. In thecdl_configuration section,
comment out any extra packages that are added, particularly packages such asCYGPKG_IO_FLASHand
CYGPKG_IO_ETH_DRIVERS. These are not needed for initial porting and will be added back later.

6. If the default IO macros are not correct, override them in plf_io.h. This may be necessary if the platform
uses a different endianness from the default for the CPU.

7. Leave out/comment out code that enables caches and/or MMU if possible. Execution speed will not be a
concern until the port is feature complete.

8. Implement a simple serial driver (polled mode only). Make sure the initialization function properly hooks
the procedures up in the virtual vector IO channel tables. RedBoot will call the serial driver via these
tables.

By copying an existing platform HAL most of this code will be already done, and will only need the
platform specific hardware access code to be written.

9. Adjust/implement necessary platform initialization. This can be found inplatform.inc andplatform.S

files (ARM: hal_platform_setup.h and<platform >_misc.c , PowerPC:<platform >.S). This step
can be postponed if you are doing a RAM startup RedBoot first and the existing ROM monitor handles
board initialization.

10.DefineHAL_STUB_PLATFORM_RESET(optionally empty) andHAL_STUB_PLATFORM_RESET_ENTRYso that
RedBoot can reset-on-detach - this is very handy, often removing the need for physically resetting the
board between downloads.

You should now be able to build RedBoot. For ROM startup:

% ecosconfig new <target_name > redboot
% ecosconfig import $(ECOS_REPOSITORY)/hal/ <architecture >/ <platform >/ <version >/misc/redboot_ROM.ecm
% ecosconfig tree
% make

You may have to make further changes than suggested above to get the make command to succeed. But when
it does, you should find a RedBoot image in install/bin. To program this image into flash or EPROM, you
may need to convert to some other file type, and possibly adjust the start address. When you have the correct
objcopy command to do this, add it to theCYGBLD_BUILD_GDB_STUBScustom build rule in the platform CDL
file.

Having updated the flash/EPROM on the board, you should see output on the serial port looking like this when
powering on the board:

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 15:42:24, Mar 14 2002

Platform: <PLATFORM> (<ARCHITECTURE> <VARIANT>)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x01000000, 0x000293e8-0x00ed1000 available
FLASH: 0x24000000 - 0x26000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

52

Chapter 6. Porting Guide

If you do not see this output, you need to go through all your changes and figure out what’s wrong. If there’s
a user programmable LED or LCD on the board it may help you figure out how far RedBoot gets before it
hangs. Unfortunately there’s no good way to describe what to do in this situation - other than that you have to
play with the code and the board.

Adding features

Now you should have a basic RedBoot running on the board. This means you have a the correct board initial-
ization and a working serial driver. It’s time to flesh out the remaining HAL features.

1. Reset. As mentioned above it is desirable to get the board to reset when GDB disconnects. When GDB dis-
connects it sends RedBoot a kill-packet, and RedBoot first callsHAL_STUB_PLATFORM_RESET(), attempt-
ing to perform a software-invoked reset. Most embedded CPUs/boards have a watchdog which is capable
of triggering a reset. If your target does not have a watchdog, leaveHAL_STUB_PLATFORM_RESET()empty
and rely on the fallback approach.

If HAL_STUB_PLATFORM_RESET() did not cause a reset, RedBoot will jump to
HAL_STUB_PLATFORM_RESET_ENTRY- this should be the address where the CPU will start execution after
a reset. Re-initializing the board and drivers willusually be good enough to make a hardware reset
unnecessary.

After the reset caused by the kill-packet, the target will be ready for GDB to connect again. During a days
work, this will save you from pressing the reset button many times.

Note that it is possible to disconnect from the board without causing it to reset by using the GDB command
"detach".

2. Single-stepping is necessary for both instruction-level debugging and for breakpoint support. Single-
stepping support should already be in place as part of the architecture/variant HAL, but you want to give
it a quick test since you will come to rely on it.

3. Real-time clock interrupts drive the eCos scheduler clock. Many embedded CPUs have an on-core
timer (e.g. SH) or decrementer (e.g. MIPS, PPC) that can be used, and in this case it will already
be supported by the architecture/variant HAL. You only have to calculate and enter the proper
CYGNUM_HAL_RTC_CONSTANTSdefinitions in the platform CDL file.

On some targets it may be necessary to use a platform-specific timer source for driving the real-time clock.
In this case you also have to enter the proper CDL definitions, but must also define suitable versions of the
HAL_CLOCK_XXXXmacros.

4. Interrupt decoding usually differs between platforms because the number and type of devices on the board
differ. In plf_intr.h (ARM: hal_platform_ints.h) you must either extend or replace the default vec-
tor definitions provided by the architecture or variant interrupt headers. You may also have to define
HAL_INTERRUPT_XXXXcontrol macros.

5. Caching may also differ from architecture/variant definitions. This maybe just the cache sizes, but there
can also be bigger differences for example if the platform supports 2nd level caches.

When cache definitions are in place, enable the caches on startup. First verify that the system is stable for
RAM startups, then build a new RedBoot and install it. This will test if caching, and in particular the cache
sync/flush operations, also work for ROM startup.

53

Chapter 6. Porting Guide

6. Asynchronous breakpoints allow you to stop application execution and enter the debugger. Asynchronous
breakpoint details are described in .

You should now have a completed platform HAL port. Verify its stability and completeness by running all the
eCos tests and fix any problems that show up (you have a working RedBoot now, remember! That means you
can debug the code to see why it fails).

Given the many configuration options in eCos, there may be hidden bugs or missing features that do not show
up even if you run all the tests successfully with a default configuration. A comprehensive test of the entire
system will take many configuration permutations and many many thousands of tests executed.

Hints

• JTAG or similar CPU debugging hardware can greatly reduce the time it takes to write a HAL port since
you always have full visibility of what the CPU is doing.

• LEDs can be your friends if you don’t have a JTAG device. Especially in the start of the porting effort if you
don’t already have a working ROM monitor on the target. Then you have to get a basic RedBoot working
while basically being blindfolded. The LED can make it little easier, as you’ll be able to do limited tracking
of program flow and behavior by switching the LED on and off. If the board has multiple LEDs you can show
a number (using binary notation with the LEDs) and sprinkle code which sets different numbers throughout
the code.

• Debugging the interrupt processing is possible if you are careful with the way you program the
very early interrupt entry handling. Write it so that as soon as possible in the interrupt path, taking
a trap (exception) does not harm execution. See the SH vectors.S code for an example. Look for
cyg_hal_default_interrupt_vsr and the labelcyg_hal_default_interrupt_vsr_bp_safe , which
marks the point after which traps/single-stepping is safe.

Being able to display memory content, CPU registers, interrupt controller details at the time of an interrupt
can save a lot of time.

• Using assertions is a good idea. They can sometimes reveal subtle bugs or missing features long before you
would otherwise have found them, let alone notice them.

The default eCos configuration does not use assertions, so you have to enable them by switching on the
optionCYGPKG_INFRA_DEBUGin the infra package.

• The idle loop can be used to help debug the system.

Triggering clock from the idle loop is a neat trick for examining system behavior either before interrupts are
fully working, or to speed up "the clock".

Use the idle loop to monitor and/or print out variables or hardware registers.

• hal_mk_defs is used in some of the HALs (ARM, SH) as a way to generate assembler symbol definitions
from C header files without imposing an assembler/C syntax separation in the C header files.

54

Chapter 6. Porting Guide

HAL Platform CDL
The platform CDL both contains details necessary for the building of eCos, and platform-specific configuration
options. For this reason the options differ between platforms, and the below is just a brief description of the
most common options.

See Components Writers Guide for more details on CDL. Also have a quick look around in existing platform
CDL files to get an idea of what is possible and how various configuration issues can be represented with CDL.

eCos Database

The eCos configuration system is made aware of a package by adding a package description inecos.db . As
an example we use theTX39/JMR3904 platform:

package CYGPKG_HAL_MIPS_TX39_JMR3904 {
alias { "Toshiba JMR-TX3904 board" hal_tx39_jmr3904 tx39_jmr3904_hal }
directory hal/mips/jmr3904
script hal_mips_tx39_jmr3904.cdl
hardware
description "

The JMR3904 HAL package should be used when targeting the
actual hardware. The same package can also be used when
running on the full simulator, since this provides an
accurate simulation of the hardware including I/O devices.
To use the simulator in this mode the command
‘target sim --board=jmr3904’ should be used from inside gdb."

}

This contains the title and description presented in the Configuration Tool when the package is selected. It also
specifies where in the tree the package files can be found (directory) and the name of the CDL file which
contains the package details (script).

To be able to build and test a configuration for the new target, there also needs to be atarget entry in the
ecos.db file.

target jmr3904 {
alias { "Toshiba JMR-TX3904 board" jmr tx39 }

packages { CYGPKG_HAL_MIPS
CYGPKG_HAL_MIPS_TX39
CYGPKG_HAL_MIPS_TX39_JMR3904

}
description "

The jmr3904 target provides the packages needed to run
eCos on a Toshiba JMR-TX3904 board. This target can also
be used when running in the full simulator, since the simulator provides an
accurate simulation of the hardware including I/O devices.
To use the simulator in this mode the command
‘target sim --board=jmr3904’ should be used from inside gdb."

}

The important part here is thepackages section which defines the various hardware specific packages that
contribute to support for this target. In this case the MIPS architecture package, the TX39 variant package,
and the JMR-TX3904 platform packages are selected. Other packages, for serial drivers, ethernet drivers and
FLASH memory drivers may also appear here.

55

Chapter 6. Porting Guide

CDL File Layout

All the platform options are contained in a CDL package named
CYGPKG_HAL_<architecture >_<variant >_<platform >. They all share more or less
the samecdl_package details:

cdl_package CYGPKG_HAL_MIPS_TX39_JMR3904 {
display "JMR3904 evaluation board"
parent CYGPKG_HAL_MIPS
requires CYGPKG_HAL_MIPS_TX39
define_header hal_mips_tx39_jmr3904.h
include_dir cyg/hal
description "

The JMR3904 HAL package should be used when targeting the
actual hardware. The same package can also be used when
running on the full simulator, since this provides an
accurate simulation of the hardware including I/O devices.
To use the simulator in this mode the command
‘target sim --board=jmr3904’ should be used from inside gdb."

compile platform.S plf_misc.c plf_stub.c

define_proc {
puts $::cdl_system_header "#define CYGBLD_HAL_TARGET_H <pkgconf/hal_mips_tx39.h >"
puts $::cdl_system_header "#define CYGBLD_HAL_PLATFORM_H <pkgconf/hal_mips_tx39_jmr3904.h >"

}

...
}

This specifies that the platform package should be parented under the MIPS packages, requires the TX39
variant HAL and all configuration settings should be saved incyg/hal/hal_mips_tx39_jmt3904.h .

The compile line specifies which files should be built when this package is enabled, and thedefine_proc

defines some macros that are used to access the variant or architecture (the_TARGET_name is a bit of a
misnomer) and platform configuration options.

Startup Type

eCos uses an option to select between a set of valid startup configurations. These are normally RAM, ROM
and possibly ROMRAM. This setting is used to select which linker map to use (i.e., where to link eCos and
the application in the memory space), and how the startup code should behave.

cdl_component CYG_HAL_STARTUP {
display "Startup type"
flavor data
legal_values {"RAM" "ROM"}
default_value {"RAM"}

no_define
define -file system.h CYG_HAL_STARTUP

description "
When targeting the JMR3904 board it is possible to build
the system for either RAM bootstrap, ROM bootstrap, or STUB
bootstrap. RAM bootstrap generally requires that the board
is equipped with ROMs containing a suitable ROM monitor or
equivalent software that allows GDB to download the eCos
application on to the board. The ROM bootstrap typically
requires that the eCos application be blown into EPROMs or
equivalent technology."

56

Chapter 6. Porting Guide

}

Theno_define anddefine pair is used to make the setting of this option appear in the filesystem.h instead
of the default specified in the header.

Build options

A set of options under the componentsCYGBLD_GLOBAL_OPTIONSandCYGHWR_MEMORY_LAYOUTspecify how
eCos should be built: what tools and compiler options should be used, and which linker fragments should be
used.

cdl_component CYGBLD_GLOBAL_OPTIONS {
display "Global build options"
flavor none
parent CYGPKG_NONE
description "

Global build options including control over
compiler flags, linker flags and choice of toolchain."

cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
display "Global command prefix"
flavor data
no_define
default_value { "mips-tx39-elf" }
description "

This option specifies the command prefix used when
invoking the build tools."

}

cdl_option CYGBLD_GLOBAL_CFLAGS {
display "Global compiler flags"
flavor data
no_define
default_value { "-Wall -Wpointer-arith -Wstrict-prototypes -Winline -Wundef -Woverloaded-virtual -g -O2 -ffunction-sections -fdata-sections -fno-rtti -fno-exceptions -fvtable-gc -finit-priority" }
description "

This option controls the global compiler flags which
are used to compile all packages by
default. Individual packages may define
options which override these global flags."

}

cdl_option CYGBLD_GLOBAL_LDFLAGS {
display "Global linker flags"
flavor data
no_define
default_value { "-g -nostdlib -Wl,--gc-sections -Wl,-static" }
description "

This option controls the global linker flags. Individual
packages may define options which override these global flags."

}
}

cdl_component CYGHWR_MEMORY_LAYOUT {
display "Memory layout"
flavor data
no_define
calculated { CYG_HAL_STARTUP == "RAM" ? "mips_tx39_jmr3904_ram" : \

"mips_tx39_jmr3904_rom" }

57

Chapter 6. Porting Guide

cdl_option CYGHWR_MEMORY_LAYOUT_LDI {
display "Memory layout linker script fragment"
flavor data
no_define
define -file system.h CYGHWR_MEMORY_LAYOUT_LDI
calculated { CYG_HAL_STARTUP == "RAM" ? " <pkgconf/mlt_mips_tx39_jmr3904_ram.ldi >" : \

" <pkgconf/mlt_mips_tx39_jmr3904_rom.ldi >" }
}

cdl_option CYGHWR_MEMORY_LAYOUT_H {
display "Memory layout header file"
flavor data
no_define
define -file system.h CYGHWR_MEMORY_LAYOUT_H
calculated { CYG_HAL_STARTUP == "RAM" ? " <pkgconf/mlt_mips_tx39_jmr3904_ram.h >" : \

" <pkgconf/mlt_mips_tx39_jmr3904_rom.h >" }
}

}

Common Target Options

All platforms also specify real-time clock details:

Real-time clock/counter specifics
cdl_component CYGNUM_HAL_RTC_CONSTANTS {

display "Real-time clock constants."
flavor none

cdl_option CYGNUM_HAL_RTC_NUMERATOR {
display "Real-time clock numerator"
flavor data
calculated 1000000000

}
cdl_option CYGNUM_HAL_RTC_DENOMINATOR {

display "Real-time clock denominator"
flavor data
calculated 100

}
Isn’t a nice way to handle freq requirement!
cdl_option CYGNUM_HAL_RTC_PERIOD {

display "Real-time clock period"
flavor data
legal_values { 15360 20736 }
calculated { CYGHWR_HAL_MIPS_CPU_FREQ == 50 ? 15360 : \

CYGHWR_HAL_MIPS_CPU_FREQ == 66 ? 20736 : 0 }
}

}

The NUMERATORdivided by theDENOMINATORgives the number of nanoseconds per tick. ThePERIOD is the
divider to be programmed into a hardware timer that is driven from an appropriate hardware clock, such that
the timer overflows once per tick (normally generating a CPU interrupt to mark the end of a tick). The tick
default rate is typically 100Hz.

Platforms that make use of the virtual vector ROM calling interface (seethe Section calledVirtual Vectors
(eCos/ROM Monitor Calling Interface)) will also specify details necessary to define configuration channels
(these options are from the SH/EDK7707 HAL) :

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS {

58

Chapter 6. Porting Guide

display "Number of communication channels on the board"
flavor data
calculated 1

}

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL {
display "Debug serial port"
flavor data
legal_values 0 to CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS-1
default_value 0
description "

The EDK/7708 board has only one serial port. This option
chooses which port will be used to connect to a host
running GDB."

}

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL {
display "Diagnostic serial port"
flavor data
legal_values 0 to CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS-1
default_value 0
description "

The EDK/7708 board has only one serial port. This option
chooses which port will be used for diagnostic output."

}

The platform usually also specify an option controlling the ability to co-exist with a ROM monitor:

cdl_option CYGSEM_HAL_USE_ROM_MONITOR {
display "Work with a ROM monitor"
flavor booldata
legal_values { "Generic" "CygMon" "GDB_stubs" }
default_value { CYG_HAL_STARTUP == "RAM" ? "CygMon" : 0 }
parent CYGPKG_HAL_ROM_MONITOR
requires { CYG_HAL_STARTUP == "RAM" }
description "

Support can be enabled for three different varieties of ROM monitor.
This support changes various eCos semantics such as the encoding
of diagnostic output, or the overriding of hardware interrupt
vectors.
Firstly there is \"Generic\" support which prevents the HAL
from overriding the hardware vectors that it does not use, to
instead allow an installed ROM monitor to handle them. This is
the most basic support which is likely to be common to most
implementations of ROM monitor.
\"CygMon\" provides support for the Cygnus ROM Monitor.
And finally, \"GDB_stubs\" provides support when GDB stubs are
included in the ROM monitor or boot ROM."

}

Or the ability to be configured as a ROM monitor:

cdl_option CYGSEM_HAL_ROM_MONITOR {
display "Behave as a ROM monitor"
flavor bool
default_value 0
parent CYGPKG_HAL_ROM_MONITOR
requires { CYG_HAL_STARTUP == "ROM" }
description "

Enable this option if this program is to be used as a ROM monitor,
i.e. applications will be loaded into RAM on the board, and this

59

Chapter 6. Porting Guide

ROM monitor may process exceptions or interrupts generated from the
application. This enables features such as utilizing a separate
interrupt stack when exceptions are generated."

}

The latter option is accompanied by a special build rule that extends the generic ROM monitor build rule in the
common HAL:

cdl_option CYGBLD_BUILD_GDB_STUBS {
display "Build GDB stub ROM image"
default_value 0
requires { CYG_HAL_STARTUP == "ROM" }
requires CYGSEM_HAL_ROM_MONITOR
requires CYGBLD_BUILD_COMMON_GDB_STUBS
requires CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
requires ! CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
requires ! CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT
requires ! CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT
requires ! CYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUM
no_define
description "

This option enables the building of the GDB stubs for the
board. The common HAL controls takes care of most of the
build process, but the final conversion from ELF image to
binary data is handled by the platform CDL, allowing
relocation of the data if necessary."

make -priority 320 {
<PREFIX>/bin/gdb_module.bin : <PREFIX>/bin/gdb_module.img
$(OBJCOPY) -O binary $< $@

}
}

Most platforms support RedBoot, and some options are needed to configure for RedBoot.

cdl_component CYGPKG_REDBOOT_HAL_OPTIONS {
display "Redboot HAL options"
flavor none
no_define
parent CYGPKG_REDBOOT
active_if CYGPKG_REDBOOT
description "

This option lists the target’s requirements for a valid Redboot
configuration."

cdl_option CYGBLD_BUILD_REDBOOT_BIN {
display "Build Redboot ROM binary image"
active_if CYGBLD_BUILD_REDBOOT
default_value 1
no_define
description "This option enables the conversion of the Redboot ELF

image to a binary image suitable for ROM programming."

make -priority 325 {
<PREFIX>/bin/redboot.bin : <PREFIX>/bin/redboot.elf
$(OBJCOPY) --strip-debug $< $(@:.bin=.img)
$(OBJCOPY) -O srec $< $(@:.bin=.srec)
$(OBJCOPY) -O binary $< $@

}
}

60

Chapter 6. Porting Guide

}

The important part here is themake command in theCYGBLD_BUILD_REDBOOT_BINoption which emits makefile
commands to translate the.elf file generated by the link phase into both a binary file and an S-Record file. If
a different format is required by a PROM programmer or ROM monitor, then different output formats would
need to be generated here.

Platform Memory Layout
The platform memory layout is defined using the Memory Configuration Window in the Configuration Tool.

Note: If you do not have access to a Windows machine, you can hand edit the .h and .ldi files to match the
properties of your platform. If you want to contribute your port back to the eCos community, ask someone
on the list to make proper memory map files for you.

Layout Files

The memory configuration details are saved in three files:

.mlt

This is the Configuration Tool save-file. It is only used by the Configuration Tool.

.ldi

This is the linker script fragment. It defines the memory and location of sections by way of macros defined
in the architecture or variant linker script.

.h

This file describes some of the memory region details as C macros, allowing eCos or the application adapt
the memory layout of a specific configuration.

These three files are generated for each startup-type, since the memory details usually differ.

Reserved Regions

Some areas of the memory space are reserved for specific purposes, making room for exception vectors and
various tables. RAM startup configurations also need to reserve some space at the bottom of the memory map
for the ROM monitor.

These reserved areas are named with the prefix "reserved_" which is handled specially by the Configuration
Tool: instead of referring to a linker macro, the start of the area is labeled and a gap left in the memory map.

Platform Serial Device Support
The first step is to set up the CDL definitions. The configuration options that need to be set are the following:

61

Chapter 6. Porting Guide

CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS

The number of channels, usually 0, 1 or 2.

CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL

The channel to use for GDB.

CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD

Initial baud rate for debug channel.

CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL

The channel to use for the console.

CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD

The initial baud rate for the console channel.

CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_DEFAULT

The default console channel.

The code inhal_diag.c need to be converted to support the new serial device. If this the same as a device
already supported, copy that.

The following functions and types need to be rewritten to support a new serial device.

struct channel_data_t;

Structure containing base address, timeout and ISR vector number for each serial device supported. Extra
fields my be added if necessary for the device. For example some devices have write-only control registers,
so keeping a shadow of the last value written here can be useful.

xxxx_ser_channels[];

Array of channel_data_t , initialized with parameters of each channel. The index into this array is the
channel number used in the CDL options above and is used by the virtual vector mechanism to refer to
each channel.

void cyg_hal_plf_serial_init_channel(void *__ch_data)

Initialize the serial device. The parameter is actually a pointer to achannel_data_t and should be cast
back to this type before use. This function should use the CDL definition for the baud rate for the channel
it is initializing.

void cyg_hal_plf_serial_putc(void * __ch_data, char *c)

Send a character to the serial device. This function should poll for the device being ready to send and then
write the character. Since this is intended to be a diagnostic/debug channel, it is often also a good idea to
poll for end of transmission too. This ensures that as much data gets out of the system as possible.

bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch)

This function tests the device and if a character is available, places it in*ch and returnsTRUE. If no
character is available, then the function returnsFALSE immediately.

62

Chapter 6. Porting Guide

int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...)

This is an IOCTL-like function for controlling various aspects of the serial device. The only part in which
you may need to do some work initially is in the__COMMCTL_IRQ_ENABLEand__COMMCTL_IRQ_DISABLE

cases to enable/disable interrupts.

int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector,

CYG_ADDRWORD __data)

This interrupt handler, called from the spurious interrupt vector, is specifically for dealing withCtrl-C

interrupts from GDB. When called this function should do the following:

1. Check for an incoming character. The code here is very similar to that in
cyg_hal_plf_serial_getc_nonblock() .

2. Read the character and callcyg_hal_is_break() .

3. If result is true, set*__ctrlc to 1.

4. ReturnCYG_ISR_HANDLED.

void cyg_hal_plf_serial_init()

Initialize each of the serial channels. First callcyg_hal_plf_serial_init_channel() for each channel.
Then call theCYGACC_COMM_IF_*macros for each channel. This latter set of calls are identical for all
channels, so the best way to do this is to copy and edit an existing example.

Variant HAL Porting
A variant port can be a fairly limited job, but can also require quite a lot of work. A variant HAL describes how
a specific CPU variant differs from the generic CPU architecture. The variant HAL can re-define cache, MMU,
interrupt, and other features which override the default implementation provided by the architecture HAL.

Doing a variant port requires a preexisting architecture HAL port. It is also likely that a platform port will have
to be done at the same time if it is to be tested.

HAL Variant Porting Process
The easiest way to make a new variant HAL is simply to copy an existing variant HAL and change all the files
to match the new variant. If this is the first variant for an architecture, it may be hard to decide which parts
should be put in the variant - knowledge of other variants of the architecture is required.

Looking at existing variant HALs (e.g., MIPS tx39, tx49) may be a help - usually things such as caching,
interrupt and exception handling differ between variants. Initialization code, and code for handling various
core components (FPU, DSP, MMU, etc.) may also differ or be missing altogether on some variants. Linker
scripts may also require specific variant versions.

Note: Some CPU variants may require specific compiler support. That support must be in place before
you can undertake the eCos variant port.

63

Chapter 6. Porting Guide

HAL Variant CDL
The CDL in a variant HAL tends to depend on the exact functionality supported by the variant. If it implements
some of the devices described in the platform HAL, then the CDL for those will be here rather than there (for
example the real-time clock).

There may also be CDL to select options in the architecture HAL to configure it to a particular architectural
variant.

Each variant needs an entry in theecos.db file. This is the one for the SH3:

package CYGPKG_HAL_SH_SH3 {
alias { "SH3 architecture" hal_sh_sh3 }
directory hal/sh/sh3
script hal_sh_sh3.cdl
hardware
description "

The SH3 (SuperH 3) variant HAL package provides generic
support for SH3 variant CPUs."

}

As you can see, it is very similar to the platform entry.

The variant CDL file will contain a package entry named for the architecture and variant, matching the package
name in theecos.db file. Here is the initial part of the MIPS VR4300 CDL file:

cdl_package CYGPKG_HAL_MIPS_VR4300 {
display "VR4300 variant"
parent CYGPKG_HAL_MIPS
implements CYGINT_HAL_MIPS_VARIANT
hardware
include_dir cyg/hal
define_header hal_mips_vr4300.h
description "

The VR4300 variant HAL package provides generic support
for this processor architecture. It is also necessary to
select a specific target platform HAL package."

This defines the package, placing it under the MIPS architecture package in the hierarchy. Theimplements

line indicates that this is a MIPS variant. The architecture package uses this to check that exactly one variant
is configured in.

The variant defines some options that cause the architecture HAL to configure itself to support this variant.

cdl_option CYGHWR_HAL_MIPS_64BIT {
display "Variant 64 bit architecture support"
calculated 1

}

cdl_option CYGHWR_HAL_MIPS_FPU {
display "Variant FPU support"
calculated 1

}

cdl_option CYGHWR_HAL_MIPS_FPU_64BIT {
display "Variant 64 bit FPU support"
calculated 1

}

64

Chapter 6. Porting Guide

These tell the architecture that this is a 64 bit MIPS architecture, that it has a floating point unit, and that we
are going to use it in 64 bit mode rather than 32 bit mode.

The CDL file finishes off with some build options.

define_proc {
puts $::cdl_header "#include <pkgconf/hal_mips.h >"

}

compile var_misc.c

make {
<PREFIX>/lib/target.ld: <PACKAGE>/src/mips_vr4300.ld
$(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) $(CFLAGS) -o $@ $ <

@echo $@ ": \\" > $(notdir $@).deps
@tail +2 target.tmp >> $(notdir $@).deps
@echo >> $(notdir $@).deps
@rm target.tmp

}

cdl_option CYGBLD_LINKER_SCRIPT {
display "Linker script"
flavor data

no_define
calculated { "src/mips_vr4300.ld" }

}

}

The define_proc causes the architecture configuration file to be included into the configuration file for the
variant. Thecompile causes the single source file for this variant,var_misc.c to be compiled. Themake

command emits makefile rules to combine the linker script with the.ldi file to generatetarget.ld . Fi-
nally, in the MIPS HALs, the main linker script is defined in the variant, rather than the architecture, so
CYGBLD_LINKER_SCRIPTis defined here.

Cache Support
The main area where the variant is likely to be involved is in cache support. Often the only thing that distin-
guishes one CPU variant from another is the size of its caches.

In architectures such as the MIPS and PowerPC where cache instructions are part of the ISA, most of the
actual cache operations are implemented in the architecture HAL. In this case the variant HAL only needs to
define the cache dimensions. The following are the cache dimensions defined in the MIPS VR4300 variant
var_cache.h .

// Data cache
#define HAL_DCACHE_SIZE (8*1024) // Size of data cache in bytes
#define HAL_DCACHE_LINE_SIZE 16 // Size of a data cache line
#define HAL_DCACHE_WAYS 1 // Associativity of the cache

// Instruction cache
#define HAL_ICACHE_SIZE (16*1024) // Size of cache in bytes
#define HAL_ICACHE_LINE_SIZE 32 // Size of a cache line
#define HAL_ICACHE_WAYS 1 // Associativity of the cache

#define HAL_DCACHE_SETS (HAL_DCACHE_SIZE/(HAL_DCACHE_LINE_SIZE*HAL_DCACHE_WAYS))
#define HAL_ICACHE_SETS (HAL_ICACHE_SIZE/(HAL_ICACHE_LINE_SIZE*HAL_ICACHE_WAYS))

65

Chapter 6. Porting Guide

Additional cache macros, or overrides for the defaults, may also appear in here. While some architectures have
instructions for managing cache lines, overall enable/disable operations may be handled via variant specific
registers. If so thenvar_cache.h should also define theHAL_XCACHE_ENABLE()andHAL_XCACHE_DISABLE()

macros.

If there are any generic features that the variant does not support (cache locking is a typical example) then
var_cache.h may need to disable definitions of certain operations. It is architecture dependent exactly how
this is done.

Architecture HAL Porting
A new architecture HAL is the most complex HAL to write, and it the least easily described. Hence this section
is presently nothing more than a place holder for the future.

HAL Architecture Porting Process
The easiest way to make a new architecture HAL is simply to copy an existing architecture HAL of an, if
possible, closely matching architecture and change all the files to match the new architecture. The MIPS archi-
tecture HAL should be used if possible, as it has the appropriate layout and coding conventions. Other HALs
may deviate from that norm in various ways.

Note: eCos is written for GCC. It requires C and C++ compiler support as well as a few compiler features
introduced during eCos development - so compilers older than eCos may not provide these features. Note
that there is no C++ support for any 8 or 16 bit CPUs. Before you can undertake an eCos port, you need
the required compiler support.

The following gives a rough outline of the steps needed to create a new architecture HAL. The exact order and
set of steps needed will vary greatly from architecture to architecture, so a lot of flexibility is required. And
of course, if the architecture HAL is to be tested, it is necessary to do variant and platform ports for the initial
target simultaneously.

1. Make a new directory for the new architecture under thehal directory in the source repository. Make an
arch directory under this and populate this with the standard set of package directories.

2. Copy the CDL file from an example HAL changing its name to match the new HAL. Edit the file, changing
option names as appropriate. Delete any options that are specific to the original HAL, and and any new
options that are necessary for the new architecture. This is likely to be a continuing process during the
development of the HAL. Seethe Section calledCDL Requirementsfor more details.

3. Copy thehal_arch.h file from an example HAL. Within this file you need to change or define the fol-
lowing:

• Define the HAL_SavedRegisters structure. This may need to reflect the save order of any group register
save/restore instructions, the interrupt and exception save and restore formats, and the procedure calling
conventions. It may also need to cater for optional FPUs and other functional units. It can be quite
difficult to develop a layout that copes with all requirements.

• Define the bit manipulation routines,HAL_LSBIT_INDEX() andHAL_MSBIT_INDEX() . If the architecture
contains instructions to perform these, or related, operations, then these should be defined as inline
assembler fragments. Otherwise make them calls to functions.

66

Chapter 6. Porting Guide

• DefineHAL_THREAD_INIT_CONTEXT(). This initializes a restorable CPU context onto a stack pointer
so that a later call toHAL_THREAD_LOAD_CONTEXT()or HAL_THREAD_SWITCH_CONTEXT()will execute
it correctly. This macro needs to take account of the same optional features of the architecture as the
definition of HAL_SavedRegisters.

• Define HAL_THREAD_LOAD_CONTEXT()and HAL_THREAD_SWITCH_CONTEXT(). These should just be
calls to functions incontext.S .

• DefineHAL_REORDER_BARRIER(). This prevents code being moved by the compiler and is necessary in
some order-sensitive code. This macro is actually defined identically in all architecture, so it can just be
copied.

• Define breakpoint support. The macroHAL_BREAKPOINT(label) needs to be an inline assembly frag-
ment that invokes a breakpoint. The breakpoint instruction should be labeled with thelabel argument.
HAL_BREAKINSTandHAL_BREAKINST_SIZEdefine the breakpoint instruction for debugging purposes.

• Define GDB support. GDB views the registers of the target as a linear array, with each register having
a well defined offset. This array may differ from the ordering defined in HAL_SavedRegisters. The
macrosHAL_GET_GDB_REGISTERS()andHAL_SET_GDB_REGISTERS()translate between the GDB ar-
ray and the HAL_SavedRegisters structure. TheHAL_THREAD_GET_SAVED_REGISTERS()translates a
stack pointer saved by the context switch macros into a pointer to a HAL_SavedRegisters structure.
Usually this is a one-to-one translation, but this macro allows it to differ if necessary.

• Define long jump support. The type hal_jmp_buf and the functionshal_setjmp() andhal_longjmp()

provide the underlying implementation of the C librarysetjmp() andlongjmp() .

• Define idle thread action. Generally the macroHAL_IDLE_THREAD_ACTION() is defined to call a func-
tion in hal_misc.c .

• Define stack sizes. The macros CYGNUM_HAL_STACK_SIZE_MINIMUM and
CYGNUM_HAL_STACK_SIZE_TYPICALshould be defined to the minimum size for any thread stack and a
reasonable default for most threads respectively. It is usually best to construct these out of component
sizes for the CPU save state and procedure call stack usage. These definitions should not use anything
other than numerical values since they can be used from assembly code in some HALs.

• Define memory access macros. These macros provide translation between cached and uncached and
physical memory spaces. They usually consist of masking out bits of the supplied address and ORing
in alternative address bits.

• Define global pointer save/restore macros. These really only need defining if the calling conventions of
the architecture require a global pointer (as does the MIPS architecture), they may be empty otherwise.
If it is necessary to define these, then take a look at the MIPS implementation for an example.

4. Copyhal_intr.h from an example HAL. Within this file you should change or define the following:

• Define the exception vectors. These should be detailed in the architecture specification. Essentially for
each exception entry point defined by the architecture there should be an entry in the VSR table. The
offsets of these VSR table entries should be defined here byCYGNUM_HAL_VECTOR_*definitions. The
size of the VSR table also needs to be defined here.

• Map any hardware exceptions to standard names. There is a group of exception vector name of the
form CYGNUM_HAL_EXCEPTION_*that define a wide variety of possible exceptions that many archi-
tectures raise. Generic code detects whether the architecture can raise a given exception by testing
whether a givenCYGNUM_HAL_EXCEPTION_*definition is present. If it is present then its value is the
vector that raises that exception. This does not need to be a one-to-one correspondence, and several
CYGNUM_HAL_EXCEPTION_*definitions may have the same value.

67

Chapter 6. Porting Guide

Interrupt vectors are usually defined in the variant or platform HALs. The interrupt number space may
either be continuous with the VSR number space, where they share a vector table (as in the i386) or
may be a separate space where a separate decode stage is used (as in MIPS or PowerPC).

• Declare any static data used by the HAL to handle interrupts and exceptions. This is usually
three vectors for interrupts: hal_interrupt_handlers[] , hal_interrupt_data[] and
hal_interrupt_objects[] , which are sized according to the interrupt vector definitions. In addition
a definition for the VSR table,hal_vsr_table[] should be made. These vectors are normally defined
in eithervectors.S or hal_misc.c .

• Define interrupt enable/disable macros. These are normally inline assembly fragments to execute the
instructions, or manipulate the CPU register, that contains the CPU interrupt enable bit.

• A feature that many HALs support is the ability to execute DSRs on the interrupt stack. This is not
an essential feature, and is better left unimplemented in the initial porting effort. If this is required,
then the macroHAL_INTERRUPT_STACK_CALL_PENDING_DSRS()should be defined to call a function in
vectors.S .

• Define the interrupt and VSR attachment macros. If the same arrays as for other HALs have been used
for VSR and interrupt vectors, then these macro can be copied across unchanged.

5. A number of other header files also need to be filled in:

• basetype.h . This file defines the basic types used by eCos, together with the endianness and some other
characteristics. This file only really needs to contain definitions if the architecture differs significantly
from the defaults defined incyg_type.h

• hal_io.h . This file contains macros for accessing device IO registers. If the architecture uses memory
mapped IO, then these can be copied unchanged from an existing HAL such as MIPS. If the architecture
uses special IO instructions, then these macros must be defined as inline assembler fragments. See the
I386 HAL for an example. PCI bus access macros are usually defined in the variant or platform HALs.

• hal_cache.h . This file contains cache access macros. If the architecture defines cache instructions, or
control registers, then the access macros should be defined here. Otherwise they must be defined in the
variant or platform HAL. Usually the cache dimensions (total size, line size, ways etc.) are defined in
the variant HAL.

• arch.inc and <architecture >.inc . These files are assembler headers used byvectors.S and
context.S . <architecture >.inc is a general purpose header that should contain things like register
aliases, ABI definitions and macros useful to general assembly code. If there are no such definitions,
then this file need not be provided.arch.inc contains macros for performing various eCos related
operations such as initializing the CPU, caches, FPU etc. The definitions here may often be configured
or overridden by definitions in the variant or platform HALs. See the MIPS HAL for an example of
this.

6. Write vectors.S . This is the most important file in the HAL. It contains the CPU initialization code,
exception and interrupt handlers. While other HALs should be consulted for structures and techniques,
there is very little here that can be copied over without major edits.

The main pieces of code that need to be defined here are:

• Reset vector. This usually need to be positioned at the start of the ROM or FLASH, so should be in a
linker section of its own. It can then be placed correctly by the linker script. Normally this code is little
more than a jump to the label_start .

68

Chapter 6. Porting Guide

• Exception vectors. These are the trampoline routines connected to the hardware exception entry points
that vector through the VSR table. In many architectures these are adjacent to the reset vector, and
should occupy the same linker section. If the architecture allow the vectors to be moved then it may be
necessary for these trampolines to be position independent so they can be relocated at runtime.

The trampolines should do the minimum necessary to transfer control from the hardware vector to the
VSR pointed to by the matching table entry. Exactly how this is done depends on the architecture. Usu-
ally the trampoline needs to get some working registers by either saving them to CPU special registers
(e.g. PowerPC SPRs), using reserved general registers (MIPS K0 and K1), using only memory based
operations (IA32), or just jumping directly (ARM). The VSR table index to be used is either implicit in
the entry point taken (PowerPC, IA32, ARM), or must be determined from a CPU register (MIPS).

• Write kernel startup code. This is the location the reset vector jumps to, and can be in the main text
section of the executable, rather than a special section. The code here should first initialize the CPU
and other hardware subsystems. The best approach is to use a set of macro calls that are defined either
in arch.inc or overridden in the variant or platform HALs. Other jobs that this code should do are:
initialize stack pointer; copy the data section from ROM to RAM if necessary; zero the BSS; call
variant and platform initializers; callcyg_hal_invoke_constructors() ; call initialize_stub() if
necessary. Finally it should callcyg_start() . Seethe Section calledHAL Startupin Chapter 5for
details.

• Write the default exception VSR. This VSR is installed in the VSR table for all synchronous exception
vectors. Seethe Section calledDefault Synchronous Exception Handlingin Chapter 5for details of
what this VSR does.

• Write the default interrupt VSR. This is installed in all VSR table entries that correspond to external
interrupts. Seethe Section calledDefault Synchronous Exception Handlingin Chapter 5for details of
what this VSR does.

• Write hal_interrupt_stack_call_pending_dsrs() . If this function is defined inhal_arch.h then
it should appear here. The purpose of this function is to call DSRs on the interrupt stack rather than the
current thread’s stack. This is not an essential feature, and may be left until later. However it interacts
with the stack switching that goes on in the interrupt VSR, so it may make sense to write these pieces
of code at the same time to ensure consistency.

When this function is implemented it should do the following:

• Take a copy of the current SP and then switch to the interrupt stack.

• Save the old SP, together with the CPU status register (or whatever register contains the interrupt
enable status) and any other registers that may be corrupted by a function call (such as any link
register) to locations in the interrupt stack.

• Enable interrupts.

• Call cyg_interrupt_call_pending_DSRs() . This is a kernel functions that actually calls any pend-
ing DSRs.

• Retrieve saved registers from the interrupt stack and switch back to the current thread stack.

• Merge the interrupt enable state recorded in the save CPU status register with the current value of
the status register to restore the previous enable state. If the status register does not contain any other
persistent state then this can be a simple restore of the register. However if the register contains other
state bits that might have been changed by a DSR, then care must be taken not to disturb these.

69

Chapter 6. Porting Guide

• Define any data items needed. Typicallyvectors.S may contain definitions for the VSR table, the inter-
rupt tables and the interrupt stack. Sometimes these are only default definitions that may be overridden
by the variant or platform HALs.

7. Write context.S . This file contains the context switch code. Seethe Section calledThread Context
Switchingin Chapter 4for details of how these functions operate. This file may also contain the im-
plementation ofhal_setjmp() andhal_longjmp() .

8. Write hal_misc.c . This file contains any C data and functions needed by the HAL. These might include:

• hal_interrupt_*[] . In some HALs, if these arrays are not defined invectors.S then they must be
defined here.

• cyg_hal_exception_handler() . This function is called from the exception VSR. It usually does
extra decoding of the exception and invokes any special handlers for things like FPU traps, bus
errors or memory exceptions. If there is nothing special to be done for an exception, then it either
calls into the GDB stubs, by calling__handle_exception() , or invokes the kernel by calling
cyg_hal_deliver_exception() .

• hal_arch_default_isr() . Thehal_interrupt_handlers[] array is usually initialized with pointers
to hal_default_isr() , which is defined in the common HAL. This function handles things like Ctrl-
C processing, but if that is not relevant, then it will callhal_arch_default_isr() . Normally this
function should just return zero.

• cyg_hal_invoke_constructors() . This calls the constructors for all static objects before the program
starts. eCos relies on these being called in the correct order for it to function correctly. The exact way in
which constructors are handled may differ between architectures, although most use a simple table of
function pointers between labels__CTOR_LIST__ and__CTOR_END__which must called in order from
the top down. Generally, this function can be copied directly from an existing architecture HAL.

• Bit indexing functions. If the macrosHAL_LSBIT_INDEX() and HAL_MSBIT_INDEX() are defined as
function calls, then the functions should appear here. The main reason for doing this is that the ar-
chitecture does not have support for bit indexing and these functions must provide the functionality
by conventional means. While the trivial implementation is a simple for loop, it is expensive and non-
deterministic. Better, constant time, implementations can be found in several HALs (MIPS for example).

• hal_delay_us() . If the macroHAL_DELAY_US() is defined inhal_intr.h then it should be defined
to call this function. While most of the time this function is called with very small values, occasionally
(particularly in some ethernet drivers) it is called with values of several seconds. Hence the function
should take care to avoid overflow in any calculations.

• hal_idle_thread_action() . This function is called from the idle thread via the
HAL_IDLE_THREAD_ACTION() macro, if so defined. While normally this function does nothing, during
development this is often a good place to report various important system parameters on LCDs, LED
or other displays. This function can also monitor system state and report any anomalies. If the
architecture supports ahalt instruction then this is a good place to put an inline assembly fragment to
execute it. It is also a good place to handle any power saving activity.

9. Create the<architecture >.ld file. While this file may need to be moved to the variant HAL in the
future, it should initially be defined here, and only moved if necessary.

This file defines a set of macros that are used by the platform.ldi files to generate linker scripts. Most
GCC toolchains are very similar so the correct approach is to copy the file from an existing architecture and
edit it. The main things that will need editing are theOUTPUT_FORMAT()directive and maybe the creation or
allocation of extra sections to various macros. Running the target linker with just the--verbose argument

70

Chapter 6. Porting Guide

will cause it to output its default linker script. This can be compared with the.ld file and appropriate edits
made.

10. If GDB stubs are to be supported in RedBoot or eCos, then support must be included for these. The
most important of these areinclude/ <architecture >-stub.h andsrc/ <architecture >-stub.c . In
all existing architecture HALs these files, and any support files they need, have been derived from files
supplied inlibgloss , as part of the GDB toolchain package. If this is a totally new architecture, this may
not have been done, and they must be created from scratch.

include/ <architecture >-stub.h contains definitions that are used by the GDB stubs to describe
the size, type, number and names of CPU registers. This information is usually found in the
GDB support files for the architecture. It also contains prototypes for the functions exported by
src/ <architecture >-stub.c ; however, since this is common to all architectures, it can be copied
from some other HAL.

src/ <architecture >-stub.c implements the functions exported by the header. Most of this is fairly
straight forward: the implementation in existing HALs should show exactly what needs to be done. The
only complex part is the support for single-stepping. This is used a lot by GDB, so it cannot be avoided.
If the architecture has support for a trace or single-step trap then that can be used for this purpose. If it
does not then this must be simulated by planting a breakpoint in the next instruction. This can be quite
involved since it requires some analysis of the current instruction plus the state of the CPU to determine
where execution is going to go next.

CDL Requirements
The CDL needed for any particular architecture HAL depends to a large extent on the needs of that architecture.
This includes issues such as support for different variants, use of FPUs, MMUs and caches. The exact split
between the architecture, variant and platform HALs for various features is also somewhat fluid.

To give a rough idea about how the CDL for an architecture is structured, we will take as an example the I386
CDL.

This first section introduces the CDL package and placed it under the main HAL package. Include files from
this package will be put in theinclude/cyg/hal directory, and definitions from this file will be placed in
include/pkgconf/hal_i386.h . Thecompile line specifies the files in thesrc directory that are to be com-
piled as part of this package.

cdl_package CYGPKG_HAL_I386 {
display "i386 architecture"
parent CYGPKG_HAL
hardware
include_dir cyg/hal
define_header hal_i386.h
description "

The i386 architecture HAL package provides generic
support for this processor architecture. It is also
necessary to select a specific target platform HAL
package."

compile hal_misc.c context.S i386_stub.c hal_syscall.c

Next we need to generate some files using non-standard make rules. The first isvectors.S , which is not put
into the library, but linked explicitly with all applications. The second is the generation of thetarget.ld file

71

Chapter 6. Porting Guide

from i386.ld and the startup-selected.ldi file. Both of these are essentially boilerplate code that can be
copied and edited.

make {
<PREFIX>/lib/vectors.o : <PACKAGE>/src/vectors.S
$(CC) -Wp,-MD,vectors.tmp $(INCLUDE_PATH) $(CFLAGS) -c -o $@ $ <

@echo $@ ": \\" > $(notdir $@).deps
@tail +2 vectors.tmp >> $(notdir $@).deps
@echo >> $(notdir $@).deps
@rm vectors.tmp

}

make {
<PREFIX>/lib/target.ld: <PACKAGE>/src/i386.ld
$(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) $(CFLAGS) -o $@ $ <

@echo $@ ": \\" > $(notdir $@).deps
@tail +2 target.tmp >> $(notdir $@).deps
@echo >> $(notdir $@).deps
@rm target.tmp

}

The i386 is currently the only architecture that supports SMP. The following CDL simply enabled the HAL
SMP support if required. Generally this will get enabled as a result of arequires statement in the kernel. The
requires statement here turns off lazy FPU switching in the FPU support code, since it is inconsistent with
SMP operation.

cdl_component CYGPKG_HAL_SMP_SUPPORT {
display "SMP support"
default_value 0
requires { CYGHWR_HAL_I386_FPU_SWITCH_LAZY == 0 }

cdl_option CYGPKG_HAL_SMP_CPU_MAX {
display "Max number of CPUs supported"
flavor data
default_value 2

}
}

The i386 HAL has optional FPU support, which is enabled by default. It can be disabled to improve system
performance. There are two FPU support options: either to save and restore the FPU state on every context
switch, or to only switch the FPU state when necessary.

cdl_component CYGHWR_HAL_I386_FPU {
display "Enable I386 FPU support"
default_value 1
description "This component enables support for the

I386 floating point unit."

cdl_option CYGHWR_HAL_I386_FPU_SWITCH_LAZY {
display "Use lazy FPU state switching"
flavor bool
default_value 1

description "
This option enables lazy FPU state switching.

The default behaviour for eCos is to save and
restore FPU state on every thread switch, interrupt

72

Chapter 6. Porting Guide

and exception. While simple and deterministic, this
approach can be expensive if the FPU is not used by
all threads. The alternative, enabled by this option,
is to use hardware features that allow the FPU state
of a thread to be left in the FPU after it has been
descheduled, and to allow the state to be switched to
a new thread only if it actually uses the FPU. Where
only one or two threads use the FPU this can avoid a
lot of unnecessary state switching."

}
}

The i386 HAL also has support for different classes of CPU. In particular, Pentium class CPUs have extra
functional units, and some variants of GDB expect more registers to be reported. These options enable these
features. Generally these are enabled byrequires statements in variant or platform packages, or in.ecm files.

cdl_component CYGHWR_HAL_I386_PENTIUM {
display "Enable Pentium class CPU features"
default_value 0
description "This component enables support for various

features of Pentium class CPUs."

cdl_option CYGHWR_HAL_I386_PENTIUM_SSE {
display "Save/Restore SSE registers on context switch"
flavor bool
default_value 0

description "
This option enables SSE state switching. The default

behaviour for eCos is to ignore the SSE registers.
Enabling this option adds SSE state information to
every thread context."

}

cdl_option CYGHWR_HAL_I386_PENTIUM_GDB_REGS {
display "Support extra Pentium registers in GDB stub"
flavor bool
default_value 0

description "
This option enables support for extra Pentium registers

in the GDB stub. These are registers such as CR0-CR4, and
all MSRs. Not all GDBs support these registers, so the
default behaviour for eCos is to not include them in the

GDB stub support code."
}

}

In the i386 HALs, the linker script is provided by the architecture HAL. In other HALs, for example MIPS, it
is provided in the variant HAL. The following option provides the name of the linker script to other elements
in the configuration system.

cdl_option CYGBLD_LINKER_SCRIPT {
display "Linker script"
flavor data

no_define
calculated { "src/i386.ld" }

}

73

Chapter 6. Porting Guide

Finally, this interface indicates whether the platform supplied an implementation of the
hal_i386_mem_real_region_top() function. If it does then it will contain a line of the form:implements

CYGINT_HAL_I386_MEM_REAL_REGION_TOP. This allows packages such as RedBoot to detect the presence of
this function so that they may call it.

cdl_interface CYGINT_HAL_I386_MEM_REAL_REGION_TOP {
display "Implementations of hal_i386_mem_real_region_top()"

}

}

74

Chapter 7. Future developments
The HAL is not complete, and will evolve and increase over time. Among the intended developments are:

• Common macros for interpreting the contents of a saved machine context. These would allow portable code,
such as debug stubs, to extract such values as the program counter and stack pointer from a state without
having to interpret a HAL_SavedRegisters structure directly.

• Debugging support. Macros to set and clear hardware and software breakpoints. Access to other areas of
machine state may also be supported.

• Static initialization support. The current HAL provides a dynamic interface to things like thread context
initialization and ISR attachment. We also need to be able to define the system entirely statically so that
it is ready to go on restart, without needing to run code. This will require extra macros to define these
initializations. Such support may have a consequential effect on the current HAL specification.

• CPU state control. Many CPUs have both kernel and user states. Although it is not intended to run any code
in user state for the foreseeable future, it is possible that this may happen eventually. If this is the case, then
some minor changes may be needed to the current HAL API to accommodate this. These should mostly be
extensions, but minor changes in semantics may also be required.

• Physical memory management. Many embedded systems have multiple memory areas with varying proper-
ties such as base address, size, speed, bus width, cacheability and persistence. An API is needed to support
the discovery of this information about the machine’s physical memory map.

• Memory management control. Some embedded processors have a memory management unit. In some cases
this must be enabled to allow the cache to be controlled, particularly if different regions of memory must
have different caching properties. For some purposes, in some systems, it will be useful to manipulate the
MMU settings dynamically.

• Power management. Macros to access and control any power management mechanisms available on the
CPU implementation. These would provide a substrate for a more general power management system that
also involved device drivers and other hardware components.

• Generic serial line macros. Most serial line devices operate in the same way, the only real differences being
exactly which bits in which registers perform the standard functions. It should be possible to develop a set of
HAL macros that provide basic serial line services such as baud rate setting, enabling interrupts, polling for
transmit or receive ready, transmitting and receiving data etc. Given these it should be possible to create a
generic serial line device driver that will allow rapid bootstrapping on any new platform. It may be possible
to extend this mechanism to other device types.

75

Chapter 7. Future developments

76

III. The ISO Standard C and Math
Libraries

Chapter 8. C and math library overview
eCosprovides compatibility with the ISO 9899:1990 specification for the standard C library, which is essen-
tially the same as the better-known ANSI C3.159-1989 specification (C-89).

There are three aspects of this compatibility supplied byeCos. First there is aC library which implements the
functions defined by the ISO standard, except for the mathematical functions. This is provided by the eCos C
library packages.

TheneCosprovides a math library, which implements the mathematical functions from the ISO C library.
This distinction between C and math libraries is frequently drawn — most standard C library implementations
provide separate linkable files for the two, and the math library contains all the functions from themath.h

header file.

There is a third element to the ISO C library, which is the environment in which applications run when they
use the standard C library. This environment is set up by the C library startup procedure (the Section calledC
library startup) and it provides (among other things) amain() entry point function, anexit() function that
does the cleanup required by the standard (including handlers registered using theatexit() function), and an
environment that can be read withgetenv() .

The description in this manual focuses on theeCos-specific aspects of the C library (mostly related toeCos’s
configurability) as well as mentioning the omissions from the standard in this release. We do not attempt to
define the semantics of each function, since that information can be found in the ISO, ANSI, POSIX and IEEE
standards, and the many good books that have been written about the standard C library, that cover usage of
these functions in a more general and useful way.

Included non-ISO functions
The following functions from the POSIX specification are included for convenience:

extern char ** environvariable (for setting up the environment for use withgetenv())

_exit()

strtok_r()

rand_r()

asctime_r()

ctime_r()

localtime_r()

gmtime_r()

eCosprovides the following additional implementation-specific functions within the standard C library to
adjust the date and time settings:

void cyg_libc_time_setdst (
cyg_libc_time_dst state

);

This function sets the state of Daylight Savings Time. The values for state are:

CYG_LIBC_TIME_DSTNA unknown
CYG_LIBC_TIME_DSTOFF off
CYG_LIBC_TIME_DSTON on

void cyg_libc_time_setzoneoffsets (

79

Chapter 8. C and math library overview

time_t stdoffset, time_t dstoffset
);

This function sets the offsets from UTC used when Daylight Savings Time is enabled or disabled. The offsets
are in time_t’s, which are seconds in the current inplementation.

Cyg_libc_time_dst cyg_libc_time_getzoneoffsets (
time_t *stdoffset, time_t *dstoffset

);

This function retrieves the current setting for Daylight Savings Time along with the offsets used for both STD
and DST. The offsets are both in time_t’s, which are seconds in the current implementation.

cyg_bool cyg_libc_time_settime (
time_t utctime

);

This function sets the current time for the system The time is specified as a time_t in UTC. It returns non-zero
on error.

Math library compatibility modes
This math library is capable of being operated in several different compatibility modes. These options deal
solely with how errors are handled.

There are 4 compatibility modes: ANSI/POSIX 1003.1; IEEE-754; X/Open Portability Guide issue 3 (XPG3);
and System V Interface Definition Edition 3.

In IEEE mode, thematherr() function (see below) is never called, no warning messages are printed on the
stderr output stream, and errno is never set.

In ANSI/POSIX mode, errno is set correctly, butmatherr() is never called and no warning messages are
printed on the stderr output stream.

In X/Open mode, errno is set correctly,matherr() is called, but no warning messages are printed on the stderr
output stream.

In SVID mode, functions which overflow return a value HUGE (defined inmath.h), which is the maximum
single precision floating point value (as opposed to HUGE_VAL which is meant to stand for infinity). errno
is set correctly andmatherr() is called. Ifmatherr() returns 0, warning messages are printed on the stderr
output stream for some errors.

The mode can be compiled-in as IEEE-only, or any one of the above methods settable at run-time.

Note: This math library assumes that the hardware (or software floating point emulation) supports IEEE-
754 style arithmetic, 32-bit 2’s complement integer arithmetic, doubles are in 64-bit IEEE-754 format.

matherr()
As mentioned above, in X/Open or SVID modes, the user can supply a functionmatherr() of the form:

int matherr (struct exception *e)

where struct exception is defined as:

80

Chapter 8. C and math library overview

struct exception {
int type;
char *name;
double arg1, arg2, retval;

};

type is the exception type and is one of:

DOMAIN

argument domain exception

SING

argument singularity

OVERFLOW

overflow range exception

UNDERFLOW

underflow range exception

TLOSS

total loss of significance

PLOSS

partial loss of significance

name is a string containing the name of the function

arg1 andarg2 are the arguments passed to the function

retval is the default value that will be returned by the function, and can be changed bymatherr()

Note: matherr must have “C” linkage, not “C++” linkage.

If matherr returns zero, or the user doesn’t supply their own matherr, then the followingusuallyhappens in
SVID mode:

Table 8-1. Behavior of math exception handling

Type Behavior

DOMAIN 0.0 returned, errno=EDOM, and a message printed
on stderr

SING HUGE of appropriate sign is returned,
errno=EDOM, and a message is printed on stderr

OVERFLOW HUGE of appropriate sign is returned, and
errno=ERANGE

UNDERFLOW 0.0 is returned and errno=ERANGE

TLOSS 0.0 is returned, errno=ERANGE, and a message is
printed on stderr

PLOSS The current implementation doesn’t return this type

81

Chapter 8. C and math library overview

X/Open mode is similar except that the message is not printed on stderr and HUGE_VAL is used in place of
HUGE

Thread-safety and re-entrancy
With the appropriate configuration options set below, the math library is fully thread-safe if:

• Depending on the compatibility mode, the setting of the errno variable from the C library is thread-safe

• Depending on the compatibility mode, sending error messages to the stderr output stream using the C library
fputs() function is thread-safe

• Depending on the compatibility mode, the user-suppliedmatherr() function and anything it depends on are
thread-safe

In addition, with the exception of thegamma*() and lgamma*() functions, the math library is reentrant (and
thus safe to use from interrupt handlers) if the Math library is always in IEEE mode.

Some implementation details
Here are some details about the implementation which might be interesting, although they do not affect the
ISO-defined semantics of the library.

• It is possible to configureeCosto have the standard C library without the kernel. You might want to do this
to use less memory. But if you disable the kernel, you will be unable to use memory allocation, thread-safety
and certain stdio functions such as input. Other C library functionality is unaffected.

• The opaque type returned byclock() is called clock_t, and is implemented as a 64 bit integer. The value
returned byclock() is only correct if the kernel is configured with real-time clock support, as determined
by the CYGVAR_KERNEL_COUNTERS_CLOCK configuration option inkernel.h .

• The FILE type is not implemented as a structure, but rather as a CYG_ADDRESS.

• The GNU C compiler will place its ownbuilt-in implementations instead of some C library functions. This
can be turned off with the-fno-builtin option. The functions affected by this areabs() , cos() , fabs() ,
labs() , memcmp() , memcpy() , sin() , sqrt() , strcmp() , strcpy() , andstrlen() .

• For faster execution speed you should avoid this option and let the compiler use its built-ins. This can be
turned off by invokingGCCwith the-fno-builtinoption.

• memcpy() and memset() are located in the infrastructure package, not in the C library package. This is
because the compiler calls these functions, and the kernel needs to resolve them even if the C library is not
configured.

• Error codes such as EDOM and ERANGE, as well asstrerror() , are implemented in theerror package.
The error package is separate from the rest of the C and math libraries so that the rest ofeCoscan use these
error handling facilities even if the C library is not configured.

• When free() is invoked, heap memory will normally be coalesced. If the
CYGSEM_KERNEL_MEMORY_COALESCE configuration parameter is not set, memory will not be
coalesced, which might cause programs to fail.

• Signals, as implemented by<signal.h >, are guaranteed to work correctly if raised using theraise()

function from a normal working program context. Using signals from within an ISR or DSR context is not
expected to work. Also, it is not guaranteed that if CYGSEM_LIBC_SIGNALS_HWEXCEPTIONS is set,

82

Chapter 8. C and math library overview

that handling a signal usingsignal() will necessarily catch that form of exception. For example, it may
be expected that a divide-by-zero error would be caught by handlingSIGFPE. However it depends on the
underlying HAL implementation to implement the required hardware exception. And indeed the hardware
itself may not be capable of detecting these exceptions so it may not be possible for the HAL implementer
to do this in any case. Despite this lack of guarantees in this respect, the signals implementation is still ISO
C compliant since ISO C does not offer any such guarantees either.

• The getenv() function is implemented (unless the CYGPKG_LIBC_ENVIRONMENT configuration op-
tion is turned off), but there is no shell orputenv() function to set the environment dynamically. The
environment is set in a global variable environ, declared as:

extern char **environ; // Standard environment definition

The environment can be statically initialized at startup time using the CYG-
DAT_LIBC_DEFAULT_ENVIRONMENT option. If so, remember that the final entry of the array
initializer must be NULL.

Here is a minimaleCosprogram which demonstrates the use of environments (see also the test case in
language/c/libc/current/tests/stdlib/getenv.c):

#include <stdio.h >

#include <stdlib.h > // Main header for stdlib functions

extern char **environ; // Standard environment definition

int
main(int argc, char *argv[])
{

char *str;
char *env[] = { "PATH=/usr/local/bin:/usr/bin",
"HOME=/home/fred",
"TEST=1234=5678",
"home=hatstand",
NULL };

printf("Display the current PATH environment variable\n");

environ = (char **)&env;

str = getenv("PATH");

if (str==NULL) {
printf("The current PATH is unset\n");

} else {
printf("The current PATH is \"%s\"\n", str);

}
return 0;

}

Thread safety
The ISO C library has configuration options that control thread safety, i.e. working behavior if multiple threads
call the same function at the same time.

The following functionality has to be configured correctly, or used carefully in a multi-threaded environment:

83

Chapter 8. C and math library overview

• mblen()

• mbtowc()

• wctomb()

• printf() (and all standard I/O functions except forsprintf() andsscanf()

• strtok()

• rand() andsrand()

• signal() andraise()

• asctime() , ctime() , gmtime() , andlocaltime()

• theerrno variable

• theenviron variable

• date and time settings

In some cases, to makeeCosdevelopment easier, functions are provided (as specified by POSIX 1003.1)
that define re-entrant alternatives, i.e.rand_r() , strtok_r() , asctime_r() , ctime_r() , gmtime_r() , and
localtime_r() . In other cases, configuration options are provided that control either locking of functions
or their shared data, such as with standard I/O streams, or by using per-thread data, such as with theerrno

variable.

In some other cases, like the setting of date and time, no re-entrant or thread-safe alternative or configuration
is provided as it is simply not a worthwhile addition (date and time should rarely need to be set.)

C library startup
The C library includes a function declared as:

void cyg_iso_c_start (void)

This function is used to start an environment in which an ISO C style program can run in the most compatible
way.

What this function does is to create a thread which will invokemain() — normally considered a program’s
entry point. In particular, it can supply arguments tomain() using the CYGDAT_LIBC_ARGUMENTS con-
figuration option, and when returning frommain() , or calling exit() , pending stdio file output is flushed
and any functions registered withatexit() are invoked. This is all compliant with the ISO C standard in this
respect.

This thread starts execution when theeCosscheduler is started. If theeCoskernel package is not available (and
hence there is no scheduler), thencyg_iso_c_start() will invoke themain() function directly, i.e. it will not
return until themain() function returns.

Themain() function should be defined as the following, and if defined in a C++ file, should have “C” linkage:

extern int main (
int argc,
char * argv[])

The thread that is started bycyg_iso_c_start() can be manipulated directly, if you wish. For example you
can suspend it. The kernel C API needs a handle to do this, which is available by including the following in
your source code.

extern cyg_handle_t cyg_libc_main_thread;

84

Chapter 8. C and math library overview

Then for example, you can suspend the thread with the line:

cyg_thread_suspend(cyg_libc_main_thread);

If you call cyg_iso_c_start() and do not provide your ownmain() function, the system will provide a
main() for you which will simply return immediately.

In the default configuration,cyg_iso_c_start() is invoked automatically by thecyg_package_start()

function in the infrastructure configuration. This means that in the simplest case, your program can indeed
consist of simply:

int main(int argc, char *argv[])
{

printf("Hello eCos\n");
}

If you overridecyg_package_start() or cyg_start() , or disable the infrastructure configuration option
CYGSEM_START_ISO_C_COMPATIBILITY then you must ensure that you callcyg_iso_c_start() your-
self if you want to be able to have your program start at the entry point ofmain() automatically.

85

Chapter 8. C and math library overview

86

IV. I/O Package (Device Drivers)

Chapter 9. Introduction
The I/O package is designed as a general purpose framework for supporting device drivers. This includes all
classes of drivers from simple serial to networking stacks and beyond.

Components of the I/O package, such as device drivers, are configured into the system just like all other
components. Additionally, end users may add their own drivers to this set.

While the set of drivers (and the devices they represent) may be considered static, they must be accessed via
an opaque “handle”. Each device in the system has a unique name and thecyg_io_lookup() function is
used to map that name onto the handle for the device. This “hiding” of the device implementation allows for
generic, named devices, as well as more flexibility. Also, thecyg_io_lookup() function provides drivers the
opportunity to initialize the device when usage actually starts.

All devices have a name. The standard provided devices use names such as“/dev/console” and
“/dev/serial0” , where the“/dev/” prefix indicates that this is the name of a device.

The entire I/O package API, as well as the standard set of provided drivers, is written in C.

Basic functions are provided to send data to and receive data from a device. The details of how this is done is
left to the device [class] itself. For example, writing data to a block device like a disk drive may have different
semantics than writing to a serial port.

Additional functions are provided to manipulate the state of the driver and/or the actual device. These functions
are, by design, quite specific to the actual driver.

This driver model supports layering; in other words, a device may actually be created “on top of” another
device. For example, the “tty” (terminal-like) devices are built on top of simple serial devices. The upper layer
then has the flexibility to add features and functions not found at the lower layers. In this case the “tty” device
provides for line buffering and editing not available from the simple serial drivers.

Some drivers will support visibility of the layers they depend upon. The “tty” driver allows information about
the actual serial device to be manipulated by passing get/set config calls that use a serial driver “key” down to
the serial driver itself.

89

Chapter 9. Introduction

90

Chapter 10. User API
All functions, exceptcyg_io_lookup() require an I/O “handle”.

All functions return a value of the type Cyg_ErrNo. If an error condition is detected, this value will be negative
and the absolute value indicates the actual error, as specified incyg/error/codes.h . The only other legal
return value will beENOERR. All other function arguments are pointers (references). This allows the drivers to
pass information efficiently, both into and out of the driver. The most striking example of this is the “length”
value passed to the read and write functions. This parameter contains the desired length of data on input to the
function and the actual transferred length on return.

// Lookup a device and return its handle
Cyg_ErrNo cyg_io_lookup (

const char *name ,
cyg_io_handle_t *handle)

This function maps a device name onto an appropriate handle. If the named device is not in the system, then
the error-ENOENTis returned. If the device is found, then the handle for the device is returned by way of the
handle pointer*handle .

// Write data to a device
Cyg_ErrNo cyg_io_write (

cyg_io_handle_t handle ,
const void *buf ,
cyg_uint32 *len)

This function sends data to a device. The size of data to send is contained in*len and the actual size sent will
be returned in the same place.

// Read data from a device
Cyg_ErrNo cyg_io_read (

cyg_io_handle_t handle ,
void *buf ,
cyg_uint32 *len)

This function receives data from a device. The desired size of data to receive is contained in*len and the
actual size obtained will be returned in the same place.

// Get the configuration of a device
Cyg_ErrNo cyg_io_get_config (

cyg_io_handle_t handle ,
cyg_uint32 key ,
void * buf ,
cyg_uint32 * len)

This function is used to obtain run-time configuration about a device. The type of information retrieved is
specified by thekey . The data will be returned in the given buffer. The value of*len should contain the
amount of data requested, which must be at least as large as the size appropriate to the selected key. The actual
size of data retrieved is placed in*len . The appropriate key values differ for each driver and are all listed in
the file<cyg/io/config_keys.h >.

// Change the configuration of a device
Cyg_ErrNo cyg_io_set_config (

cyg_io_handle_t handle ,
cyg_uint32 key ,

91

Chapter 10. User API

const void *buf ,
cyg_uint32 *len)

This function is used to manipulate or change the run-time configuration of a device. The type of information
is specified by thekey . The data will be obtained from the given buffer. The value of*len should contain
the amount of data provided, which must match the size appropriate to the selected key. The appropriate key
values differ for each driver and are all listed in the file<cyg/io/config_keys.h >.

92

Chapter 11. Serial driver details
Two different classes of serial drivers are provided as a standard part of the eCos system. These are described
as “raw serial” (serial) and “tty-like” (tty).

Raw Serial Driver
Use the include file<cyg/io/serialio.h > for this driver.

The raw serial driver is capable of sending and receiving blocks of raw data to a serial device. Controls are
provided to configure the actual hardware, but there is no manipulation of the data by this driver.

There may be many instances of this driver in a given system, one for each serial channel. Each channel
corresponds to a physical device and there will typically be a device module created for this purpose. The
device modules themselves are configurable, allowing specification of the actual hardware details, as well as
such details as whether the channel should be buffered by the serial driver, etc.

Runtime Configuration
Runtime configuration is achieved by exchanging data structures with the driver via the
cyg_io_set_config() andcyg_io_get_config() functions.

typedef struct {
cyg_serial_baud_rate_t baud;
cyg_serial_stop_bits_t stop;
cyg_serial_parity_t parity;
cyg_serial_word_length_t word_length;
cyg_uint32 flags;

} cyg_serial_info_t;

The field word_length contains the number of data bits per word (character). This must be one of the
values:

CYGNUM_SERIAL_WORD_LENGTH_5
CYGNUM_SERIAL_WORD_LENGTH_6
CYGNUM_SERIAL_WORD_LENGTH_7
CYGNUM_SERIAL_WORD_LENGTH_8

The fieldbaud contains a baud rate selection. This must be one of the values:

CYGNUM_SERIAL_BAUD_50
CYGNUM_SERIAL_BAUD_75
CYGNUM_SERIAL_BAUD_110
CYGNUM_SERIAL_BAUD_134_5
CYGNUM_SERIAL_BAUD_150
CYGNUM_SERIAL_BAUD_200
CYGNUM_SERIAL_BAUD_300
CYGNUM_SERIAL_BAUD_600
CYGNUM_SERIAL_BAUD_1200
CYGNUM_SERIAL_BAUD_1800
CYGNUM_SERIAL_BAUD_2400
CYGNUM_SERIAL_BAUD_3600

93

Chapter 11. Serial driver details

CYGNUM_SERIAL_BAUD_4800
CYGNUM_SERIAL_BAUD_7200
CYGNUM_SERIAL_BAUD_9600
CYGNUM_SERIAL_BAUD_14400
CYGNUM_SERIAL_BAUD_19200
CYGNUM_SERIAL_BAUD_38400
CYGNUM_SERIAL_BAUD_57600
CYGNUM_SERIAL_BAUD_115200
CYGNUM_SERIAL_BAUD_234000

The fieldstop contains the number of stop bits. This must be one of the values:

CYGNUM_SERIAL_STOP_1
CYGNUM_SERIAL_STOP_1_5
CYGNUM_SERIAL_STOP_2

Note: On most hardware, a selection of 1.5 stop bits is only valid if the word (character) length is 5.

The fieldparity contains the parity mode. This must be one of the values:

CYGNUM_SERIAL_PARITY_NONE
CYGNUM_SERIAL_PARITY_EVEN
CYGNUM_SERIAL_PARITY_ODD
CYGNUM_SERIAL_PARITY_MARK
CYGNUM_SERIAL_PARITY_SPACE

The fieldflags is a bitmask which controls the behavior of the serial device driver. It should be built from
the valuesCYG_SERIAL_FLAGS_xxxdefined below:

#define CYG_SERIAL_FLAGS_RTSCTS 0x0001

If this bit is set then the port is placed in “hardware handshake” mode. In this mode, the CTS and RTS pins
control when data is allowed to be sent/received at the port. This bit is ignored if the hardware does not support
this level of handshake.

typedef struct {
cyg_int32 rx_bufsize;
cyg_int32 rx_count;
cyg_int32 tx_bufsize;
cyg_int32 tx_count;

} cyg_serial_buf_info_t;

The fieldrx_bufsize contains the total size of the incoming data buffer. This is set to zero on devices that
do not support buffering (i.e. polled devices).

The fieldrx_count contains the number of bytes currently occupied in the incoming data buffer. This is set
to zero on devices that do not support buffering (i.e. polled devices).

The fieldtx_bufsize contains the total size of the transmit data buffer. This is set to zero on devices that
do not support buffering (i.e. polled devices).

The fieldtx_count contains the number of bytes currently occupied in the transmit data buffer. This is set
to zero on devices that do not support buffering (i.e. polled devices).

94

Chapter 11. Serial driver details

API Details

cyg_io_write

cyg_io_write(handle, buf, len)

Send the data frombuf to the device. The driver maintains a buffer to hold the data. The size of the intermedi-
ate buffer is configurable within the interface module. The data is not modified at all while it is being buffered.
On return,*len contains the amount of characters actually consumed .

It is possible to configure the write call to be blocking (default) or non-blocking. Non-blocking mode requires
both the configuration optionCYGOPT_IO_SERIAL_SUPPORT_NONBLOCKINGto be enabled, and the specific de-
vice to be set to non-blocking mode for writes (seecyg_io_set_config()).

In blocking mode, the call will not return until there is space in the buffer and the entire contents ofbuf have
been consumed.

In non-blocking mode, as much as possible gets consumed frombuf . If everything was consumed, the call
returnsENOERR. If only part of thebuf contents was consumed,-EAGAIN is returned and the caller must try
again. On return,*len contains the number of characters actually consumed .

The call can also return-EINTR if interrupted via thecyg_io_get_config() /ABORTkey.

cyg_io_read

cyg_io_read(handle, buf, len)

Receive data into the buffer,buf , from the device. No manipulation of the data is performed before being
transferred. An interrupt driven interface module will support data arriving when no read is pending by buffer-
ing the data in the serial driver. Again, this buffering is completely configurable. On return,*len contains the
number of characters actually received.

It is possible to configure the read call to be blocking (default) or non-blocking. Non-blocking mode requires
both the configuration optionCYGOPT_IO_SERIAL_SUPPORT_NONBLOCKINGto be enabled, and the specific de-
vice to be set to non-blocking mode for reads (seecyg_io_set_config()).

In blocking mode, the call will not return until the requested amount of data has been read.

In non-blocking mode, data waiting in the device buffer is copied tobuf , and the call returns immediately. If
there was enough data in the buffer to fulfill the request,ENOERRis returned. If only part of the request could be
fulfilled, -EAGAIN is returned and the caller must try again. On return,*len contains the number of characters
actually received.

The call can also return-EINTR if interrupted via thecyg_io_get_config() /ABORTkey.

cyg_io_get_config

cyg_io_get_config(handle, key, buf, len)

This function returns current [runtime] information about the device and/or driver.

95

Chapter 11. Serial driver details

CYG_IO_GET_CONFIG_SERIAL_INFO

Buf type:

cyg_serial_info_t

Function:

This function retrieves the current state of the driver and hardware. This information contains fields
for hardware baud rate, number of stop bits, and parity mode. It also includes a set of flags that
control the port, such as hardware flow control.

CYG_IO_GET_CONFIG_SERIAL_BUFFER_INFO

Buf type:

cyg_serial_buf_info_t

Function:

This function retrieves the current state of the software buffers in the serial drivers. For both receive
and transmit buffers it returns the total buffer size and the current number of bytes occupied in the
buffer. It does not take into account any buffering such as FIFOs or holding registers that the serial
device itself may have.

CYG_IO_GET_CONFIG_SERIAL_OUTPUT_DRAIN

Buf type:

void *

Function:

This function waits for any buffered output to complete. This function only completes when there is
no more data remaining to be sent to the device.

CYG_IO_GET_CONFIG_SERIAL_OUTPUT_FLUSH

Buf type:

void *

Function:

This function discards any buffered output for the device.

96

Chapter 11. Serial driver details

CYG_IO_GET_CONFIG_SERIAL_INPUT_DRAIN

Buf type:

void *

Function:

This function discards any buffered input for the device.

CYG_IO_GET_CONFIG_SERIAL_ABORT

Buf type:

void*

Function:

This function will cause any pending read or write calls on this device to return with-EABORT.

CYG_IO_GET_CONFIG_SERIAL_READ_BLOCKING

Buf type:

cyg_uint32 (values 0 or 1)

Function:

This function will read back the blocking-mode setting for read calls on this device. This call is only
available if the configuration optionCYGOPT_IO_SERIAL_SUPPORT_NONBLOCKINGis enabled.

CYG_IO_GET_CONFIG_SERIAL_WRITE_BLOCKING

Buf type:

cyg_uint32 (values 0 or 1)

Function:

This function will read back the blocking-mode setting for write calls on this device. This call is only
available if the configuration optionCYGOPT_IO_SERIAL_SUPPORT_NONBLOCKINGis enabled.

97

Chapter 11. Serial driver details

cyg_io_set_config

cyg_io_set_config(handle, key, buf,len)

This function is used to update or change runtime configuration of a port.

CYG_IO_SET_CONFIG_SERIAL_INFO

Buf type:

cyg_serial_info_t

Function:

This function updates the information for the driver and hardware. The information contains fields
for hardware baud rate, number of stop bits, and parity mode. It also includes a set of flags that
control the port, such as hardware flow control.

CYG_IO_SET_CONFIG_SERIAL_READ_BLOCKING

Buf type:

cyg_uint32 (values 0 or 1)

Function:

This function will set the blocking-mode for read calls on this device. This call is only available if
the configuration optionCYGOPT_IO_SERIAL_SUPPORT_NONBLOCKINGis enabled.

CYG_IO_SET_CONFIG_SERIAL_WRITE_BLOCKING

Buf type:

cyg_uint32 (values 0 or 1)

Function:

This function will set the blocking-mode for write calls on this device. This call is only available if
the configuration optionCYGOPT_IO_SERIAL_SUPPORT_NONBLOCKINGis enabled.

TTY driver
Use the include file<cyg/io/ttyio.h > for this driver.

98

Chapter 11. Serial driver details

This driver is built on top of the simple serial driver and is typically used for a device that interfaces with
humans such as a terminal. It provides some minimal formatting of data on output and allows for line-oriented
editing on input.

Runtime configuration
Runtime configuration is achieved by exchanging data structures with the driver via the
cyg_io_set_config() andcyg_io_get_config() functions.

typedef struct {
cyg_uint32 tty_out_flags;
cyg_uint32 tty_in_flags;

} cyg_tty_info_t;

The fieldtty_out_flags is used to control what happens to data as it is send to the serial port. It contains
a bitmap comprised of the bits as defined by theCYG_TTY_OUT_FLAGS_xxxvalues below.

#define CYG_TTY_OUT_FLAGS_CRLF 0x0001 // Map ’\n’ = > ’\r\n’ on output

If this bit is set intty_out_flags , any occurrence of the character "\n" will be replaced by the sequence
"\r\n" before being sent to the device.

The fieldtty_in_flags is used to control how data is handled as it comes from the serial port. It contains
a bitmap comprised of the bits as defined by theCYG_TTY_IN_FLAGS_xxx values below.

#define CYG_TTY_IN_FLAGS_CR 0x0001 // Map ’\r’ = > ’\n’ on input

If this bit is set intty_in_flags , the character "\r" (“return” or “enter” on most keyboards) will be mapped
to "\n".

#define CYG_TTY_IN_FLAGS_CRLF 0x0002 // Map ’\r\n’ = > ’\n’ on input

If this bit is set intty_in_flags , the character sequence "\r\n" (often sent by DOS/Windows based termi-
nals) will be mapped to "\n".

#define CYG_TTY_IN_FLAGS_ECHO 0x0004 // Echo characters as processed

If this bit is set intty_in_flags , characters will be echoed back to the serial port as they are processed.

#define CYG_TTY_IN_FLAGS_BINARY 0x0008 // No input processing

If this bit is set intty_in_flags , the input will not be manipulated in any way before being placed in the
user’s buffer.

API details
cyg_io_read(handle, buf, len)

This function is used to read data from the device. In the default case, data is read until an end-of-line character
("\n" or "\r") is read. Additionally, the characters are echoed back to the [terminal] device. Minimal editing of
the input is also supported.

Note: When connecting to a remote target via GDB it is not possible to provide console input while GDB
is connected. The GDB remote protocol does not support input. Users must disconnect from GDB if this
functionality is required.

99

Chapter 11. Serial driver details

cyg_io_write(handle, buf, len)

This function is used to send data to the device. In the default case, the end-of-line character "\n" is replaced
by the sequence "\r\n".

cyg_io_get_config(handle, key, buf, len)

This function is used to get information about the channel’s configuration at runtime.

CYG_IO_GET_CONFIG_TTY_INFO

Buf type:

cyg_tty_info_t

Function:

This function retrieves the current state of the driver.

Serial driver keys (see above) may also be specified in which case the call is passed directly to the serial driver.

cyg_io_set_config(handle, key, buf, len)

This function is used to modify the channel’s configuration at runtime.

CYG_IO_SET_CONFIG_TTY_INFO

Buf type:

cyg_tty_info_t

Function:

This function changes the current state of the driver.

Serial driver keys (see above) may also be specified in which case the call is passed directly to the serial driver.

100

Chapter 12. How to Write a Driver
A device driver is nothing more than a named entity that supports the basic I/O functions - read, write, get
config, and set config. Typically a device driver also uses and manages interrupts from the device. While the
interface is generic and device driver independent, the actual driver implementation is completely up to the
device driver designer.

That said, the reason for using a device driver is to provide access to a device from application code in as
general purpose a fashion as reasonable. Most driver writers are also concerned with making this access as
simple as possible while being as efficient as possible.

Most device drivers are concerned with the movement of information, for example data bytes along a serial
interface, or packets in a network. In order to make the most efficient use of system resources, interrupts are
used. This will allow other application processing to take place while the data transfers are under way, with
interrupts used to indicate when various events have occurred. For example, a serial port typically generates an
interrupt after a character has been sent “down the wire” and the interface is ready for another. It makes sense
to allow further application processing while the data is being sent since this can take quite a long time. The
interrupt can be used to allow the driver to send a character as soon as the current one is complete, without any
active participation by the application code.

The main building blocks for device drivers are found in the include file:<cyg/io/devtab.h >

All device drivers ineCosare described by a device table entry, using the cyg_devtab_entry_t type. The entry
should be created using theDEVTAB_ENTRY()macro, like this:

DEVTAB_ENTRY(l, name, dep_name, handlers, init, lookup, priv)

Arguments

l

The "C" label for this device table entry.

name

The "C" string name for the device.

dep_name

For a layered device, the "C" string name of the device this device is built upon.

handlers

A pointer to the I/O function "handlers" (see below).

init

A function called when eCos is initialized. This function can query the device, setup hardware, etc.

lookup

A function called whencyg_io_lookup() is called for this device.

priv

A placeholder for any device specific data required by the driver.

101

Chapter 12. How to Write a Driver

The interface to the driver is through thehandlers field. This is a pointer to a set of functions which imple-
ment the variouscyg_io_XXX() routines. This table is defined by the macro:

DEVIO_TABLE(l, write, read, get_config, set_config)

Arguments

l

The "C" label for this table of handlers.

write

The function called as a result ofcyg_io_write() .

read

The function called as a result ofcyg_io_read() .

get_config

The function called as a result ofcyg_io_get_config() .

set_config

The function called as a result ofcyg_io_set_config() .

WheneCosis initialized (sometimes called “boot” time), theinit() function is called for all devices in the
system. Theinit() function is allowed to return an error in which case the device will be placed “off line”
and all I/O requests to that device will be considered in error.

Thelookup() function is called whenever thecyg_io_lookup() function is called with this device name. The
lookup function may cause the device to come “on line” which would then allow I/O operations to proceed.
Future versions of the I/O system will allow for other states, including power saving modes, etc.

How to Write a Serial Hardware Interface Driver
The standard serial driver supplied witheCosis structured as a hardware independent portion and a hardware
dependent interface module. To add support for a new serial port, the user should be able to use the existing
hardware independent portion and just add their own interface driver which handles the details of the actual
device. The user should have no need to change the hardware independent portion.

The interfaces used by the serial driver and serial implementation modules are contained in the file
<cyg/io/serial.h >

Note: In the sections below we use the notation <<xx>> to mean a module specific value, referred to as
“xx” below.

DevTab Entry
The interface module contains the devtab entry (or entries if a single module supports more than one interface).
This entry should have the form:

DEVTAB_ENTRY(<<module_name >>,
<<device_name >>,

102

Chapter 12. How to Write a Driver

0,
&serial_devio,
<<module_init >>,
<<module_lookup >>,
&<<serial_channel >>

);

Arguments

module_name

The "C" label for this devtab entry

device_name

The "C" string for the device. E.g./dev/serial0 .

serial_devio

The table of I/O functions. This set is defined in the hardware independent serial driver and should be
used.

module_init

The module initialization function.

module_lookup

The device lookup function. This function typically sets up the device for actual use, turning on interrupts,
configuring the port, etc.

serial_channel

This table (defined below) contains the interface between the interface module and the serial driver proper.

Serial Channel Structure
Each serial device must have a “serial channel”. This is a set of data which describes all operations on the
device. It also contains buffers, etc., if the device is to be buffered. The serial channel is created by the macro:

SERIAL_CHANNEL_USING_INTERRUPTS(l, funs, dev_priv, baud,stop, parity, word_length,
flags, out_buf, out_buflen, in_buf, in_buflen)

Arguments

l

The "C" label for this structure.

funs

The set of interface functions (see below).

dev_priv

A placeholder for any device specific data for this channel.

103

Chapter 12. How to Write a Driver

baud

The initial baud rate value (cyg_serial_baud_t).

stop

The initial stop bits value (cyg_serial_stop_bits_t).

parity

The initial parity mode value (cyg_serial_parity_t).

word_length

The initial word length value (cyg_serial_word_length_t).

flags

The initial driver flags value.

out_buf

Pointer to the output buffer.NULL if none required.

out_buflen

The length of the output buffer.

in_buf

pointer to the input buffer.NULL if none required.

in_buflen

The length of the input buffer.

If either buffer length is zero, no buffering will take place in that direction and only polled mode functions will
be used.

The interface from the hardware independent driver into the hardware interface module is contained in the
funs table. This is defined by the macro:

Serial Functions Structure
SERIAL_FUNS(l, putc, getc, set_config, start_xmit, stop_xmit)

Arguments

l

The "C" label for this structure.

putc

bool (*putc)(serial_channel *priv, unsigned char c)

This function sends one character to the interface. It should returntrue if the character is actually con-
sumed. It should returnfalse if there is no space in the interface

104

Chapter 12. How to Write a Driver

getc

unsigned char (*getc)(serial_channel *priv)

This function fetches one character from the interface. It will be only called in a non-interrupt driven
mode, thus it should wait for a character by polling the device until ready.

set_config

bool (*set_config)(serial_channel *priv,cyg_serial_info_t *config)

This function is used to configure the port. It should returntrue if the hardware is updated to match the
desired configuration. It should returnfalse if the port cannot support some parameter specified by the
given configuration. E.g. selecting 1.5 stop bits and 8 data bits is invalid for most serial devices and should
not be allowed.

start_xmit

void (*start_xmit)(serial_channel *priv)

In interrupt mode, turn on the transmitter and allow for transmit interrupts.

stop_xmit

void (*stop_xmit)(serial_channel *priv)

In interrupt mode, turn off the transmitter.

Callbacks
The device interface module can execute functions in the hardware independent driver viachan- >callbacks .
These functions are available:

void (*serial_init)(serial_channel *chan)

This function is used to initialize the serial channel. It is only required if the channel is being used in interrupt
mode.

void (*xmt_char)(serial_channel *chan)

This function would be called from an interrupt handler after a transmit interrupt indicating that additional
characters may be sent. The upper driver will call theputc function as appropriate to send more data to the
device.

void (*rcv_char)(serial_channel *chan, unsigned char c)

This function is used to tell the driver that a character has arrived at the interface. This function is typically
called from the interrupt handler.

Furthermore, if the device has a FIFO it should require the hardware independent driver to provide block trans-
fer functionality (driver CDL should include "implements CYGINT_IO_SERIAL_BLOCK_TRANSFER"). In
that case, the following functions are available as well:

bool (*data_xmt_req)(serial_channel *chan,

105

Chapter 12. How to Write a Driver

int space,
int* chars_avail,
unsigned char** chars)

void (*data_xmt_done)(serial_channel *chan)

Instead of callingxmt_char() to get a single character for transmission at a time, the driver should call
data_xmt_req() in a loop, requesting character blocks for transfer. Call with aspace argument of how
much space there is available in the FIFO.

If the call returnstrue , the driver can readchars_avail characters fromchars and copy them into the
FIFO.

If the call returnsfalse , there are no more buffered characters and the driver should continue without filling
up the FIFO.

When all data has been unloaded, the driver must calldata_xmt_done() .

bool (*data_rcv_req)(serial_channel *chan,
int avail,
int* space_avail,
unsigned char** space)

void (*data_rcv_done)(serial_channel *chan)

Instead of callingrcv_char() with a single character at a time, the driver should calldata_rcv_req() in a
loop, requesting space to unload the FIFO to.avail is the number of characters the driver wishes to unload.

If the call returnstrue , the driver can copyspace_avail characters tospace .

If the call returnsfalse , the input buffer is full. It is up to the driver to decide what to do in that case (callback
functions for registering overflow are being planned for later versions of the serial driver).

When all data has been unloaded, the driver must calldata_rcv_done() .

Serial testing with ser_filter

Rationale
Since some targets only have one serial connection, a serial testing harness needs to be able to share the
connection with GDB (however, the test and GDB can also run on separate lines).

Theserial filter (ser_filter) sits between the serial port and GDB and monitors the exchange of data between
GDB and the target. Normally, no changes are made to the data.

When a test request packet is sent from the test on the target, it is intercepted by the filter.

The filter and target then enter a loop, exchanging protocol data between them which GDB never sees.

In the event of a timeout, or a crash on the target, the filter falls back into its pass-through mode. If this happens
due to a crash it should be possible to start regular debugging with GDB. The filter will stay in the pass-though
mode until GDB disconnects.

The Protocol
The protocol commands are prefixed with an"@" character which the serial filter is looking for. The protocol
commands include:

106

Chapter 12. How to Write a Driver

PING

Allows the test on the target to probe for the filter. The filter responds withOK, while GDB would just
ignore the command. This allows the tests to do nothing if they require the filter and it is not present.

CONFIG

Requests a change of serial line configuration. Arguments to the command specify baud rate, data bits,
stop bits, and parity. [This command is not fully implemented yet - there is no attempt made to recover if
the new configuration turns out to cause loss of data.]

BINARY

Requests data to be sent from the filter to the target. The data is checksummed, allowing errors in the
transfer to be detected. Sub-options of this command control how the data transfer is made:

NO_ECHO

(serial driver receive test) Just send data from the filter to the target. The test verifies the checksum
and PASS/FAIL depending on the result.

EOP_ECHO

(serial driver half-duplex receive and send test) AsNO_ECHObut the test echoes back the data to the
filter. The filter does a checksum on the received data and sends the result to the target. The test
PASS/FAIL depending on the result of both checksum verifications.

DUPLEX_ECHO

(serial driver duplex receive and send test) Smaller packets of data are sent back and forth in a
pattern that ensures that the serial driver will be both sending and receiving at the same time. Again,
checksums are computed and verified resulting in PASS/FAIL.

TEXT

This is a test of the text translations in the TTY layer. Requests a transfer of text data from the target to
the filter and possibly back again. The filter treats this as a binary transfer, while the target ma be doing
translations on the data. The target provides the filter with checksums for what it should expect to see.
This test is not implemented yet.

The above commands may be extended, and new commands added, as required to test (new) parts of the serial
drivers in eCos.

The Serial Tests
The serial tests are built as any other eCos test. After running themake testscommand, the tests can be found
in install/tests/io_serial/

serial1

A simple API test.

serial2

A simple serial send test. It writes out two strings, one raw and one encoded as a GDB O-packet

107

Chapter 12. How to Write a Driver

serial3 [requires the serial filter]

This tests the half-duplex send and receive capabilities of the serial driver.

serial4 [requires the serial filter]

This test attempts to use a few different serial configurations, testing the driver’s configuration/setup
functionality.

serial5 [requires the serial filter]

This tests the duplex send and receive capabilities of the serial driver.

All tests should complete in less than 30 seconds.

Serial Filter Usage
Running the ser_filter program with no (or wrong) arguments results in the following output:

Usage: ser_filter [-t -S] TcpIPport SerialPort BaudRate
or: ser_filter -n [-t -S] SerialPort BaudRate
-t: Enable tracing.
-S: Output data read from serial line.
-c: Output data on console instead of via GDB.
-n: No GDB.

The normal way to use it with GDB is to start the filter:

$ ser_filter -t 9000 com1 38400

In this case, the filter will be listening on port 9000 and connect to the target via the serial portCOM1at 38400
baud. On a UNIX host, replace "COM1" with a device such as "/dev/ttyS0 ".

The-t option enables tracing which will cause the filter to describe its actions on the console.

Now start GDB with one of the tests as an argument:

$ mips-tx39-elf-gdb -nw install/tests/io_serial/serial3

Then connect to the filter:

(gdb) target remote localhost:9000

This should result in a connection in exactly the same way as if you had connected directly to the target on the
serial line.

(gdb) c

Which should result in output similar to the below:

Continuing.
INFO: <BINARY:16:1! >

PASS: <Binary test completed >

INFO: <BINARY:128:1! >

PASS: <Binary test completed >

INFO: <BINARY:256:1! >

PASS: <Binary test completed >

INFO: <BINARY:1024:1! >

PASS: <Binary test completed >

INFO: <BINARY:512:0! >

PASS: <Binary test completed >

108

Chapter 12. How to Write a Driver

...
PASS: <Binary test completed >

INFO: <BINARY:16384:0! >

PASS: <Binary test completed >

PASS: <serial13 test OK >

EXIT: <done >

If any of the individual tests fail the testing will terminate with aFAIL .

With tracing enabled, you would also see the filter’s status output:

ThePING command sent from the target to determine the presence of the filter:

[400 11:35:16] Dispatching command PING
[400 11:35:16] Responding with status OK

Each of the binary commands result in output similar to:

[400 11:35:16] Dispatching command BINARY
[400 11:35:16] Binary data (Size:16, Flags:1).
[400 11:35:16] Sending CRC: ’170231!’, len: 7.
[400 11:35:16] Reading 16 bytes from target.
[400 11:35:16] Done. in_crc 170231, out_crc 170231.
[400 11:35:16] Responding with status OK
[400 11:35:16] Received DONE from target.

This tracing output is normally sent as O-packets to GDB which will display the tracing text. By using the-c

option, the tracing text can be redirected to the console from which ser_filter was started.

A Note on Failures
A serial connection (especially when driven at a high baud rate) can garble the transmitted data because of
noise from the environment. It is not the job of the serial driver to ensure data integrity - that is the job of
protocols layering on top of the serial driver.

In the current implementation the serial tests and the serial filter are not resilient to such data errors. This means
that the test may crash or hang (possibly without reporting aFAIL). It also means that you should be aware of
random errors - aFAIL is not necessarily caused by a bug in the serial driver.

Ideally, the serial testing infrastructure should be able to distinguish random errors from consistent errors - the
former are most likely due to noise in the transfer medium, while the latter are more likely to be caused by
faulty drivers. The current implementation of the infrastructure does not have this capability.

Debugging
If a test fails, the serial filter’s output may provide some hints about what the problem is. If the option-S is
used when starting the filter, data received from the target is printed out:

[400 11:35:16] 0000 50 41 53 53 3a 3c 42 69 ’PASS: <Bi’
[400 11:35:16] 0008 6e 61 72 79 20 74 65 73 ’nary.tes’
[400 11:35:16] 0010 74 20 63 6f 6d 70 6c 65 ’t.comple’
[400 11:35:16] 0018 74 65 64 3e 0d 0a 49 4e ’ted >..IN’
[400 11:35:16] 0020 46 4f 3a 3c 42 49 4e 41 ’FO: <BINA’
[400 11:35:16] 0028 52 59 3a 31 32 38 3a 31 ’RY:128:1’
[400 11:35:16] 0030 21 3e 0d 0a 40 42 49 4e ’!..@BIN’
[400 11:35:16] 0038 41 52 59 3a 31 32 38 3a ’ARY:128:’
[400 11:35:16] 0040 31 21 ’1!’

109

Chapter 12. How to Write a Driver

In the case of an error during a testing command the data received by the filter will be printed out, as will the
data that was expected. This allows the two data sets to be compared which may give some idea of what the
problem is.

110

Chapter 13. Device Driver Interface to the Kernel
This chapter describes the API that device drivers may use to interact with the kernel and HAL. It is primarily
concerned with the control and management of interrupts and the synchronization of ISRs, DSRs and threads.

The same API will be present in configurations where the kernel is not present. In this case the functions will
be supplied by code acting directly on the HAL.

Interrupt Model
eCospresents a three level interrupt model to device drivers. This consists of Interrupt Service Routines (ISRs)
that are invoked in response to a hardware interrupt; Deferred Service Routines (DSRs) that are invoked in
response to a request by an ISR; and threads that are the clients of the driver.

Hardware interrupts are delivered with minimal intervention to an ISR. The HAL decodes the hardware source
of the interrupt and calls the ISR of the attached interrupt object. This ISR may manipulate the hardware but
is only allowed to make a restricted set of calls on the driver API. When it returns, an ISR may request that its
DSR should be scheduled to run.

A DSR will be run when it is safe to do so without interfering with the scheduler. Most of the time the DSR
will run immediately after the ISR, but if the current thread is in the scheduler, it will be delayed until the
thread is finished. A DSR is allowed to make a larger set of driver API calls, including, in particular, being able
to call cyg_drv_cond_signal() to wake up waiting threads.

Finally, threads are able to make all API calls and in particular are allowed to wait on mutexes and condition
variables.

For a device driver to receive interrupts it must first define ISR and DSR routines as shown below,
and then callcyg_drv_interrupt_create() . Using the handle returned, the driver must then call
cyg_drv_interrupt_attach() to actually attach the interrupt to the hardware vector.

Synchronization
There are three levels of synchronization supported:

1. Synchronization with ISRs. This normally means disabling interrupts to prevent the ISR running during
a critical section. In an SMP environment, this will also require the use of a spinlock to synchronize with
ISRs, DSRs or threads running on other CPUs. This is implemented by thecyg_drv_isr_lock() and
cyg_drv_isr_unlock() functions. This mechanism should be used sparingly and for short periods only.
For finer grained synchronization, individual spinlocks are also supplied.

2. Synchronization with DSRs. This will be implemented in the kernel by taking the scheduler lock to prevent
DSRs running during critical sections. In non-kernel configurations it will be implemented by non-kernel
code. This is implemented by thecyg_drv_dsr_lock() andcyg_drv_dsr_unlock() functions. As with
ISR synchronization, this mechanism should be used sparingly. Only DSRs and threads may use this
synchronization mechanism, ISRs are not allowed to do this.

3. Synchronization with threads. This is implemented with mutexes and condition variables. Only threads
may lock the mutexes and wait on the condition variables, although DSRs may signal condition variables.

111

Chapter 13. Device Driver Interface to the Kernel

Any data that is accessed from more than one level must be protected against concurrent access. Data that is
accessed by ISRs must be protected with the ISR lock, or a spinlock at all times,even in ISRs. Data that is
shared between DSRs and threads should be protected with the DSR lock. Data that is only accessed by threads
must be protected with mutexes.

SMP Support
Some eCos targets contain support for Symmetric Multi-Processing (SMP) configurations, where more than
one CPU may be present. This option has a number of ramifications for the way in which device drivers must
be written if they are to be SMP-compatible.

Since it is possible for the ISR, DSR and thread components of a device driver to execute on different CPUs, it
is important that SMP-compatible device drivers use the driver API routines correctly.

Synchronization between threads and DSRs continues to require that the thread-side code use
cyg_drv_dsr_lock() andcyg_drv_dsr_unlock() to protect access to shared data. While it is not strictly
necessary for DSR code to claim the DSR lock, since DSRs are run with it claimed already, it is good practice
to do so.

Synchronization between ISRs and DSRs or threads requires that access to sensitive data be protected, in all
places, by calls tocyg_drv_isr_lock() andcyg_drv_isr_unlock() . Disabling or masking interrupts is not
adequate, since the thread or DSR may be running on a different CPU and interrupt enable/disable only work
on the current CPU.

The ISR lock, for SMP systems, not only disables local interrupts, but also acquires a spinlock to protect
against concurrent access from other CPUs. This is necessary because ISRs are not run with the scheduler lock
claimed. Hence they can run in parallel with the other components of the device driver.

The ISR lock provided by the driver API is just a shared spinlock that is available for use by all drivers.
If a driver needs to implement a finer grain of locking, it can use private spinlocks, accessed via the
cyg_drv_spinlock_*() functions.

Device Driver Models
There are several ways in which device drivers may be built. The exact model chosen will depend on the
properties of the device and the behavior desired. There are three basic models that may be adopted.

The first model is to do all device processing in the ISR. When it is invoked the ISR programs the de-
vice hardware directly and accesses data to be transferred directly in memory. The ISR should also call
cyg_drv_interrupt_acknowledge() . When it is finished it may optionally request that its DSR be invoked.
The DSR does nothing but callcyg_drv_cond_signal() to cause a thread to be woken up. Thread level code
must callcyg_drv_isr_lock() , or cyg_drv_interrupt_mask() to prevent ISRs running while it manipu-
lates shared memory.

The second model is to defer device processing to the DSR. The ISR simply prevents further delivery of
interrupts by either programming the device, or by callingcyg_drv_interrupt_mask() . It must then call
cyg_drv_interrupt_acknowledge() to allow other interrupts to be delivered and then request that its DSR
be called. When the DSR runs it does the majority of the device handling, optionally signals a condition variable
to wake a thread, and finishes by callingcyg_drv_interrupt_unmask() to re-allow device interrupts. Thread
level code usescyg_drv_dsr_lock() to prevent DSRs running while it manipulates shared memory. The eCos
serial device drivers use this approach.

112

Chapter 13. Device Driver Interface to the Kernel

The third model is to defer device processing even further to a thread. The ISR behaves exactly as in the
previous model and simply blocks and acknowledges the interrupt before request that the DSR run. The
DSR itself only callscyg_drv_cond_signal() to wake the thread. When the thread awakens it performs
all device processing, and has full access to all kernel facilities while it does so. It should finish by calling
cyg_drv_interrupt_unmask() to re-allow device interrupts. The eCos ethernet device drivers are written to
this model.

The first model is good for devices that need immediate processing and interact infrequently with thread level.
The second model trades a little latency in dealing with the device for a less intrusive synchronization mecha-
nism. The last model allows device processing to be scheduled with other threads and permits more complex
device handling.

Synchronization Levels
Since it would be dangerous for an ISR or DSR to make a call that might reschedule the current thread (by
trying to lock a mutex for example) all functions in this API have an associated synchronization level. These
levels are:

Thread

This function may only be called from within threads. This is usually the client code that makes calls
into the device driver. In a non-kernel configuration, this will be code running at the default non-interrupt
level.

DSR

This function may be called by either DSR or thread code.

ISR

This function may be called from ISR, DSR or thread code.

The following table shows, for each API function, the levels at which is may be called:

Callable from:
Function ISR DSR Thread

cyg_drv_isr_lock X X X
cyg_drv_isr_unlock X X X
cyg_drv_spinlock_init X
cyg_drv_spinlock_destroy X
cyg_drv_spinlock_spin X X X
cyg_drv_spinlock_clear X X X
cyg_drv_spinlock_try X X X
cyg_drv_spinlock_test X X X
cyg_drv_spinlock_spin_intsave X X X
cyg_drv_spinlock_clear_intsave X X X
cyg_drv_dsr_lock X X
cyg_drv_dsr_unlock X X
cyg_drv_mutex_init X
cyg_drv_mutex_destroy X
cyg_drv_mutex_lock X
cyg_drv_mutex_trylock X
cyg_drv_mutex_unlock X
cyg_drv_mutex_release X
cyg_drv_cond_init X

113

Chapter 13. Device Driver Interface to the Kernel

cyg_drv_cond_destroy X
cyg_drv_cond_wait X
cyg_drv_cond_signal X X
cyg_drv_cond_broadcast X X
cyg_drv_interrupt_create X
cyg_drv_interrupt_delete X
cyg_drv_interrupt_attach X X X
cyg_drv_interrupt_detach X X X
cyg_drv_interrupt_mask X X X
cyg_drv_interrupt_unmask X X X
cyg_drv_interrupt_acknowledge X X X
cyg_drv_interrupt_configure X X X
cyg_drv_interrupt_level X X X
cyg_drv_interrupt_set_cpu X X X
cyg_drv_interrupt_get_cpu X X X

The API
This section details the Driver Kernel Interface. Note that most of these functions are identical to Kernel C API
calls, and will in most configurations be wrappers for them. In non-kernel configurations they will be supported
directly by the HAL, or by code to emulate the required behavior.

This API is defined in the header file<cyg/hal/drv_api.h >.

cyg_drv_isr_lock

Function:

void cyg_drv_isr_lock()

Arguments:

None

Result:

None

Level:

ISR

Description:

Disables delivery of interrupts, preventing all ISRs running. This function maintains a counter of the
number of times it is called.

cyg_drv_isr_unlock

Function:

void cyg_drv_isr_unlock()

114

Chapter 13. Device Driver Interface to the Kernel

Arguments:

None

Result:

None

Level:

ISR

Description:

Re-enables delivery of interrupts, allowing ISRs to run. This function decrements the counter maintained
by cyg_drv_isr_lock() , and only re-allows interrupts when it goes to zero.

cyg_drv_spinlock_init

Function:

void cyg_drv_spinlock_init(cyg_spinlock_t *lock, cyg_bool_t locked)

Arguments:

lock - pointer to spinlock to initialize

locked - initial state of lock

Result:

None

Level:

Thread

Description:

Initialize a spinlock. Thelocked argument indicates how the spinlock should be initialized:TRUEfor
locked orFALSE for unlocked state.

cyg_drv_spinlock_destroy

Function:

void cyg_drv_spinlock_destroy(cyg_spinlock_t *lock)

Arguments:

lock - pointer to spinlock destroy

Result:

None

115

Chapter 13. Device Driver Interface to the Kernel

Level:

Thread

Description:

Destroy a spinlock that is no longer of use. There should be no CPUs attempting to claim the lock at the
time this function is called, otherwise the behavior is undefined.

cyg_drv_spinlock_spin

Function:

void cyg_drv_spinlock_spin(cyg_spinlock_t *lock)

Arguments:

lock - pointer to spinlock to claim

Result:

None

Level:

ISR

Description:

Claim a spinlock, waiting in a busy loop until it is available. Wherever this is called from, this operation
effectively pauses the CPU until it succeeds. This operations should therefore be used sparingly, and in
situations where deadlocks/livelocks cannot occur. Also seecyg_drv_spinlock_spin_intsave() .

cyg_drv_spinlock_clear

Function:

void cyg_drv_spinlock_clear(cyg_spinlock_t *lock)

Arguments:

lock - pointer to spinlock to clear

Result:

None

Level:

ISR

Description:

Clear a spinlock. This clears the spinlock and allows another CPU to claim it. If there is more than one
CPU waiting incyg_drv_spinlock_spin() then just one of them will be allowed to proceed.

116

Chapter 13. Device Driver Interface to the Kernel

cyg_drv_spinlock_try

Function:

cyg_bool_t cyg_drv_spinlock_try(cyg_spinlock_t *lock)

Arguments:

lock - pointer to spinlock to try

Result:

TRUEif the spinlock was claimed,FALSEotherwise.

Level:

ISR

Description:

Try to claim the spinlock without waiting. If the spinlock could be claimed immediately thenTRUE is
returned. If the spinlock is already claimed then the result isFALSE.

cyg_drv_spinlock_test

Function:

cyg_bool_t cyg_drv_spinlock_test(cyg_spinlock_t *lock)

Arguments:

lock - pointer to spinlock to test

Result:

TRUEif the spinlock is available,FALSEotherwise.

Level:

ISR

Description:

Inspect the state of the spinlock. If the spinlock is not locked then the result isTRUE. If it is locked then
the result will beFALSE.

cyg_drv_spinlock_spin_intsave

Function:

void cyg_drv_spinlock_spin_intsave(cyg_spinlock_t *lock,
cyg_addrword_t *istate)

Arguments:

lock - pointer to spinlock to claim

istate - pointer to interrupt state save location

117

Chapter 13. Device Driver Interface to the Kernel

Result:

None

Level:

ISR

Description:

This function behaves exactly likecyg_drv_spinlock_spin() except that it also disables interrupts
before attempting to claim the lock. The current interrupt enable state is saved in*istate .
Interrupts remain disabled once the spinlock had been claimed and must be restored by calling
cyg_drv_spinlock_clear_intsave() .

In general, device drivers should use this function to claim and release spinlocks rather than the non-
_intsave() variants, to ensure proper exclusion with code running on both other CPUs and this CPU.

cyg_drv_spinlock_clear_intsave

Function:

void cyg_drv_spinlock_clear_intsave(cyg_spinlock_t *lock,
cyg_addrword_t istate)

Arguments:

lock - pointer to spinlock to clear

istate - interrupt state to restore

Result:

None

Level:

ISR

Description:

This function behaves exactly likecyg_drv_spinlock_clear() except that it also restores an interrupt
state saved bycyg_drv_spinlock_spin_intsave() . Theistate argument must have been initialized
by a previous call tocyg_drv_spinlock_spin_intsave() .

cyg_drv_dsr_lock

Function:

void cyg_drv_dsr_lock()

118

Chapter 13. Device Driver Interface to the Kernel

Arguments:

None

Result:

None

Level:

DSR

Description:

Disables scheduling of DSRs. This function maintains a counter of the number of times it has been called.

cyg_drv_dsr_unlock

Function:

void cyg_drv_dsr_unlock()

Arguments:

None

Result:

None

Level:

DSR

Description:

Re-enables scheduling of DSRs. This function decrements the counter incremented by
cyg_drv_dsr_lock() . DSRs are only allowed to be delivered when the counter goes to zero.

cyg_drv_mutex_init

Function:

void cyg_drv_mutex_init(cyg_drv_mutex_t *mutex)

Arguments:

mutex - pointer to mutex to initialize

Result:

None

Level:

Thread

119

Chapter 13. Device Driver Interface to the Kernel

Description:

Initialize the mutex pointed to by themutex argument.

cyg_drv_mutex_destroy

Function:

void cyg_drv_mutex_destroy(cyg_drv_mutex_t *mutex)

Arguments:

mutex - pointer to mutex to destroy

Result:

None

Level:

Thread

Description:

Destroy the mutex pointed to by themutex argument. The mutex should be unlocked and there should
be no threads waiting to lock it when this call in made.

cyg_drv_mutex_lock

Function:

cyg_bool cyg_drv_mutex_lock(cyg_drv_mutex_t *mutex)

Arguments:

mutex - pointer to mutex to lock

Result:

TRUEit the thread has claimed the lock,FALSEotherwise.

Level:

Thread

Description:

Attempt to lock the mutex pointed to by themutex argument. If the mutex is already locked by another
thread then this thread will wait until that thread is finished. If the result from this function isFALSE then
the thread was broken out of its wait by some other thread. In this case the mutex will not have been
locked.

120

Chapter 13. Device Driver Interface to the Kernel

cyg_drv_mutex_trylock

Function:

cyg_bool cyg_drv_mutex_trylock(cyg_drv_mutex_t *mutex)

Arguments:

mutex - pointer to mutex to lock

Result:

TRUEif the mutex has been locked,FALSEotherwise.

Level:

Thread

Description:

Attempt to lock the mutex pointed to by themutex argument without waiting. If the mutex is already
locked by some other thread then this function returnsFALSE. If the function can lock the mutex without
waiting, thenTRUEis returned.

cyg_drv_mutex_unlock

Function:

void cyg_drv_mutex_unlock(cyg_drv_mutex_t *mutex)

Arguments:

mutex - pointer to mutex to unlock

Result:

None

Level:

Thread

Description:

Unlock the mutex pointed to by themutex argument. If there are any threads waiting to claim the lock,
one of them is woken up to try and claim it.

cyg_drv_mutex_release

Function:

void cyg_drv_mutex_release(cyg_drv_mutex_t *mutex)

Arguments:

mutex - pointer to mutex to release

121

Chapter 13. Device Driver Interface to the Kernel

Result:

None

Level:

Thread

Description:

Release all threads waiting on the mutex pointed to by themutex argument. These threads will return
from cyg_drv_mutex_lock() with a FALSE result and will not have claimed the mutex. This function
has no effect on any thread that may have the mutex claimed.

cyg_drv_cond_init

Function:

void cyg_drv_cond_init(cyg_drv_cond_t *cond, cyg_drv_mutex_t *mutex)

Arguments:

cond - condition variable to initialize

mutex - mutex to associate with this condition variable

Result:

None

Level:

Thread

Description:

Initialize the condition variable pointed to by thecond argument. Themutex argument must point to a
mutex with which this condition variable is associated. A thread may only wait on this condition variable
when it has already locked the associated mutex. Waiting will cause the mutex to be unlocked, and when
the thread is reawakened, it will automatically claim the mutex before continuing.

cyg_drv_cond_destroy

Function:

void cyg_drv_cond_destroy(cyg_drv_cond_t *cond)

Arguments:

cond - condition variable to destroy

Result:

None

122

Chapter 13. Device Driver Interface to the Kernel

Level:

Thread

Description:

Destroy the condition variable pointed to by thecond argument.

cyg_drv_cond_wait

Function:

void cyg_drv_cond_wait(cyg_drv_cond_t *cond)

Arguments:

cond - condition variable to wait on

Result:

None

Level:

Thread

Description:

Wait for a signal on the condition variable pointed to by thecond argument. The thread must have
locked the associated mutex, supplied incyg_drv_cond_init() , before waiting on this condition vari-
able. While the thread waits, the mutex will be unlocked, and will be re-locked before this function
returns. It is possible for threads waiting on a condition variable to occasionally wake up spuriously. For
this reason it is necessary to use this function in a loop that re-tests the condition each time it returns. Note
that this function performs an implicit scheduler unlock/relock sequence, so that it may be used within an
explicit cyg_drv_dsr_lock()...cyg_drv_dsr_unlock() structure.

cyg_drv_cond_signal

Function:

void cyg_drv_cond_signal(cyg_drv_cond_t *cond)

Arguments:

cond - condition variable to signal

Result:

None

Level:

DSR

123

Chapter 13. Device Driver Interface to the Kernel

Description:

Signal the condition variable pointed to by thecond argument. If there are any threads waiting on this
variable at least one of them will be awakened. Note that in some configurations there may not be any
difference between this function andcyg_drv_cond_broadcast() .

cyg_drv_cond_broadcast

Function:

void cyg_drv_cond_broadcast(cyg_drv_cond_t *cond)

Arguments:

cond - condition variable to broadcast to

Result:

None

Level:

DSR

Description:

Signal the condition variable pointed to by thecond argument. If there are any threads waiting on this
variable they will all be awakened.

cyg_drv_interrupt_create

Function:

void cyg_drv_interrupt_create(cyg_vector_t vector,
cyg_priority_t priority,
cyg_addrword_t data,
cyg_ISR_t *isr,
cyg_DSR_t *dsr,
cyg_handle_t *handle,
cyg_interrupt *intr

)

Arguments:

vector - vector to attach to

priority - queuing priority

data - data pointer

isr - interrupt service routine

dsr - deferred service routine

handle - returned handle

intr - put interrupt object here

124

Chapter 13. Device Driver Interface to the Kernel

Result:

None

Level:

Thread

Description:

Create an interrupt object and returns a handle to it. The object contains information about which interrupt
vector to use and the ISR and DSR that will be called after the interrupt object is attached to the vector.
The interrupt object will be allocated in the memory passed in theintr parameter. The interrupt object
is not immediately attached; it must be attached with thecyg_interrupt_attach() call.

cyg_drv_interrupt_delete

Function:

void cyg_drv_interrupt_delete(cyg_handle_t interrupt)

Arguments:

interrupt - interrupt to delete

Result:

None

Level:

Thread

Description:

Detach the interrupt from the vector and free the memory passed in theintr argument to
cyg_drv_interrupt_create() for reuse.

cyg_drv_interrupt_attach

Function:

void cyg_drv_interrupt_attach(cyg_handle_t interrupt)

Arguments:

interrupt - interrupt to attach

Result:

None

Level:

ISR

125

Chapter 13. Device Driver Interface to the Kernel

Description:

Attach the interrupt to the vector so that interrupts will be delivered to the ISR when the interrupt occurs.

cyg_drv_interrupt_detach

Function:

void cyg_drv_interrupt_detach(cyg_handle_t interrupt)

Arguments:

interrupt - interrupt to detach

Result:

None

Level:

ISR

Description:

Detach the interrupt from the vector so that interrupts will no longer be delivered to the ISR.

cyg_drv_interrupt_mask

Function:

void cyg_drv_interrupt_mask(cyg_vector_t vector)

Arguments:

vector - vector to mask

Result:

None

Level:

ISR

Description:

Program the interrupt controller to stop delivery of interrupts on the given vector. On architectures which
implement interrupt priority levels this may also disable all lower priority interrupts.

cyg_drv_interrupt_mask_intunsafe

Function:

void cyg_drv_interrupt_mask_intunsafe(cyg_vector_t vector)

126

Chapter 13. Device Driver Interface to the Kernel

Arguments:

vector - vector to mask

Result:

None

Level:

ISR

Description:

Program the interrupt controller to stop delivery of interrupts on the given vector. On architectures which
implement interrupt priority levels this may also disable all lower priority interrupts. This version dif-
fers fromcyg_drv_interrupt_mask() in not being interrupt safe. So in situations where, for example,
interrupts are already known to be disabled, this may be called to avoid the extra overhead.

cyg_drv_interrupt_unmask

Function:

void cyg_drv_interrupt_unmask(cyg_vector_t vector)

Arguments:

vector - vector to unmask

Result:

None

Level:

ISR

Description:

Program the interrupt controller to re-allow delivery of interrupts on the givenvector .

cyg_drv_interrupt_unmask_intunsafe

Function:

void cyg_drv_interrupt_unmask_intunsafe(cyg_vector_t vector)

Arguments:

vector - vector to unmask

Result:

None

Level:

ISR

127

Chapter 13. Device Driver Interface to the Kernel

Description:

Program the interrupt controller to re-allow delivery of interrupts on the givenvector . This version
differs fromcyg_drv_interrupt_unmask() in not being interrupt safe.

cyg_drv_interrupt_acknowledge

Function:

void cyg_drv_interrupt_acknowledge(cyg_vector_t vector)

Arguments:

vector - vector to acknowledge

Result:

None

Level:

ISR

Description:

Perform any processing required at the interrupt controller and in the CPU to cancel the current interrupt
request on thevector . An ISR may also need to program the hardware of the device to prevent an
immediate re-triggering of the interrupt.

cyg_drv_interrupt_configure

Function:

void cyg_drv_interrupt_configure(cyg_vector_t vector,
cyg_bool_t level,
cyg_bool_t up

)

Arguments:

vector - vector to configure

level - level or edge triggered

up - rising/falling edge, high/low level

Result:

None

Level:

ISR

128

Chapter 13. Device Driver Interface to the Kernel

Description:

Program the interrupt controller with the characteristics of the interrupt source. Thelevel argument
chooses between level- or edge-triggered interrupts. Theup argument chooses between high and low
level for level triggered interrupts or rising and falling edges for edge triggered interrupts. This function
only works with interrupt controllers that can control these parameters.

cyg_drv_interrupt_level

Function:

void cyg_drv_interrupt_level(cyg_vector_t vector,
cyg_priority_t level

)

Arguments:

vector - vector to configure

level - level to set

Result:

None

Level:

ISR

Description:

Program the interrupt controller to deliver the given interrupt at the supplied priority level. This function
only works with interrupt controllers that can control this parameter.

cyg_drv_interrupt_set_cpu

Function:

void cyg_drv_interrupt_set_cpu(cyg_vector_t vector,
cyg_cpu_t cpu

)

Arguments:

vector - interrupt vector to route

cpu - destination CPU

Result:

None

Level:

ISR

129

Chapter 13. Device Driver Interface to the Kernel

Description:

This function causes all interrupts on the given vector to be routed to the specified CPU. Subsequently,
all such interrupts will be handled by that CPU. This only works if the underlying hardware is capable of
performing this kind of routing. This function does nothing on a single CPU system.

cyg_drv_interrupt_get_cpu

Function:

cyg_cpu_t cyg_drv_interrupt_set_cpu(cyg_vector_t vector)

Arguments:

vector - interrupt vector to query

Result:

The CPU to which this vector is routed

Level:

ISR

Description:

In multi-processor systems this function returns the id of the CPU to which interrupts on the given vector
are current being delivered. In single CPU systems this function returns zero.

cyg_ISR_t

Type:

typedef cyg_uint32 cyg_ISR_t(cyg_vector_t vector,
cyg_addrword_t data

)

Fields:

vector - vector being delivered

data - data value supplied by client

Result:

Bit mask indicating whether interrupt was handled and whether the DSR should be called.

Description:

Interrupt Service Routine definition. A pointer to a function with this prototype is passed to
cyg_interrupt_create() when an interrupt object is created. When an interrupt is delivered
the function will be called with the vector number and the data value that was passed to
cyg_interrupt_create() .

The return value is a bit mask containing one or both of the following bits:

130

Chapter 13. Device Driver Interface to the Kernel

CYG_ISR_HANDLED

indicates that the interrupt was handled by this ISR. It is a configuration option whether this will
prevent further ISR being run.

CYG_ISR_CALL_DSR

causes the DSR that was passed tocyg_interrupt_create() to be scheduled to be called.

cyg_DSR_t

Type:

typedef void cyg_DSR_t(cyg_vector_t vector,
cyg_ucount32 count,
cyg_addrword_t data

)

Fields:

vector - vector being delivered

count - number of times DSR has been scheduled

data - data value supplied by client

Result:

None

Description:

Deferred Service Routine prototype. A pointer to a function with this prototype is passed to
cyg_interrupt_create() when an interrupt object is created. When the ISR requests the scheduling
of its DSR, this function will be called at some later point. In addition to thevector and data
arguments, which will be the same as those passed to the ISR, this routine is also passed acount of the
number of times the ISR has requested that this DSR be scheduled. This counter is zeroed each time the
DSR actually runs, so it indicates how many interrupts have occurred since it last ran.

131

Chapter 13. Device Driver Interface to the Kernel

132

V. File System Support Infrastructure

Chapter 14. Introduction
This document describes the filesystem infrastructure provided in eCos. This is implemented by the FILEIO
package and provides POSIX compliant file and IO operations together with the BSD socket API. These APIs
are described in the relevant standards and original documentation and will not be described here. SeeChapter
27 for details of which parts of the POSIX standard are supported.

This document is concerned with the interfaces presented to client filesystems and network protocol stacks.

The FILEIO infrastructure consist mainly of a set of tables containing pointers to the primary interface func-
tions of a file system. This approach avoids problems of namespace pollution (for example several filesystems
can have a function calledread() , so long as they are static). The system is also structured to eliminate the
need for dynamic memory allocation.

New filesystems can be written directly to the interfaces described here. Existing filesystems can be ported
very easily by the introduction of a thin veneer porting layer that translates FILEIO calls into native filesystem
calls.

The term filesystem should be read fairly loosely in this document. Object accessed through these interfaces
could equally be network protocol sockets, device drivers, fifos, message queues or any other object that can
present a file-like interface.

135

Chapter 14. Introduction

136

Chapter 15. File System Table
The filesystem table is an array of entries that describe each filesystem implementation that is part of the system
image. Each resident filesystem should export an entry to this table using theFSTAB_ENTRY() macro.

Note: At present we do not support dynamic addition or removal of table entries. However, an API similar
to mount() would allow new entries to be added to the table.

The table entries are described by the following structure:

struct cyg_fstab_entry
{

const char *name; // filesystem name
CYG_ADDRWORD data; // private data value
cyg_uint32 syncmode; // synchronization mode

int (*mount) (cyg_fstab_entry *fste, cyg_mtab_entry *mte);
int (*umount) (cyg_mtab_entry *mte);
int (*open) (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

int mode, cyg_file *fte);
int (*unlink) (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
int (*mkdir) (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
int (*rmdir) (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
int (*rename) (cyg_mtab_entry *mte, cyg_dir dir1, const char *name1,

cyg_dir dir2, const char *name2);
int (*link) (cyg_mtab_entry *mte, cyg_dir dir1, const char *name1,

cyg_dir dir2, const char *name2, int type);
int (*opendir) (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

cyg_file *fte);
int (*chdir) (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

cyg_dir *dir_out);
int (*stat) (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

struct stat *buf);
int (*getinfo) (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

int key, char *buf, int len);
int (*setinfo) (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

int key, char *buf, int len);
};

The name field points to a string that identifies this filesystem implementation. Typical values might be
"romfs", "msdos", "ext2" etc.

Thedata field contains any private data that the filesystem needs, perhaps the root of its data structures.

Thesyncmode field contains a description of the locking protocol to be used when accessing this filesystem.
It will be described in more detail inChapter 19.

The remaining fields are pointers to functions that implement filesystem operations that apply to files and
directories as whole objects. The operation implemented by each function should be obvious from the names,
with a few exceptions:

Theopendir() function pointer opens a directory for reading. SeeChapter 18for details.

Thegetinfo() andsetinfo() function pointers provide support for various minor control and information
functions such aspathconf() andaccess() .

137

Chapter 15. File System Table

With the exception of themount() andumount() functions, all of these functions take three standard argu-
ments, a pointer to a mount table entry (see later) a directory pointer (also see later) and a file name relative to
the directory. These should be used by the filesystem to locate the object of interest.

138

Chapter 16. Mount Table
The mount table records the filesystems that are actually active. These can be seen as being analogous to mount
points in Unix systems.

There are two sources of mount table entries. Filesystems (or other components) may export static entries to
the table using theMTAB_ENTRY() macro. Alternatively, new entries may be installed at run time using the
mount() function. Both types of entry may be unmounted with theumount() function.

A mount table entry has the following structure:

struct cyg_mtab_entry
{

const char *name; // name of mount point
const char *fsname; // name of implementing filesystem
const char *devname; // name of hardware device
CYG_ADDRWORD data; // private data value
cyg_bool valid; // Valid entry?
cyg_fstab_entry *fs; // pointer to fstab entry
cyg_dir root; // root directory pointer

};

Thename field identifies the mount point. This is used to direct rooted filenames (filenames that begin with
"/") to the correct filesystem. When a file name that begins with "/" is submitted, it is matched against thename
fields of all valid mount table entries. The entry that yields the longest match terminating before a "/", or end
of string, wins and the appropriate function from the filesystem table entry is then passed the remainder of the
file name together with a pointer to the table entry and the value of theroot field as the directory pointer.

For example, consider a mount table that contains the following entries:

{ "/", "msdos", "/dev/hd0", ... }
{ "/fd", "msdos", "/dev/fd0", ... }
{ "/rom", "romfs", "", ... }
{ "/tmp", "ramfs", "", ... }
{ "/dev", "devfs", "", ... }

An attempt to open "/tmp/foo" would be directed to the RAM filesystem while an open of "/bar/bundy" would
be directed to the hard disc MSDOS filesystem. Opening "/dev/tty0" would be directed to the device manage-
ment filesystem for lookup in the device table.

Unrooted file names (those that do not begin with a ’/’) are passed straight to the filesystem that contains the
current directory. The current directory is represented by a pair consisting of a mount table entry and a directory
pointer.

The fsname field points to a string that should match thename field of the implementing filesystem. During
initialization the mount table is scanned and thefsname entries looked up in the filesystem table. For each
match, the filesystem’s _mount_ function is called and if successful the mount table entry is marked as valid
and thefs pointer installed.

Thedevname field contains the name of the device that this filesystem is to use. This may match an entry in
the device table (see later) or may be a string that is specific to the filesystem if it has its own internal device
drivers.

Thedata field is a private data value. This may be installed either statically when the table entry is defined,
or may be installed during themount() operation.

139

Chapter 16. Mount Table

The valid field indicates whether this mount point has actually been mounted successfully. Entries with a
falsevalid field are ignored when searching for a name match.

Thefs field is installed after a successfulmount() operation to point to the implementing filesystem.

The root field contains a directory pointer value that the filesystem can interpret as the root of its directory
tree. This is passed as thedir argument of filesystem functions that operate on rooted filenames. This field
must be initialized by the filesystem’smount() function.

140

Chapter 17. File Table
Once a file has been opened it is represented by an open file object. These are allocated from an array of
available file objects. User code accesses these open file objects via a second array of pointers which is indexed
by small integer offsets. This gives the usual Unix file descriptor functionality, complete with the various
duplication mechanisms.

A file table entry has the following structure:

struct CYG_FILE_TAG
{

cyg_uint32 f_flag; /* file state */
cyg_uint16 f_ucount; /* use count */
cyg_uint16 f_type; /* descriptor type */
cyg_uint32 f_syncmode; /* synchronization protocol */
struct CYG_FILEOPS_TAG *f_ops; /* file operations */
off_t f_offset; /* current offset */
CYG_ADDRWORD f_data; /* file or socket */
CYG_ADDRWORD f_xops; /* extra type specific ops */
cyg_mtab_entry *f_mte; /* mount table entry */

};

Thef_flag field contains some FILEIO control bits and some bits propagated from theflags argument of
theopen() call (defined byCYG_FILE_MODE_MASK).

The f_ucount field contains a use count that controls when a file will be closed. Each duplicate in the file
descriptor array counts for one reference here. It is also incremented around each I/O operation to ensure that
the file cannot be closed while it has current I/O operations.

The f_type field indicates the type of the underlying file object. Some of the possible values here are
CYG_FILE_TYPE_FILE , CYG_FILE_TYPE_SOCKETor CYG_FILE_TYPE_DEVICE.

The f_syncmode field is copied from thesyncmode field of the implementing filesystem. Its use is de-
scribed inChapter 19.

The f_offset field records the current file position. It is the responsibility of the file operation functions to
keep this field up to date.

The f_data field contains private data placed here by the underlying filesystem. Normally this will be a
pointer to, or handle on, the filesystem object that implements this file.

The f_xops field contains a pointer to any extra type specific operation functions. For example, the socket
I/O system installs a pointer to a table of functions that implement the standard socket operations.

Thef_mte field contains a pointer to the parent mount table entry for this file. It is used mainly to implement
the synchronization protocol. This may contain a pointer to some other data structure in file objects not derived
from a filesystem.

Thef_ops field contains a pointer to a table of file I/O operations. This has the following structure:

struct CYG_FILEOPS_TAG
{

int (*fo_read) (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
int (*fo_write) (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
int (*fo_lseek) (struct CYG_FILE_TAG *fp, off_t *pos, int whence);
int (*fo_ioctl) (struct CYG_FILE_TAG *fp, CYG_ADDRWORD com,

CYG_ADDRWORD data);

141

Chapter 17. File Table

int (*fo_select) (struct CYG_FILE_TAG *fp, int which, CYG_ADDRWORD info);
int (*fo_fsync) (struct CYG_FILE_TAG *fp, int mode);
int (*fo_close) (struct CYG_FILE_TAG *fp);
int (*fo_fstat) (struct CYG_FILE_TAG *fp, struct stat *buf);
int (*fo_getinfo) (struct CYG_FILE_TAG *fp, int key, char *buf, int len);
int (*fo_setinfo) (struct CYG_FILE_TAG *fp, int key, char *buf, int len);

};

It should be obvious from the names of most of these functions what their responsibilities are. The
fo_getinfo() and fo_setinfo() function pointers, like their counterparts in the filesystem structure,
implement minor control and info functions such asfpathconf() .

The second argument to thefo_read() andfo_write() function pointers is a pointer to a UIO structure:

struct CYG_UIO_TAG
{

struct CYG_IOVEC_TAG *uio_iov; /* pointer to array of iovecs */
int uio_iovcnt; /* number of iovecs in array */
off_t uio_offset; /* offset into file this uio corresponds to */
ssize_t uio_resid; /* residual i/o count */
enum cyg_uio_seg uio_segflg; /* see above */
enum cyg_uio_rw uio_rw; /* see above */

};

struct CYG_IOVEC_TAG
{

void *iov_base; /* Base address. */
ssize_t iov_len; /* Length. */

};

This structure encapsulates the parameters of any data transfer operation. It provides support for scatter/gather
operations and records the progress of any data transfer. It is also compatible with the I/O operations of any
BSD-derived network stacks and filesystems.

When a file is opened (or a file object created by some other means, such assocket() or accept()) it is the
responsibility of the filesystem open operation to initialize all the fields of the object except thef_ucount ,
f_syncmode andf_mte fields. Since thef_flag field will already contain bits belonging to the FILEIO
infrastructure, any changes to it must be made with the appropriate logical operations.

142

Chapter 18. Directories
Filesystem operations all take a directory pointer as one of their arguments. A directory pointer is an opaque
handle managed by the filesystem. It should encapsulate a reference to a specific directory within the filesystem.
For example, it may be a pointer to the data structure that represents that directory (such as an inode), or a
pointer to a pathname for the directory.

The chdir() filesystem function pointer has two modes of use. When passed a pointer in thedir_out
argument, it should locate the named directory and place a directory pointer there. If thedir_out argument
is NULL then thedir argument is a previously generated directory pointer that can now be disposed of. When
the infrastructure is implementing thechdir() function it makes two calls to filesystemchdir() functions.
The first is to get a directory pointer for the new current directory. If this succeeds the second is to dispose of
the old current directory pointer.

Theopendir() function is used to open a directory for reading. This results in an open file object that can be
read to return a sequence of struct dirent objects. The only operations that are allowed on this file areread ,
lseek andclose . Each read operation on this file should return a single struct dirent object. When the end of
the directory is reached, zero should be returned. The only seek operation allowed is a rewind to the start of
the directory, by supplying an offset of zero and awhence specifier ofSEEK_SET.

Most of these considerations are invisible to clients of a filesystem since they will access directories via the
POSIXopendir() , readdir() andclosedir() functions.

Support for thegetcwd() function is provided by three mechanisms. The first is to use theFS_INFO_GETCWD

getinfo key on the filesystem to use any internal support that it has for this. If that fails it falls back on one
of the two other mechanisms. IfCYGPKG_IO_FILEIO_TRACK_CWDis set then the current directory is tracked
textually inchdir() and the result of that is reported in getcwd(). Otherwise an attempt is made to traverse the
directory tree to its root using ".." entries.

This last option is complicated and expensive, and relies on the filesystem supporting "." and ".." entries. This
is not always the case, particularly if the filesystem has been ported from a non-UNIX-compatible source.
Tracking the pathname textually will usually work, but might not produce optimum results when symbolic
links are being used.

143

Chapter 18. Directories

144

Chapter 19. Synchronization
The FILEIO infrastructure provides a synchronization mechanism for controlling concurrent access to filesys-
tems. This allows existing filesystems to be ported to eCos, even if they do not have their own synchronization
mechanisms. It also allows new filesystems to be implemented easily without having to consider the synchro-
nization issues.

The infrastructure maintains a mutex for each entry in each of the main tables: filesystem table, mount table and
file table. For each class of operation each of these mutexes may be locked before the corresponding filesystem
operation is invoked.

The synchronization protocol required by a filesystem is described by thesyncmode field of the filesystem
table entry. This is a combination of the following flags:

CYG_SYNCMODE_FILE_FILESYSTEM

Lock the filesystem table entry mutex during all filesystem level operations.

CYG_SYNCMODE_FILE_MOUNTPOINT

Lock the mount table entry mutex during all filesystem level operations.

CYG_SYNCMODE_IO_FILE

Lock the file table entry mutex during all I/O operations.

CYG_SYNCMODE_IO_FILESYSTEM

Lock the filesystem table entry mutex during all I/O operations.

CYG_SYNCMODE_IO_MOUNTPOINT

Lock the mount table entry mutex during all I/O operations.

CYG_SYNCMODE_SOCK_FILE

Lock the file table entry mutex during all socket operations.

CYG_SYNCMODE_SOCK_NETSTACK

Lock the network stack table entry mutex during all socket operations.

CYG_SYNCMODE_NONE

Perform no locking at all during any operations.

The value of thesyncmode field in the filesystem table entry will be copied by the infrastructure to the open
file object after a successfulopen() operation.

145

Chapter 19. Synchronization

146

Chapter 20. Initialization and Mounting
As mentioned previously, mount table entries can be sourced from two places. Static entries may be defined by
using theMTAB_ENTRY()macro. Such entries will be automatically mounted on system startup. For each entry
in the mount table that has a non-nullnamefield the filesystem table is searched for a match with thefsname
field. If a match is found the filesystem’smount entry is called and if successful the mount table entry marked
valid and thefs field initialized. Themount() function is responsible for initializing theroot field.

The size of the mount table is defined by the configuration valueCYGNUM_FILEIO_MTAB_MAX. Any entries that
have not been statically defined are available for use by dynamic mounts.

A filesystem may be mounted dynamically by callingmount() . This function has the following prototype:

int mount(const char *devname,
const char *dir,

const char *fsname);

The devname argument identifies a device that will be used by this filesystem and will be assigned to the
devname field of the mount table entry.

Thedir argument is the mount point name, it will be assigned to thename field of the mount table entry.

The fsname argument is the name of the implementing filesystem, it will be assigned to thefsname entry
of the mount table entry.

The process of mounting a filesystem dynamically is as follows. First a search is made of the mount table for
an entry with a NULLnamefield to be used for the new mount point. The filesystem table is then searched for
an entry whose name matchesfsname . If this is successful then the mount table entry is initialized and the
filesystem’smount() operation called. If this is successful, the mount table entry is marked valid and thefs
field initialized.

Unmounting a filesystem is done by theumount() function. This can unmount filesystems whether they were
mounted statically or dynamically.

Theumount() function has the following prototype:

int umount(const char *name);

The mount table is searched for a match between thenameargument and the entrynamefield. When a match
is found the filesystem’sumount() operation is called and if successful, the mount table entry is invalidated by
setting itsvalid field false and thename field to NULL.

147

Chapter 20. Initialization and Mounting

148

Chapter 21. Sockets
If a network stack is present, then the FILEIO infrastructure also provides access to the standard BSD socket
calls.

The netstack table contains entries which describe the network protocol stacks that are in the system image.
Each resident stack should export an entry to this table using theNSTAB_ENTRY()macro.

Each table entry has the following structure:

struct cyg_nstab_entry
{

cyg_bool valid; // true if stack initialized
cyg_uint32 syncmode; // synchronization protocol
char *name; // stack name
char *devname; // hardware device name
CYG_ADDRWORD data; // private data value

int (*init)(cyg_nstab_entry *nste);
int (*socket)(cyg_nstab_entry *nste, int domain, int type,

int protocol, cyg_file *file);
};

This table is analogous to a combination of the filesystem and mount tables.

The valid field is settrue if the stack’sinit() function returned successfully and thesyncmode field
contains theCYG_SYNCMODE_SOCK_*bits described above.

Thename field contains the name of the protocol stack.

Thedevname field names the device that the stack is using. This may reference a device under "/dev", or may
be a name that is only meaningful to the stack itself.

The init() function pointer is called during system initialization to start the protocol stack running. If it
returns non-zero thevalid field is set false and the stack will be ignored subsequently.

Thesocket() function is called to attempt to create a socket in the stack. When thesocket() API function
is called the netstack table is scanned and for each valid entry thesocket() function pointer is called. If this
returns non-zero then the scan continues to the next valid stack, or terminates with an error if the end of the
table is reached.

The result of a successful socket call is an initialized file object with thef_xops field pointing to the following
structure:

struct cyg_sock_ops
{

int (*bind) (cyg_file *fp, const sockaddr *sa, socklen_t len);
int (*connect) (cyg_file *fp, const sockaddr *sa, socklen_t len);
int (*accept) (cyg_file *fp, cyg_file *new_fp,

struct sockaddr *name, socklen_t *anamelen);
int (*listen) (cyg_file *fp, int len);
int (*getname) (cyg_file *fp, sockaddr *sa, socklen_t *len, int peer);
int (*shutdown) (cyg_file *fp, int flags);
int (*getsockopt)(cyg_file *fp, int level, int optname,

void *optval, socklen_t *optlen);
int (*setsockopt)(cyg_file *fp, int level, int optname,

const void *optval, socklen_t optlen);

149

Chapter 21. Sockets

int (*sendmsg) (cyg_file *fp, const struct msghdr *m,
int flags, ssize_t *retsize);

int (*recvmsg) (cyg_file *fp, struct msghdr *m,
socklen_t *namelen, ssize_t *retsize);

};

It should be obvious from the names of these functions which API calls they provide support for. The
getname() function pointer provides support for bothgetsockname() and getpeername() while the
sendmsg() and recvmsg() function pointers provide support forsend() , sendto() , sendmsg() , recv() ,
recvfrom() andrecvmsg() as appropriate.

150

Chapter 22. Select
The infrastructure provides support for implementing a select mechanism. This is modeled on the mechanism
in the BSD kernel, but has been modified to make it implementation independent.

The main part of the mechanism is theselect() API call. This processes its arguments and calls the
fo_select() function pointer on all file objects referenced by the file descriptor sets passed to it. If the same
descriptor appears in more than one descriptor set, thefo_select() function will be called separately for
each appearance.

The which argument of thefo_select() function will either beCYG_FREADto test for read conditions,
CYG_FWRITEto test for write conditions or zero to test for exceptions. For each of these options the function
should test whether the condition is satisfied and if so return true. If it is not satisfied then it should call
cyg_selrecord() with the info argument that was passed to the function and a pointer to a cyg_selinfo
structure.

The cyg_selinfo structure is used to record information about current select operations. Any object that needs
to support select must contain an instance of this structure. Separate cyg_selinfo structures should be kept for
each of the options that the object can select on - read, write or exception.

If none of the file objects report that the select condition is satisfied, then theselect() API function puts the
calling thread to sleep waiting either for a condition to become satisfied, or for the optional timeout to expire.

A selectable object must have some asynchronous activity that may cause a select condition to become true -
either via interrupts or the activities of other threads. Whenever a selectable condition is satisfied, the object
should callcyg_selwakeup() with a pointer to the appropriate cyg_selinfo structure. If the thread is still
waiting, this will cause it to wake up and repeat its poll of the file descriptors. This time around, the object that
caused the wakeup should indicate that the select condition is satisfied, and theselect() API call will return.

Note thatselect() does not exhibit real time behaviour: the iterative poll of the descriptors, and the wakeup
mechanism mitigate against this. If real time response to device or socket I/O is required then separate threads
should be devoted to each device of interest and should use blocking calls to wait for a condition to become
ready.

151

Chapter 22. Select

152

Chapter 23. Devices
Devices are accessed by means of a pseudo-filesystem, "devfs", that is mounted on "/dev". Open operations
are translated into calls tocyg_io_lookup() and if successful result in a file object whosef_ops functions
translate filesystem API functions into calls into the device API.

153

Chapter 23. Devices

154

Chapter 24. Writing a New Filesystem
To create a new filesystem it is necessary to define the fstab entry and the file IO operations. The easiest way
to do this is to copy an existing filesystem: either the test filesystem in the FILEIO package, or the RAM or
ROM filesystem packages.

To make this clearer, the following is a brief tour of the FILEIO relevant parts of the RAM filesystem.

First, it is necessary to provide forward definitions of the functions that constitute the filesystem interface:

//==
// Forward definitions

// Filesystem operations
static int ramfs_mount (cyg_fstab_entry *fste, cyg_mtab_entry *mte);
static int ramfs_umount (cyg_mtab_entry *mte);
static int ramfs_open (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

int mode, cyg_file *fte);
static int ramfs_unlink (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
static int ramfs_mkdir (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
static int ramfs_rmdir (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
static int ramfs_rename (cyg_mtab_entry *mte, cyg_dir dir1, const char *name1,

cyg_dir dir2, const char *name2);
static int ramfs_link (cyg_mtab_entry *mte, cyg_dir dir1, const char *name1,

cyg_dir dir2, const char *name2, int type);
static int ramfs_opendir (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

cyg_file *fte);
static int ramfs_chdir (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

cyg_dir *dir_out);
static int ramfs_stat (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

struct stat *buf);
static int ramfs_getinfo (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

int key, void *buf, int len);
static int ramfs_setinfo (cyg_mtab_entry *mte, cyg_dir dir, const char *name,

int key, void *buf, int len);

// File operations
static int ramfs_fo_read (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
static int ramfs_fo_write (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
static int ramfs_fo_lseek (struct CYG_FILE_TAG *fp, off_t *pos, int whence);
static int ramfs_fo_ioctl (struct CYG_FILE_TAG *fp, CYG_ADDRWORD com,

CYG_ADDRWORD data);
static int ramfs_fo_fsync (struct CYG_FILE_TAG *fp, int mode);
static int ramfs_fo_close (struct CYG_FILE_TAG *fp);
static int ramfs_fo_fstat (struct CYG_FILE_TAG *fp, struct stat *buf);
static int ramfs_fo_getinfo (struct CYG_FILE_TAG *fp, int key, void *buf, int len);
static int ramfs_fo_setinfo (struct CYG_FILE_TAG *fp, int key, void *buf, int len);

// Directory operations
static int ramfs_fo_dirread (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
static int ramfs_fo_dirlseek (struct CYG_FILE_TAG *fp, off_t *pos, int whence);

We define all of the fstab entries and all of the file IO operations. We also define alternatives for thefo_read
andfo_lseek file IO operations.

We can now define the filesystem table entry. There is a macro,FSTAB_ENTRYto do this:

155

Chapter 24. Writing a New Filesystem

//==
// Filesystem table entries

// ---
// Fstab entry.
// This defines the entry in the filesystem table.
// For simplicity we use _FILESYSTEM synchronization for all accesses since
// we should never block in any filesystem operations.

FSTAB_ENTRY(ramfs_fste, "ramfs", 0,
CYG_SYNCMODE_FILE_FILESYSTEM|CYG_SYNCMODE_IO_FILESYSTEM,
ramfs_mount,
ramfs_umount,
ramfs_open,
ramfs_unlink,
ramfs_mkdir,
ramfs_rmdir,
ramfs_rename,
ramfs_link,
ramfs_opendir,
ramfs_chdir,
ramfs_stat,
ramfs_getinfo,
ramfs_setinfo);

The first argument to this macro gives the fstab entry a name, the remainder are initializers for the field of the
structure.

We must also define the file operations table that is installed in all open file table entries:

// ---
// File operations.
// This set of file operations are used for normal open files.

static cyg_fileops ramfs_fileops =
{

ramfs_fo_read,
ramfs_fo_write,
ramfs_fo_lseek,
ramfs_fo_ioctl,
cyg_fileio_seltrue,
ramfs_fo_fsync,
ramfs_fo_close,
ramfs_fo_fstat,
ramfs_fo_getinfo,
ramfs_fo_setinfo

};

These all point to functions supplied by the filesystem except thefo_select field which is filled with a
pointer tocyg_fileio_seltrue() . This is provided by the FILEIO package and is a select function that
always returns true to all operations.

Finally, we need to define a set of file operations for use when reading directories. This table only defines the
fo_read andfo_lseek operations. The rest are filled with stub functions supplied by the FILEIO package
that just return an error code.

// ---
// Directory file operations.
// This set of operations are used for open directories. Most entries

156

Chapter 24. Writing a New Filesystem

// point to error-returning stub functions. Only the read, lseek and
// close entries are functional.

static cyg_fileops ramfs_dirops =
{

ramfs_fo_dirread,
(cyg_fileop_write *)cyg_fileio_enosys,
ramfs_fo_dirlseek,
(cyg_fileop_ioctl *)cyg_fileio_enosys,
cyg_fileio_seltrue,
(cyg_fileop_fsync *)cyg_fileio_enosys,
ramfs_fo_close,
(cyg_fileop_fstat *)cyg_fileio_enosys,
(cyg_fileop_getinfo *)cyg_fileio_enosys,
(cyg_fileop_setinfo *)cyg_fileio_enosys

};

If the filesystem wants to have an instance automatically mounted on system startup, it must also define a
mount table entry. This is done with theMTAB_ENTRYmacro. This is an example from the test filesystem of
how this is used:

MTAB_ENTRY(testfs_mte1,
"/",
"testfs",
"",
0);

The first argument provides a name for the table entry. The following arguments provide initialization for the
name, fsname , devname anddata fields respectively.

These definitions are adequate to let the new filesystem interact with the FILEIO package. The new filesystem
now needs to be fleshed out with implementations of the functions defined above. Obviously, the exact form
this takes will depend on what the filesystem is intended to do. Take a look at the RAM and ROM filesystems
for examples of how this has been done.

157

Chapter 24. Writing a New Filesystem

158

VI. PCI Library

Chapter 25. The eCos PCI Library
The PCI library is an optional part of eCos, and is only applicable to some platforms.

PCI Library
The eCos PCI library provides the following functionality:

1. Scan the PCI bus for specific devices or devices of a certain class.

2. Read and change generic PCI information.

3. Read and change device-specific PCI information.

4. Allocate PCI memory and IO space to devices.

5. Translate a device’s PCI interrupts to equivalent HAL vectors.

Example code fragments are from the pci1 test (seeio/pci/ <release >/tests/pci1.c).

All of the functions described below are declared in the header file<cyg/io/pci.h > which all clients of the
PCI library should include.

PCI Overview
The PCI bus supports several address spaces: memory, IO, and configuration. All PCI devices must support
mandatory configuration space registers. Some devices may also present IO mapped and/or memory mapped
resources. Before devices on the bus can be used, they must be configured. Basically, configuration will assign
PCI IO and/or memory address ranges to each device and then enable that device. All PCI devices have a
unique address in configuration space. This address is comprised of a bus number, a device number, and a
function number. Special devices called bridges are used to connect two PCI busses together. The PCI standard
supports up to 255 busses with each bus having up to 32 devices and each device having up to 8 functions.

The environment in which a platform operates will dictate if and how eCos should configure devices on the
PCI bus. If the platform acts as a host on a single PCI bus, then devices may be configured individually from
the relevant device driver. If the platform is not the primary host, such as a PCI card plugged into a PC,
configuration of PCI devices may be left to the PC BIOS. If PCI-PCI bridges are involved, configuration of all
devices is best done all at once early in the boot process. This is because all devices on the secondary side of a
bridge must be evaluated for their IO and memory space requirements before the bridge can be configured.

Initializing the bus
The PCI bus needs to be initialized before it can be used. This only needs to be done once - some HALs may do
it as part of the platform initialization procedure, other HALs may leave it to the application or device drivers
to do it. The following function will do the initialization only once, so it’s safe to call from multiple drivers:

void cyg_pci_init(void);

Scanning for devices
After the bus has been initialized, it is possible to scan it for devices. This is done using the function:

161

Chapter 25. The eCos PCI Library

cyg_bool cyg_pci_find_next(cyg_pci_device_id cur_devid,
cyg_pci_device_id *next_devid);

It will scan the bus for devices starting atcur_devid . If a device is found, its devid is stored innext_devid
and the function returnstrue .

Thepci1 test’s outer loop looks like:

cyg_pci_init();
if (cyg_pci_find_next(CYG_PCI_NULL_DEVID, &devid)) {

do {
<use devid >

} while (cyg_pci_find_next(devid, &devid));
}

What happens is that the bus gets initialized and a scan is started.CYG_PCI_NULL_DEVID causes
cyg_pci_find_next() to restart its scan. If the bus does not contain any devices, the first call to
cyg_pci_find_next() will return false .

If the call returnstrue , a loop is entered where the found devid is used. After devid processing has completed,
the next device on the bus is searched for;cyg_pci_find_next() continues its scan from the current devid.
The loop terminates when no more devices are found on the bus.

This is the generic way of scanning the bus, enumerating all the devices on the bus. But if the application is
looking for a device of a given device class (e.g., a SCSI controller), or a specific vendor device, these functions
simplify the task a bit:

cyg_bool cyg_pci_find_class(cyg_uint32 dev_class,
cyg_pci_device_id *devid);

cyg_bool cyg_pci_find_device(cyg_uint16 vendor, cyg_uint16 device,
cyg_pci_device_id *devid);

They work just likecyg_pci_find_next() , but only return true when the dev_class or vendor/device qualifiers
match those of a device on the bus. The devid serves as both an input and an output operand: the scan starts at
the given device, and if a device is found devid is updated with the value for the found device.

The <cyg/io/pci_cfg.h > header file (included bypci.h) contains definitions for PCI class, vendor and
device codes which can be used as arguments to the find functions. The list of vendor and device codes
is not complete: add new codes as necessary. If possible also register the codes at the PCI Code List
(http://www.yourvote.com/pci) (http://www.yourvote.com/pci) which is where the eCos definitions are
generated from.

Generic config information
When a valid device ID (devid) is found using one of the above functions, the associated device can be queried
and controlled using the functions:

void cyg_pci_get_device_info (cyg_pci_device_id devid,
cyg_pci_device *dev_info);

void cyg_pci_set_device_info (cyg_pci_device_id devid,
cyg_pci_device *dev_info);

The cyg_pci_device structure (defined inpci.h) primarily holds information as described by the PCI specifi-
cation[1]. Thepci1 test prints out some of this information:

// Get device info
cyg_pci_get_device_info(devid, &dev_info);
diag_printf("\n Command 0x%04x, Status 0x%04x\n",

162

Chapter 25. The eCos PCI Library

dev_info.command, dev_info.status);

The command register can also be written to, controlling (among other things) whether the device responds to
IO and memory access from the bus.

Specific config information
The above functions only allow access to generic PCI config registers. A device can have extra config registers
not specified by the PCI specification. These can be accessed with these functions:

void cyg_pci_read_config_uint8(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint8 *val);

void cyg_pci_read_config_uint16(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint16 *val);

void cyg_pci_read_config_uint32(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint32 *val);

void cyg_pci_write_config_uint8(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint8 val);

void cyg_pci_write_config_uint16(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint16 val);

void cyg_pci_write_config_uint32(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint32 val);

The write functions should only be used for device-specific config registers since using them on generic regis-
ters may invalidate the contents of a previously fetched cyg_pci_device structure.

Allocating memory
A PCI device ignores all IO and memory access from the PCI bus until it has been activated. Activation cannot
happen until after device configuration. Configuration means telling the device where it should map its IO and
memory resources. This is done with one of the following functions::

cyg_bool cyg_pci_configure_device(cyg_pci_device *dev_info);
cyg_bool cyg_pci_configure_bus(cyg_uint8 bus, cyg_uint8 *next_bus);

Thecyg_pci_configure_device handles all IO and memory regions that need configuration on non-bridge
devices. On platforms with multiple busses connected by bridges, thecyg_pci_configure_bus function
should be used. It will recursively configure all devices on the givenbus and all subordinate busses.
cyg_pci_configure_bus will use cyg_pci_configure_device to configure individual non-bridge devices.

Each region is represented in the PCI device’s config space by BARs (Base Address Registers) and is handled
individually according to type using these functions:

cyg_bool cyg_pci_allocate_memory(cyg_pci_device *dev_info,
cyg_uint32 bar,
CYG_PCI_ADDRESS64 *base);

cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info,
cyg_uint32 bar,
CYG_PCI_ADDRESS32 *base);

The memory bases (in two distinct address spaces) are increased as memory regions are allocated to devices.
Allocation will fail (the function returns false) if the base exceeds the limits of the address space (IO is 1MB,
memory is 2^32 or 2^64 bytes).

These functions can also be called directly by the application/driver if necessary, but this should not be neces-
sary.

163

Chapter 25. The eCos PCI Library

The bases are initialized with default values provided by the HAL. It is possible for an application to override
these using the following functions:

void cyg_pci_set_memory_base(CYG_PCI_ADDRESS64 base);
void cyg_pci_set_io_base(CYG_PCI_ADDRESS32 base);

When a device has been configured, the cyg_pci_device structure will contain the physical address in the CPU’s
address space where the device’s memory regions can be accessed.

This information is provided inbase_map[] - there is a 32 bit word for each of the device’s BARs. For 32 bit
PCI memory regions, each 32 bit word will be an actual pointer that can be used immediately by the driver:
the memory space will normally be linearly addressable by the CPU.

However, for 64 bit PCI memory regions, some (or all) of the region may be outside of the CPUs address
space. In this case the driver will need to know how to access the region in segments. This functionality may
be adopted by the eCos HAL if deemed useful in the future. The 2GB available on many systems should suffice
though.

Interrupts
A device may generate interrupts. The HAL vector associated with a given device on the bus is platform
specific. This function allows a driver to find the actual interrupt vector for a given device:

cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info,
CYG_ADDRWORD *vec);

If the function returns false, no interrupts will be generated by the device. If it returns true, the
CYG_ADDRWORD pointed to by vec is updated with the HAL interrupt vector the device will be using.
This is how the function is used in thepci1 test:

if (cyg_pci_translate_interrupt(&dev_info, &irq))
diag_printf(" Wired to HAL vector %d\n", irq);

else
diag_printf(" Does not generate interrupts.\n");

The application/drive should attach an interrupt handler to a device’s interrupt before activating the device.

Activating a device
When the device has been allocated memory space it can be activated. This is not done by the library since a
driver may have to initialize more state on the device before it can be safely activated.

Activating the device is done by enabling flags in its command word. As an example, see thepci1 test which
can be configured to enable the devices it finds. This allows these to be accessed from GDB (if a breakpoint is
set oncyg_test_exit):

#ifdef ENABLE_PCI_DEVICES
{

cyg_uint16 cmd;

// Don’t use cyg_pci_set_device_info since it clears
// some of the fields we want to print out below.
cyg_pci_read_config_uint16(dev_info.devid,

CYG_PCI_CFG_COMMAND, &cmd);
cmd |= CYG_PCI_CFG_COMMAND_IO|CYG_PCI_CFG_COMMAND_MEMORY;
cyg_pci_write_config_uint16(dev_info.devid,

164

Chapter 25. The eCos PCI Library

CYG_PCI_CFG_COMMAND, cmd);
}
diag_printf(" **** Device IO and MEM access enabled\n");

#endif

Note: The best way to activate a device is actually through cyg_pci_set_device_info() , but in this partic-
ular case the cyg_pci_device structure contents from before the activation is required for printout further
down in the code.

Links
See these links for more information about PCI:

1. http://www.pcisig.com/ - information on the PCI specifications

2. http://www.yourvote.com/pci/ - list of vendor and device IDs

3. http://www.picmg.org/ - PCI Industrial Computer Manufacturers Group

PCI Library reference
This document defines the PCI Support Library for eCos.

The PCI support library provides a set of routines for accessing the PCI bus configuration space in a portable
manner. This is provided by two APIs. The high level API is used by device drivers, or other code, to access
the PCI configuration space portably. The low level API is used by the PCI library itself to access the hardware
in a platform-specific manner, and may also be used by device drivers to access the PCI configuration space
directly.

Underlying the low-level API is HAL support for the basic configuration space operations. These should not
generally be used by any code other than the PCI library, and are present in the HAL to allow low level
initialization of the PCI bus and devices to take place if necessary.

PCI Library API
The PCI library provides the following routines and types for accessing the PCI configuration space.

The API for the PCI library is found in the header file<cyg/io/pci.h >.

Definitions
The header file contains definitions for the common configuration structure offsets and specimen values for
device, vendor and class code.

165

Chapter 25. The eCos PCI Library

Types and data structures
The following types are defined:

typedef CYG_WORD32 cyg_pci_device_id;

This is comprised of the bus number, device number and functional unit numbers packed into a single
word. The macro CYG_PCI_DEV_MAKE_ID(), in conjunction with the CYG_PCI_DEV_MAKE_DEVFN()

macro, may be used to construct a device id from the bus, device and functional unit numbers. Similarly
the macros CYG_PCI_DEV_GET_BUS(), CYG_PCI_DEV_GET_DEVFN(), CYG_PCI_DEV_GET_DEV(), and
CYG_PCI_DEV_GET_FN()may be used to extract the constituent parts of a device id. It should not be necessary
to use these macros under normal circumstances. The following code fragment demonstrates how these
macros may be used:

// Create a packed representation of device 1, function 0
cyg_uint8 devfn = CYG_PCI_DEV_MAKE_DEVFN(1,0);

// Create a packed devid for that device on bus 2
cyg_pci_device_id devid = CYG_PCI_DEV_MAKE_ID(2, devfn);

diag_printf("bus %d, dev %d, func %d\n",
CYG_PCI_DEV_GET_BUS(devid),
CYG_PCI_DEV_GET_DEV(CYG_PCI_DEV_GET_DEVFN(devid)),
CYG_PCI_DEV_GET_FN(CYG_PCI_DEV_GET_DEVFN(devid));

typedef struct cyg_pci_device;

This structure is used to contain data read from a PCI device’s configuration header by
cyg_pci_get_device_info() . It is also used to record the resource allocations made to the device.

typedef CYG_WORD64 CYG_PCI_ADDRESS64;
typedef CYG_WORD32 CYG_PCI_ADDRESS32;

Pointers in the PCI address space are 32 bit (IO space) or 32/64 bit (memory space). In most platform and
device configurations all of PCI memory will be linearly addressable using only 32 bit pointers as read from
base_map[] .

The 64 bit type is used to allow handling 64 bit devices in the future, should it be necessary, without changing
the library’s API.

Functions
void cyg_pci_init(void);

Initialize the PCI library and establish contact with the hardware. This function is idempotent and can be called
either by all drivers in the system, or just from an application initialization function.

cyg_bool cyg_pci_find_device(cyg_uint16 vendor,
cyg_uint16 device,
cyg_pci_device_id *devid);

Searches the PCI bus configuration space for a device with the givenvendor anddevice ids. The search
starts at the device pointed to bydevid , or at the first slot if it containsCYG_PCI_NULL_DEVID. *devid will
be updated with the ID of the next device found. Returnstrue if one is found andfalse if not.

cyg_bool cyg_pci_find_class(cyg_uint32 dev_class,
cyg_pci_device_id *devid);

166

Chapter 25. The eCos PCI Library

Searches the PCI bus configuration space for a device with the givendev_class class code. The search starts
at the device pointed to bydevid , or at the first slot if it containsCYG_PCI_NULL_DEVID.

*devid will be updated with the ID of the next device found. Returnstrue if one is found andfalse if not.

cyg_bool cyg_pci_find_next(cyg_pci_device_id cur_devid,
cyg_pci_device_id *next_devid);

Searches the PCI configuration space for the next valid device aftercur_devid . If cur_devid is given the
valueCYG_PCI_NULL_DEVID, then the search starts at the first slot. It is permitted fornext_devid to point
to cur_devid . Returnstrue if another device is found andfalse if not.

cyg_bool cyg_pci_find_matching(cyg_pci_match_func *matchp,
void * match_callback_data,

cyg_pci_device_id *devid);

Searches the PCI bus configuration space for a device whose properties match those required by the caller
suppliedcyg_pci_match_func . The search starts at the device pointed to bydevid , or at the first slot
if it containsCYG_PCI_NULL_DEVID. Thedevid will be updated with the ID of the next device found. This
function returnstrue if a matching device is found andfalse if not.

The match_func has a type declared as:

typedef cyg_bool (cyg_pci_match_func)(cyg_uint16 vendor,
cyg_uint16 device,
cyg_uint32 class,
void * user_data);

Thevendor , device , andclass are from the device configuration space. Theuser_data is the callback
data passed tocyg_pci_find_matching .

void cyg_pci_get_device_info (cyg_pci_device_id devid,
cyg_pci_device *dev_info);

This function gets the PCI configuration information for the device indicated indevid . The common fields of
the cyg_pci_device structure, and the appropriate fields of the relevant header union member are filled in from
the device’s configuration space. If the device has not been enabled, then this function will also fetch the size
and type information from the base address registers and place it in thebase_size[] array.

void cyg_pci_set_device_info (cyg_pci_device_id devid,
cyg_pci_device *dev_info);

This function sets the PCI configuration information for the device indicated indevid . Only the configuration
space registers that are writable are actually written. Once all the fields have been written, the device info will
be read back into*dev_info , so that it reflects the true state of the hardware.

void cyg_pci_read_config_uint8(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint8 *val);

void cyg_pci_read_config_uint16(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint16 *val);

void cyg_pci_read_config_uint32(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint32 *val);

These functions read registers of the appropriate size from the configuration space of the given device. They
should mainly be used to access registers that are device specific. General PCI registers are best accessed
throughcyg_pci_get_device_info() .

void cyg_pci_write_config_uint8(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint8 val);

167

Chapter 25. The eCos PCI Library

void cyg_pci_write_config_uint16(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint16 val);

void cyg_pci_write_config_uint32(cyg_pci_device_id devid,
cyg_uint8 offset, cyg_uint32 val);

These functions write registers of the appropriate size to the configuration space of the given device. They
should mainly be used to access registers that are device specific. General PCI registers are best accessed
throughcyg_pci_get_device_info() . Writing the general registers this way may render the contents of a
cyg_pci_device structure invalid.

Resource allocation
These routines allocate memory and I/O space to PCI devices.

cyg_bool cyg_pci_configure_device(cyg_pci_device *dev_info)

Allocate memory and IO space to all base address registers using the current memory and IO base addresses
in the library. The allocated base addresses, translated into directly usable values, will be put into the matching
base_map[] entries in*dev_info . If *dev_info does not contain validbase_size[] entries, then the
result isfalse . This function will also callcyg_pci_translate_interrupt() to put the interrupt vector into
the HAL vector entry.

cyg_bool cyg_pci_configure_bus(cyg_uint8 bus, cyg_uint8 *next_bus)

Allocate memory and IO space to all base address registers on all devices on the given bus and all subordinate
busses. If a PCI-PCI bridge is found onbus , this function will call itself recursively in order to configure
the bus on the other side of the bridge. Because of the nature of bridge devices, all devices on the secondary
side of a bridge must be allocated memory and IO space before the memory and IO windows on the bridge
device can be properly configured. Thenext_bus argument points to the bus number to assign to the next
subordinate bus found. The number will be incremented as new busses are discovered. If successful,true is
returned. Otherwise,false is returned.

cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info,
CYG_ADDRWORD *vec);

Translate the device’s PCI interrupt (INTA#-INTD#) to the associated HAL vector. This may also depend on
which slot the device occupies. If the device may generate interrupts, the translated vector number will be
stored invec and the result istrue . Otherwise the result isfalse .

cyg_bool cyg_pci_allocate_memory(cyg_pci_device *dev_info,
cyg_uint32 bar,
CYG_PCI_ADDRESS64 *base);

cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info,
cyg_uint32 bar,
CYG_PCI_ADDRESS32 *base);

These routines allocate memory or I/O space to the base address register indicated bybar . The base address
in *base will be correctly aligned and the address of the next free location will be written back into it if the
allocation succeeds. If the base address register is of the wrong type for this allocation, ordev_info does
not contain validbase_size[] entries, the result isfalse . These functions allow a device driver to set up its
own mappings if it wants. Most devices should probably usecyg_pci_configure_device() .

void cyg_pci_set_memory_base(CYG_PCI_ADDRESS64 base);
void cyg_pci_set_io_base(CYG_PCI_ADDRESS32 base);

168

Chapter 25. The eCos PCI Library

These routines set the base addresses for memory and I/O mappings to be used by the memory allocation
routines. Normally these base addresses will be set to default values based on the platform. These routines
allow these to be changed by application code if necessary.

PCI Library Hardware API
This API is used by the PCI library to access the PCI bus configuration space. Although it should not normally
be necessary, this API may also be used by device driver or application code to perform PCI bus operations
not supported by the PCI library.

void cyg_pcihw_init(void);

Initialize the PCI hardware so that the configuration space may be accessed.

void cyg_pcihw_read_config_uint8(cyg_uint8 bus,
cyg_uint8 devfn, cyg_uint8 offset, cyg_uint8 *val);

void cyg_pcihw_read_config_uint16(cyg_uint8 bus,
cyg_uint8 devfn, cyg_uint8 offset, cyg_uint16 *val);

void cyg_pcihw_read_config_uint32(cyg_uint8 bus,
cyg_uint8 devfn, cyg_uint8 offset, cyg_uint32 *val);

These functions read a register of the appropriate size from the PCI configuration space at an address composed
from thebus , devfn andoffset arguments.

void cyg_pcihw_write_config_uint8(cyg_uint8 bus,
cyg_uint8 devfn, cyg_uint8 offset, cyg_uint8 val);

void cyg_pcihw_write_config_uint16(cyg_uint8 bus,
cyg_uint8 devfn, cyg_uint8 offset, cyg_uint16 val);

void cyg_pcihw_write_config_uint32(cyg_uint8 bus,
cyg_uint8 devfn, cyg_uint8 offset, cyg_uint32 val);

These functions write a register of the appropriate size to the PCI configuration space at an address composed
from thebus , devfn andoffset arguments.

cyg_bool cyg_pcihw_translate_interrupt(cyg_uint8 bus,
cyg_uint8 devfn,
CYG_ADDRWORD *vec);

This function interrogates the device and determines which HAL interrupt vector it is connected to.

HAL PCI support
HAL support consists of a set of C macros that provide the implementation of the low level PCI API.

HAL_PCI_INIT()

Initialize the PCI bus.

HAL_PCI_READ_UINT8(bus, devfn, offset, val)
HAL_PCI_READ_UINT16(bus, devfn, offset, val)
HAL_PCI_READ_UINT32(bus, devfn, offset, val)

Read a value from the PCI configuration space of the appropriate size at an address composed from thebus ,
devfn andoffset .

HAL_PCI_WRITE_UINT8(bus, devfn, offset, val)

169

Chapter 25. The eCos PCI Library

HAL_PCI_WRITE_UINT16(bus, devfn, offset, val)
HAL_PCI_WRITE_UINT32(bus, devfn, offset, val)

Write a value to the PCI configuration space of the appropriate size at an address composed from thebus ,
devfn andoffset .

HAL_PCI_TRANSLATE_INTERRUPT(bus, devfn, *vec, valid)

Translate the device’s interrupt line into a HAL interrupt vector.

HAL_PCI_ALLOC_BASE_MEMORY
HAL_PCI_ALLOC_BASE_IO

These macros define the default base addresses used to initialize the memory and I/O allocation pointers.

HAL_PCI_PHYSICAL_MEMORY_BASE
HAL_PCI_PHYSICAL_IO_BASE

PCI memory and IO range do not always correspond directly to physical memory or IO addresses. Frequently
the PCI address spaces are windowed into the processor’s address range at some offset. These macros define
offsets to be added to the PCI base addresses to translate PCI bus addresses into physical memory addresses
that can be used to access the allocated memory or IO space.

Note: The chunk of PCI memory space directly addressable though the window by the CPU may be smaller
than the amount of PCI memory actually provided. In that case drivers will have to access PCI memory
space in segments. Doing this will be platform specific and is currently beyond the scope of the HAL.

HAL_PCI_IGNORE_DEVICE(bus, dev, fn)

This macro, if defined, may be used to limit the devices which are found by the bus scanning functions. This
is sometimes necessary for devices which need special handling. If this macro evaluates totrue , the given
device will not be found bycyg_pci_find_next or other bus scanning functions.

HAL_PCI_IGNORE_BAR(dev_info, bar_num)

This macro, if defined, may be used to limit which BARs are discovered and configured. This is sometimes
necessary for platforms with limited PCI windows. If this macro evaluates totrue , the given BAR will not be
discovered bycyg_pci_get_device_info and therefore not configured bycyg_pci_configure_device .

170

VII. FLASH Library

Chapter 26. The eCos FLASH Library
The FLASH library is an optional part of eCos, and is only applicable to some platforms.

FLASH Library
The eCos FLASH library provides the following functionality:

1. Identifying installed device of a FLASH family.

2. Read, erasing and writing to FLASH blocks.

3. Validating an address is within the FLASH.

4. Determining the number and size of FLASH blocks.

The library has a number of limitations:

1. Only one family of FLASH device may be supported at once.

2. Multiple devices of one family are supported, but they must be contiguous in memory.

3. The library is not thread or interrupt safe under some conditions.

4. The library currently does not use the eCos naming convention for its functions. This may change in the
future but backward compatibility is likely to be kept.

All of the functions described below are declared in the header file<cyg/io/flash.h.h > which all users of
the FLASH library should include.

Initializing the FLASH library
The FLASH library needs to be initialized before other FLASH operations can be performed. This only needs
to be done once. The following function will only do the initialization once so it’s safe to call multiple times:

externC int flash_init(_printf *pf); typedef int
_printf(const char *fmt, ...);

The parameterpf is a pointer to a function which is to be used for diagnostic output. Typically the
function diag_printf() will be passed. Normally this function is not used by the higher layer of the
library unlessCYGSEM_IO_FLASH_CHATTERis enabled. Passing aNULL is not recommended, even when
CYGSEM_IO_FLASH_CHATTER is disabled. The lower layers of the library may unconditionally call this
function, especially when errors occur, probably resulting in a more serious error/crash!.

Retrieving information about the FLASH
The following four functions return information about the FLASH.

externC int flash_get_block_info(int *block_size, int *blocks);
externC int flash_get_limits(void *target, void **start, void **end);
externC int flash_verify_addr(void *target);
externC bool flash_code_overlaps(void *start, void *end);

The functionflash_get_block_info() returns the size and number of blocks. When the device has a mixture
of block sizes, the size of the "normal" block will be returned. Please read the source code to determine exactly

173

Chapter 26. The eCos FLASH Library

what this means.flash_get_limits() returns the lower and upper memory address the FLASH occupies. The
target parameter is current unused.flash_verify_addr() tests if the target addresses is within the flash,
returningFLASH_ERR_OKif so. Lastly,flash_code_overlaps() checks if the executing code is resident in
the section of flash indicated bystart and end . If this function returns true, erase and program operations
within this range are very likely to cause the target to crash and burn horribly. Note the FLASH library does
allow you to shoot yourself in the foot in this way.

Reading from FLASH
There are two methods for reading from FLASH. The first is to use the following function.

externC int flash_read(void *flash_base, void *ram_base, int len, void **err_address);

flash_base is where in the flash to read from.ram_base indicates where the data read from flash should
be placed into RAM.len is the number of bytes to be read from the FLASH anderr_address is used to
return the location in FLASH that any error occurred while reading.

The second method is to simplymemcpy() directly from the FLASH. This is not recommended since some
types of device cannot be read in this way, eg NAND FLASH. Using the FLASH library function to read the
FLASH will always work so making it easy to port code from one FLASH device to another.

Erasing areas of FLASH
Blocks of FLASH can be erased using the following function:

externC int flash_erase(void *flash_base, int len, void **err_address);

flash_base is where in the flash to erase from.len is the minimum number of bytes to erase in the FLASH
anderr_address is used to return the location in FLASH that any error occurred while erasing. It should
be noted that FLASH devices are block oriented when erasing. It is not possible to erase a few bytes within a
block, the whole block will be erased.flash_base may be anywhere within the first block to be erased and
flash_base+len maybe anywhere in the last block to be erased.

Programming the FLASH
Programming of the flash is achieved using the following function.

externC int flash_program(void *flash_base, void *ram_base, int len, void **err_address);

flash_base is where in the flash to program from.ram_base indicates where the data to be programmed
into FLASH should be read from in RAM.len is the number of bytes to be program into the FLASH and
err_address is used to return the location in FLASH that any error occurred while programming.

Locking and unlocking blocks
Some flash devices have the ability to lock and unlock blocks. A locked block cannot be erased
or programmed without it first being unlocked. For devices which support this feature and when
CYGHWR_IO_FLASH_BLOCK_LOCKINGis enabled then the following two functions are available:

externC int flash_lock(void *flash_base, int len, void **err_address);
externC int flash_unlock(void *flash_base, int len, void **err_address);

174

Chapter 26. The eCos FLASH Library

Return values and errors
All the functions above, exceptflash_code_overlaps() return one of the following return values.

FLASH_ERR_OK No error - operation complete
FLASH_ERR_INVALID Invalid FLASH address
FLASH_ERR_ERASE Error trying to erase
FLASH_ERR_LOCK Error trying to lock/unlock
FLASH_ERR_PROGRAM Error trying to program
FLASH_ERR_PROTOCOL Generic error
FLASH_ERR_PROTECT Device/region is write-protected
FLASH_ERR_NOT_INIT FLASH info not yet initialized
FLASH_ERR_HWR Hardware (configuration?) problem
FLASH_ERR_ERASE_SUSPEND Device is in erase suspend mode
FLASH_ERR_PROGRAM_SUSPEND Device is in program suspend mode
FLASH_ERR_DRV_VERIFY Driver failed to verify data
FLASH_ERR_DRV_TIMEOUT Driver timed out waiting for device
FLASH_ERR_DRV_WRONG_PART Driver does not support device
FLASH_ERR_LOW_VOLTAGE Not enough juice to complete job

To turn an error code into a human readable string the following function can be used:

externC char *flash_errmsg(int err);

Notes on using the FLASH library
The FLASH library evolved from the needs and environment of RedBoot rather than being a general purpose
eCos component. This history explains some of the problems with the library.

The library is not thread safe. Multiple simultaneous calls to its library functions will likely fail and may cause
a crash. It is the callers responsibility to use the necessary mutex’s if needed.

FLASH devices cannot be read from when an erase or write operation is active. This means it is not possible
to execute code from flash while an erase or write operation is active. It is possible to use the library when
the executable image is resident in FLASH. The low level drivers are written such that the linker places the
functions that actually manipulate the flash into RAM. However the library may not be interrupt safe. An
interrupt must not cause execution of code that is resident in FLASH. This may be the image itself, or RedBoot.
In some configurations of eCos, ^C on the serial port or debugging via Ethernet may cause an interrupt handler
to call RedBoot. If RedBoot is resident in FLASH this will cause a crash. Similarly, if another thread invokes
a virtual vector function to access RedBoot, eg to perform adiag_printf() a crash could result.

Thus with a ROM based image or a ROM based Redboot it is recommended to disable interrupts while erasing
or programming flash. Using both a ROMRAM or RAM images and a ROMRAM or RAM RedBoot are safe
and there is no need to disable interrupts. Similarly,

Danger, Will Robinson! Danger!
Unlike nearly every other aspect of embedded system programming, getting it wrong with FLASH devices can
render your target system useless. Most targets have a boot loader in the FLASH. Without this boot loader the
target will obviously not boot. So before starting to play with this library its worth investigating a few things.
How do you recover your target if you delete the boot loader? Do you have the necessary JTAG cable? Or is
specialist hardware needed? Is it even possible to recover the target boards or must it be thrown into the rubbish
bin? How does killing the board affect your project schedule?

175

Chapter 26. The eCos FLASH Library

176

VIII. SPI Support

Overview

Name
Overview — eCos Support for SPI, the Serial Peripheral Interface

Description
The Serial Peripheral Interface (SPI) is one of a number of serial bus technologies. It can be used to connect a
processor to one or more peripheral chips, for example analog-to-digital convertors or real time clocks, using
only a small number of pins and PCB tracks. The technology was originally developed by Motorola but is now
also supported by other vendors.

A typical SPI system might look like this:

At the start of a data transfer the master cpu asserts one of the chip select signals and then generates a clock
signal. During each clock tick the cpu will output one bit on its master-out-slave-in line and read one bit on the
master-in-slave-out line. Each device is connected to the clock line, the two data lines, and has its own chip
select. If a device’s chip select is not asserted then it will ignore any incoming data and will tristate its output.
If a device’s chip select is asserted then during each clock tick it will read one bit of data on its input pin and
output one bit on its output pin.

The net effect is that the cpu can write an arbitrary amount of data to one of the attached devices at a time,
and simultaneously read the same amount of data. Some devices are inherently uni-directional. For example
an LED unit would only accept data from the cpu: it will not send anything meaningful back; the cpu will still
sample its input every clock tick, but this should be discarded.

A useful feature of SPI is that there is no flow control from the device back to the cpu. If the cpu tries to
communicate with a device that is not currently present, for example an MMC socket which does not contain

179

Overview

a card, then the I/O will still proceed. However the cpu will read random data. Typically software-level CRC
checksums or similar techniques will be used to allow the cpu to detect this.

SPI communication is not fully standardized. Variations between devices include the following:

1. Many devices involve byte transfers, where the unit of data is 8 bits. Others use larger units, up to 16 bits.

2. Chip selects may be active-high or active-low. If the attached devices use a mixture of polarities then this
can complicate things.

3. Clock rates can vary from 128KHz to 20MHz or greater. With some devices it is necessary to interrogate
the device using a slow clock, then use the obtained information to select a faster clock for subsequent
transfers.

4. The clock is inactive between data transfers. When inactive the clock’s polarity can be high or low.

5. Devices depend on the phase of the clock. Data may be sampled on either the rising edge or the falling
edge of the clock.

6. A device may need additional delays, for example between asserting the chip select and the first clock
tick.

7. Some devices involve complicated transactions: perhaps a command from cpu to device; then an initial
status response from the device; a data transfer; and a final status response. From the cpu’s perspective
these are separate stages and it may be necessary to abort the operation after the initial status response.
However the device may require that the chip select remain asserted for the whole transaction. A side effect
of this is that it is not possible to do a quick transfer with another device in the middle of the transaction.

8. Certain devices, for example MMC cards, depend on a clock signal after a transfer has completed and the
chip select has dropped. This clock is used to finish some processing within the device.

Inside the cpu the clock and data signals are usually managed by dedicated hardware. Alternatively SPI can
be implemented using bit-banging, but that approach is normally used for other serial bus technologies such as
I2C. The chip selects may also be implemented by the dedicated SPI hardware, but often GPIO pins are used
instead.

eCos Support for SPI
The eCos SPI support for any given platform is spread over a number of different packages:

• This package,CYGPKG_IO_SPI, exports an API for accessing devices attached to an SPI bus. This API
handles issues such as locking between threads. The package does not contain any hardware-specific code,
instead it will call into an SPI bus driver package.

In future this package may be extended with a bit-banging implementation of an SPI bus driver. This would
depend on lower-level code for manipulating the GPIO pins used for the clock, data and chip select signals,
but timing and framing could be handled by generic code.

• There will be a bus driver package for the specific SPI hardware on the target hardware, for example
CYGPKG_DEVS_SPI_MCF52xx_QSPI. This is responsible for the actual I/O. A bus driver may be used on
many different boards, all with the same SPI bus but with different devices attached to that bus. Details of
the actual devices should be supplied by other code.

• The generic API depends on cyg_spi_device data structures. These contain the information needed by a
bus driver, for example the appropriate clock rate and the chip select to use. Usually the data structures are
provided by the platform HAL since it is that package which knows about all the devices on the board.

180

Overview

On some development boards the SPI pins are brought out to expansion connectors, allowing end users to
add extra devices. In such cases the platform HAL may not know about all the devices on the board. Data
structures for the additional devices can instead be supplied by application code.

• Some types of SPI devices may have their own driver package. For example one common use for SPI buses
is to provide low-cost MultiMediaCard (MMC) support. An MMC is a non-trivial device so there is an eCos
package specially for that, providing a block device interface for higher-level code such as file systems.
Other SPI devices such as analog-to-digital converters are much simpler and come in many varieties. There
are no dedicated packages to support each such device: the chances are low that another board would use
the exact same device, so there are no opportunities for code re-use. Instead the devices may be accessed
directly by application code or by extra functions in the platform HAL.

Typically all appropriate packages will be loaded automatically when you configure eCos for a given target. If
the application does not use of the SPI I/O facilities, directly or indirectly, then linker garbage collection should
eliminate all unnecessary code and data. All necessary initialization should happen automatically. However
the exact details may depend on the target, so the platform HAL documentation should be checked for further
details.

There is one important exception to this: if the SPI devices are attached to an expansion connector then the
platform HAL will not know about these devices. Instead more work will have to be done by application code.

181

Overview

182

SPI Interface

Name
SPI Functions — allow applications and other packages to access SPI devices

Synopsis

#include <cyg/io/spi.h >

void cyg_spi_transfer (cyg_spi_device* device , cyg_bool polled , cyg_uint32 count , const
cyg_uint8* tx_data , cyg_uint8* rx_data);
void cyg_spi_tick (cyg_spi_device* device , cyg_bool polled , cyg_uint32 count);
int cyg_spi_get_config (cyg_spi_device* device , cyg_uint32 key , void* buf , cyg_uint32*
len);
int cyg_spi_set_config (cyg_spi_device* device , cyg_uint32 key , const void* buf ,
cyg_uint32* len);
void cyg_spi_transaction_begin (cyg_spi_device* device);
cyg_bool cyg_spi_transaction_begin_nb (cyg_spi_device* device);
void cyg_spi_transaction_transfer (cyg_spi_device* device , cyg_bool polled , cyg_uint32
count , const cyg_uint8* tx_data , cyg_uint8* rx_data , cyg_bool drop_cs);
void cyg_spi_transaction_tick (cyg_spi_device* device , cyg_bool polled , cyg_uint32
count);
void cyg_spi_transaction_end (cyg_spi_device* device);

Description
All SPI functions take a pointer to a cyg_spi_device structure as their first argument. This is an opaque data
structure, usually provided by the platform HAL. It contains the information needed by the SPI bus driver to
interact with the device, for example the required clock rate and polarity.

An SPI transfer involves the following stages:

1. Perform thread-level locking on the bus. Only one thread at a time is allowed to access an SPI bus. This
eliminates the need to worry about locking at the bus driver level. If a platform involves multiple SPI buses
then each one will have its own lock. Prepare the bus for transfers to the specified device, for example by
making sure it will tick at the right clock rate.

2. Assert the chip select on the specified device, then transfer data to and from the device. There may be
a single data transfer or a sequence. It may or may not be necessary to keep the chip select asserted
throughout a sequence.

3. Optionally generate some number of clock ticks without asserting a chip select, for those devices which
need this to complete an operation.

4. Return the bus to a quiescent state. Then unlock the bus, allowing other threads to perform SPI operations
on devices attached to this bus.

The simple functionscyg_spi_transfer andcyg_spi_tick perform all these steps in a single call. These
are suitable for simple I/O operations. The alternative transaction-oriented functions each perform just one of
these steps. This makes it possible to perform multiple transfers while only locking and unlocking the bus
once, as required for more complicated devices.

183

SPI Interface

With the exception ofcyg_spi_transaction_begin_nb all the functions will block until completion. There
are no error conditions. An SPI transfer will always take a predictable amount of time, depending on the
transfer size and the clock rate. The SPI bus does not receive any feedback from a device about possible errors,
instead those have to be handled by software at a higher level. If a thread cannot afford the time it will take to
perform a complete large transfer then a number of smaller transfers can be used instead.

SPI operations should always be performed at thread-level or during system initialization, and not inside an ISR
or DSR. This greatly simplifies locking. Also a typical ISR or DSR should not perform a blocking operation
such as an SPI transfer.

SPI transfers can happen in either polled or interrupt-driven mode. Typically polled mode should be used dur-
ing system initialization, before the scheduler has been started and interrupts have been enabled. Polled mode
should also be used in single-threaded applications such as RedBoot. A typical multi-threaded application
should normally use interrupt-driven mode because this allows for more efficient use of cpu cycles. Polled
mode may be used in a multi-threaded application but this is generally undesirable: the cpu will spin while
waiting for a transfer to complete, wasting cycles; also the current thread may get preempted or timesliced,
making the timing of an SPI transfer much less predictable. On some hardware interrupt-driven mode is impos-
sible or would be very inefficient. In such cases the bus drivers will only support polled mode and will ignore
thepolled argument.

Simple Transfers
cyg_spi_transfer can be used for SPI operations to simple devices. It takes the following arguments:

cyg_spi_device*device

This identifies the SPI device that should be used.

cyg_boolpolled

Polled mode should be used during system initialization and in a single-threaded application. Interrupt-
driven mode should normally be used in a multi-threaded application.

cyg_uint32count

This identifies the number of data items to be transferred. Usually each data item is a single byte, but
some devices use a larger size up to 16 bits.

const cyg_uint8*tx_data

The data to be transferred to the device. If the device will only output data and ignore its input then a
null pointer can be used. Otherwise the array should containcount data items, usually bytes. For devices
where each data item is larger than one byte the argument will be interpreted as an array of shorts instead,
and should be aligned to a 2-byte boundary. The bottom n bits of each short will be sent to the device.
The buffer need not be aligned to a cache-line boundary, even for SPI devices which use DMA transfers,
but some bus drivers may provide better performance if the buffer is suitably aligned. The buffer will not
be modified by the transfer.

cyg_uint8*rx_data

A buffer for the data to be received from the device. If the device does not generate any output then a null
pointer can be used. The same size and alignment rules apply as fortx_data .

cyg_spi_transfer performs all the stages of an SPI transfer: locking the bus; setting it up correctly for the
specified device; asserting the chip select and transferring the data; dropping the chip select at the end of the
transfer; returning the bus to a quiescent state; and unlocking the bus.

184

SPI Interface

Additional Clock Ticks
Some devices require a number of clock ticks on the SPI bus between transfers so that they can complete some
internal processing. These ticks must happen at the appropriate clock rate but no chip select should be asserted
and no data transfer will happen.cyg_spi_tick provides this functionality. Thedevice argument identifies
the SPI bus, the required clock rate and the size of each data item. Thepolled argument has the usual meaning.
Thecount argument specifies the number of data items that would be transferred, which in conjunction with
the size of each data item determines the number of clock ticks.

Transactions
A transaction-oriented API is available for interacting with more complicated devices. This provides separate
functions for each of the steps in an SPI transfer.

cyg_spi_transaction_begin must be used at the start of a transaction. This performs thread-level locking
on the bus, blocking if it is currently in use by another thread. Then it prepares the bus for transfers to the
specified device, for example by making sure it will tick at the right clock rate.

cyg_spi_transaction_begin_nb is a non-blocking variant, useful for threads which cannot afford to block
for an indefinite period. If the bus is currently locked the function returns false immediately. If the bus is not
locked then it acts ascyg_spi_transaction_begin and returns true.

Once the bus has been locked it is possible to perform one or more data transfers by calling
cyg_spi_transaction_transfer . This takes the same arguments ascyg_spi_transfer , plus an additional
one drop_cs . A non-zero value specifies that the device’s chip select should be dropped at the end of the
transfer, otherwise the chip select remains asserted. It is essential that the chip select be dropped in the final
transfer of a transaction. If the protocol makes this difficult thencyg_spi_transaction_tick can be used to
generate dummy ticks with all chip selects dropped.

If the device requires additional clock ticks in the middle of a transaction without being selected,
cyg_spi_transaction_tick can be used. This will drop the device’s chip select if necessary, then generate
the appropriate number of ticks. The arguments are the same as forcyg_spi_tick .

cyg_spi_transaction_end should be called at the end of a transaction. It returns the SPI bus to a quiescent
state, then unlocks it so that other threads can perform I/O.

A typical transaction might involve the following. First a command should be sent to the device, consisting
of four bytes. The device will then respond with a single status byte, zero for failure, non-zero for success. If
successful then the device can accept another n bytes of data, and will generate a 2-byte response including a
checksum. The device’s chip select should remain asserted throughout. The code for this would look something
like:

#include <cyg/io/spi.h >

#include <cyg/hal/hal_io.h > // Defines the SPI devices
...

cyg_spi_transaction_begin(&hal_spi_eprom);
// Interrupt-driven transfer, four bytes of command
cyg_spi_transaction_transfer(&hal_spi_eprom, 0, 4, command, NULL, 0);
// Read back the status
cyg_spi_transaction_transfer(&hal_spi_eprom, 0, 1, NULL, status, 0);
if (!status[0]) {

// Command failed, generate some extra ticks to drop the chip select
cyg_spi_transaction_tick(&hal_spi_eprom, 0, 1);

} else {
// Transfer the data, then read back the final status. The
// chip select should be dropped at the end of this.
cyg_spi_transaction_transfer(&hal_spi_eprom, 0, n, data, NULL, 0);

185

SPI Interface

cyg_spi_transaction_transfer(&hal_spi_eprom, 0, 2, NULL, status, 1);
// Code for checking the final status should go here

}
// Transaction complete so clean up
cyg_spi_transaction_end(&hal_spi_eprom);

A number of variations are possible. For example the command and status could be packed into the beginning
and end of two 5-byte arrays, allowing a single transfer.

Device Configuration
The functions cyg_spi_get_config and cyg_spi_set_config can be used to examine and
change parameters associated with SPI transfers. The only keys that are defined for all devices are
CYG_IO_GET_CONFIG_SPI_CLOCKRATEandCYG_IO_SET_CONFIG_SPI_CLOCKRATE. Some types of device, for
example MMC cards, support a range of clock rates. The cyg_spi_device structure will be initialized with a
low clock rate. During system initialization the device will be queried for the optimal clock rate, and the
cyg_spi_device should then be updated. The argument should be a clock rate in Hertz. For example the
following code switches communication to 1Mbit/s:

cyg_uint32 new_clock_rate = 1000000;
cyg_uint32 len = sizeof(cyg_uint32);
if (cyg_spi_set_config(&hal_mmc_device,

CYG_IO_SET_CONFIG_SPI_CLOCKRATE,
(const void *)&new_clock_rate, &len)) {

// Error recovery code
}

If an SPI bus driver does not support the exact clock rate specified it will normally use the nearest valid one.
SPI bus drivers may define additional keys appropriate for specific hardware. This means that the valid keys
are not known by the generic code, and theoretically it is possible to use a key that is not valid for the SPI
bus to which the device is attached. It is also possible that the argument used with one of these keys is invalid.
Hence bothcyg_spi_get_config andcyg_spi_set_config can return error codes. The return value will be
0 for success, non-zero for failure. The SPI bus driver’s documentation should be consulted for further details.

Both configuration functions will lock the bus, in the same way ascyg_spi_transfer . Changing the clock
rate in the middle of a transfer or manipulating other parameters would have unexpected consequences.

186

Porting to New Hardware

Name
Porting — Adding SPI support to new hardware

Description
Adding SPI support to an eCos port can take two forms. If there is already an SPI bus driver for the target
hardware then both that driver and this generic SPI packageCYGPKG_IO_SPIshould be included in the ecos.db
target entry. Typically the platform HAL will need to supply some platform-specific information needed by the
bus driver. In addition the platform HAL should provide cyg_spi_device structures for every device attached to
the bus. The exact details of this depend on the bus driver so its documentation should be consulted for further
details. If there is no suitable SPI bus driver yet then a new driver package will have to be written.

Adding a Device
The generic SPI packageCYGPKG_IO_SPIdefines a data structure cyg_spi_device. This contains the informa-
tion needed by the generic package, but not the additional information needed by a bus driver to interact with
the device. Each bus driver will define a larger data structure, for example cyg_mcf52xx_qspi_device, which
contains a cyg_spi_device as its first field. This is analogous to C++ base and derived classes, but without any
use of virtual functions. The bus driver package should be consulted for the details.

During initialization an SPI bus driver may need to know about all the devices attached to that bus. For example
it may need to know which cpu pins should be configured as chip selects rather than GPIO pins. To achieve
this all device definitions should specify the particular bus to which they are attached, for example:

struct cyg_mcf52xx_qspi_device hal_spi_atod = {
.spi_common.spi_bus = &cyg_mcf52xx_qspi_bus,
...

} CYG_SPI_DEVICE_ON_BUS(0);

The CYG_SPI_DEVICE_ON_BUSmacro adds information to the structure which causes the linker to group all
such structures in a single table. The bus driver’s initialization code can then iterate over this table.

Adding Bus Support
An SPI bus driver usually involves a new hardware package. This needs to perform the following:

1. Define a device structure which contains a cyg_spi_device as its first element. This should contain all the
information needed by the bus driver to interact with a device on that bus.

2. Provide functions for the following operations:
spi_transaction_begin
spi_transaction_transfer
spi_transaction_tick
spi_transaction_end
spi_get_config
spi_set_config

These correspond to the main API functions, but can assume that the bus is already locked so no other
thread will be manipulating the bus or any of the attached devices. Some of these operations may be

187

Porting to New Hardware

no-ops.

3. Define a bus structure which contains a cyg_spi_bus as its first element. This should contain any additional
information needed by the bus driver.

4. Optionally, instantiate the bus structure. The instance should have a well-known name since it needs to be
referenced by the device structure initializers. For some drivers it may be best to create the bus inside the
driver package. For other drivers it may be better to leave this to the platform HAL or the application. It
depends on how much platform-specific knowledge is needed to fill in the bus structure.

5. Create a HAL table for the devices attached to this bus.

6. Arrange for the bus to be initialized early on during system initialization. Typically this will happen
via a prioritized static constructor. As part of this initialization the bus driver should invoke the
CYG_SPI_BUS_COMMON_INITmacro on its cyg_spi_bus field.

7. Provide the appropriate documentation, including details of how the SPI device structures should be ini-
tialized.

There are no standard SPI testcases. It is not possible to write SPI code without knowing about the devices
attached to the bus, and those are inherently hardware-specific.

188

IX. I2C Support

189

Porting to New Hardware

190

Overview

Name
Overview — eCos Support for I2C, the Inter IC Bus

Description
The Inter IC Bus (I2C) is one of a number of serial bus technologies. It can be used to connect a processor to
one or more peripheral chips, for example analog-to-digital convertors or real time clocks, using only a small
number of pins and PCB tracks. The technology was originally developed by Philips Semiconductors but is
supported by many other vendors. The bus specification is freely available.

In a typical I2C system the processor acts as the I2C bus master. The peripheral chips act as slaves. The bus
consists of just two wires: SCL carries a clock signal generated by the master, and SDA is a bi-directional data
line. The normal clock frequency is 100KHz. Each slave has a 7-bit address. With some chips the address is
hard-wired, and it is impossible to have two of these chips on the same bus. With other chips it is possible to
choose between one of a small number of addresses by connecting spare pins to either VDD or GND.

An I2C data transfer involves a number of stages:

1. The bus master generates a start condition, a high-to-low transition on the SDA line while SCL is kept
high. This signalling cannot occur during data transfer.

2. The bus master clocks the 7-bit slave address onto the SDA line, followed by a direction bit to distinguish
between reads and writes.

3. The addressed device acknowledges. If the master does not see an acknowledgement then this suggests it
is using the wrong address for the slave device.

4. If the master is transmitting data to the slave then it will send this data one byte at a time. The slave
acknowledges each byte. If the slave is unable to accept more data, for example because it has run out of
buffer space, then it will generate a nack and the master should stop sending.

5. If the master is receiving data from the slave then the slave will send this data one byte at a time. The
master should acknowledge each byte, until the last one. When the master has received all the data it
wants it should generate a nack and the slave will stop sending. This nack is essential because it causes
the slave to stop driving the SDA line, releasing it back to the master.

6. It is possible to switch direction in a single transfer, using what is known as a repeated start. This involves
generating another start condition, sending the 7-bit address again, followed by a new direction bit.

7. At the end of a transfer the master should generate a stop condition, a low-to-high transition on the SDA
line while SCL is kept high. Again this signalling does not occur at other times.

There are a number of extensions. The I2C bus supports multiple bus masters and there is an arbitration pro-
cedure to allow a master to claim the bus. Some devices can have 10-bit addresses rather than 7-bit addresses.
There is a fast mode operating at 400KHz instead of the usual 100KHz, and a high-speed mode operating at
3.4MHz. Currently most I2C-based systems do not involve any of these extensions.

At the hardware level I2C bus master support can be implemented in one of two ways. Some processors provide
a dedicated I2C device, with the hardware performing much of the work. On other processors the I2C device
is implemented in software, by bit-banging some GPIO pins. The latter approach can consume a significant
number of cpu cycles, but is often acceptable because only occasional access to the I2C devices is needed.

191

Overview

eCos Support for I2C
The eCos I2C support for any given platform is spread over a number of different packages:

• This package,CYGPKG_IO_I2C, exports a generic API for accessing devices attached to an I2C bus. This API
handles issues such as locking between threads. The package does not contain any hardware-specific code.
Instead it will use a separate I2C bus driver to handle the hardware, and it defines the interface that such bus
drivers should provide. The package only provides support for a bus master, not for acting as a slave device.

CYGPKG_IO_I2Calso provides the hardware-independent portion of a bit-banged bus implementation. This
needs to be complemented by a hardware-specific function that actually manipulates the SDA and SCL lines.

• If the processor has a dedicated I2C device then there will be a bus driver package for that hardware. The
processor may be used on many different platforms and the same bus driver can be used on each one. The
actual I2C devices attached to the bus will vary from one platform to the next.

• The generic API depends on cyg_i2c_device data structures. These contain the information needed by a bus
driver, for example the device address. Usually the data structures are provided by the platform HAL since
it is that package which knows about all the devices on the platform.

On some development boards the I2C lines are brought out to expansion connectors, allowing end users to
add extra devices. In such cases the platform HAL may not know about all the devices on the board. Data
structures for the additional devices can instead be supplied by application code.

• If the board uses a bit-banged bus then typically the platform HAL will also instantiate the bus instance,
providing the function that handles the low-level SDA and SCL manipulation. Usually this code cannot be
shared because each board may use different GPIO pins for driving SCL and SDA, so the code belongs in
the platform HAL rather than in a separate package.

• Some types of I2C devices may have their own driver package. For example a common type of I2C device
is a battery-backed wallclock, and eCos defines how these devices should be supported. Such an I2C device
will have its own wallclock device driver and the device will not be accessed directly by application code.
For other types of device eCos does not define an API and there will not be separate device driver packages.
Instead application code is expected to use the cyg_i2c_device structures directly to access the hardware.

Typically all appropriate packages will be loaded automatically when you configure eCos for a given platform.
If the application does not use any of the I2C I/O facilities, directly or indirectly, then linker garbage collec-
tion should eliminate all unnecessary code and data. All necessary initialization should happen automatically.
However the exact details may depend on the platform, so the platform HAL documentation should be checked
for further details.

There is one important exception to this: if the I2C devices are attached to an expansion connector then the
platform HAL will not know about these devices. Instead more work will have to be done by application code.

192

I2C Interface

Name
I2C Functions — allow applications and other packages to access I2C devices

Synopsis

#include <cyg/io/i2c.h >

cyg_uint32 cyg_i2c_tx (const cyg_i2c_device* device , const cyg_uint8* tx_data ,
cyg_uint32 count);
cyg_uint32 cyg_i2c_rx (const cyg_i2c_device* device , cyg_uint8* rx_data , cyg_uint32
count);
void cyg_i2c_transaction_begin (const cyg_i2c_device* device);
cyg_bool cyg_i2c_transaction_begin_nb (const cyg_i2c_device* device);
cyg_uint32 cyg_i2c_transaction_tx (const cyg_i2c_device* device , cyg_bool send_start ,
const cyg_uint8* tx_data , cyg_uint32 count , cyg_bool send_stop);
cyg_uint32 cyg_i2c_transaction_rx (const cyg_i2c_device* device , cyg_bool send_start ,
cyg_uint8* rx_data , cyg_uint32 count , cyg_bool send_nack , cyg_bool send_stop);
void cyg_i2c_transaction_stop (const cyg_i2c_device* device);
void cyg_i2c_transaction_end (const cyg_i2c_device* device);

Description
All I2C functions take a pointer to a cyg_i2c_device structure as their first argument. These structures are
usually provided by the platform HAL. They contain the information needed by the I2C bus driver to interact
with the device, for example the device address.

An I2C transaction involves the following stages:

1. Perform thread-level locking on the bus. Only one thread at a time is allowed to access an I2C bus. This
eliminates the need to worry about locking at the bus driver level. If a platform involves multiple I2C buses
then each one will have its own lock.

2. Generate a start condition, send the address and direction bit, and wait for an acknowledgement from the
addressed device.

3. Either transmit data to or receive data from the addressed device.

4. The previous two steps may be repeated several times, allowing data to move in both directions during a
single transfer.

5. Generate a stop condition, ending the current data transfer. It is now possible to start another data transfer
while the bus is still locked, if desired.

6. End the transaction by unlocking the bus, allowing other threads to access other devices on the bus.

The simple functionscyg_i2c_tx and cyg_i2c_rx perform all these steps in a single call, making them
suitable for many I/O operations. The alternative transaction-oriented functions provide greater control when
appropriate, for example if a repeated start is necessary for a bi-directional data transfer.

With the exception ofcyg_i2c_transaction_begin_nb all the functions will block until completion. The tx
routines will return 0 if the specified device does not respond to its address, or the number of bytes actually

193

I2C Interface

transferred. This may be less than the number requested if the device sends an early nack, for example because
it has run out of buffer space. The rx routines will return 0 or the number of bytes received. Usually this will
be the same as thecount parameter. A slave device has no way of indicating to the master that no more data is
available, so the rx operation cannot complete early.

I2C operations should always be performed at thread-level or during system initialization, and not inside an ISR
or DSR. This greatly simplifies locking. Also a typical ISR or DSR should not perform a blocking operation
such as an I2C transfer.

Simple Transfers
cyg_i2c_tx andcyg_i2c_rx can be used for simple data transfers. They both go through the following steps:
lock the bus, generate the start condition, send the device address and the direction bit, either send or receive
the data, generate the stop condition, and unlock the bus. At the end of a transfer the bus is back in its idle
state, ready for the next transfer.

cyg_i2c_tx returns the number of bytes actually transmitted. This may be 0 if the device does not respond
when its address is sent out. It may be less than the number of bytes requested if the device generates an early
nack, typically because it has run out of buffer space.

cyg_i2c_rx returns 0 if the device does not respond when its address is sent out, or the number of bytes
actually received. Usually this will be the number of bytes requested because an I2C slave device has no way
of aborting an rx operation early.

Transactions
To allow multiple threads to access devices on the I2C some locking is required. This is encapsulated inside
transactions. Thecyg_i2c_tx andcyg_i2c_rx functions implicitly use such transactions, but the function-
ality is also available directly to application code. Amongst other things transactions can be used for more
complicated interactions with I2C devices, in particular ones involving repeated starts.

cyg_i2c_transaction_begin must be used at the start of a transaction. This performs thread-level locking
on the bus, blocking if it is currently in use by another thread.

cyg_i2c_transaction_begin_nb is a non-blocking variant, useful for threads which cannot afford to block
for an indefinite period. If the bus is currently locked the function returns false immediately. If the bus is not
locked then it acts ascyg_i2c_transaction_begin and returns true.

Once the bus has been locked it is possible to perform one or more data transfers by calling
cyg_i2c_transaction_tx , cyg_i2c_transaction_rx and cyg_i2c_transaction_stop . Code should
ensure that a stop condition has been generated by the end of a transaction.

Once the transaction is completecyg_i2c_transaction_end should be called. This unlocks the bus, allowing
other threads to perform I2C I/O to devices on the same bus.

As an example consider reading the registers in an FS6377 programmable clock generator. The first step is to
write a byte 0 to the device, setting the current register to 0. Then a repeated start condition should be generated
and it is possible to read the 16 byte-wide registers, starting with the current one. Typical code for this might
look like:

cyg_uint8 tx_data[1];
cyg_uint8 rx_data[16];

cyg_i2c_transaction_begin(&hal_alaia_i2c_fs6377);
tx_data[0] = 0x00;
cyg_i2c_transaction_tx(&hal_alaia_i2c_fs6377,

194

I2C Interface

true, tx_data, 1, false);
cyg_i2c_transaction_rx(&hal_alaia_i2c_fs6377,

true, rx_data, 16, true, true);
cyg_i2c_transaction_end(&hal_alaia_i2c_fs6377);

Herehal_alaia_i2c_fs6377 is a cyg_i2c_device structure provided by the platform HAL. A transaction is
begun, locking the bus. Then there is a transmit for a single byte. This transmit involves generating a start
condition and sending the address and direction bit, but not a stop condition. Next there is a receive for 16
bytes. This also involves a start condition, which the device will interpret as a repeated start because it has not
yet seen a stop. The start condition will be followed by the address and direction bit, and then the device will
start transmitting the register contents. Once all 16 bytes have been received the rx routine will send a nack
rather than an ack, halting the transfer, and then a stop condition is generated. Finally the transaction is ended,
unlocking the bus.

The arguments tocyg_i2c_transaction_tx are as follows:

const cyg_i2c_device*device

This identifies the I2C device that should be used.

cyg_boolsend_start

If true, generate a start condition and send the address and direction bit. If false, skip those steps and go
straight to transmitting the actual data. The latter can be useful if the data to be transmitted is spread over
several buffers. The first tx call will involve generating the start condition but subsequent tx calls can skip
this and just continue from the previous one.

send_start must be true if the tx call is the first operation in a transaction, or if the previous call was an
rx or stop.

const cyg_uint8*tx_data

cyg_uint32count

These arguments specify the data to be transmitted to the device.

cyg_boolsend_stop

If true, generate a stop condition at the end of the transmit. Usually this is done only if the transmit is the
last operation in a transaction.

The arguments tocyg_i2c_transaction_rx are as follows:

const cyg_i2c_device*device

This identifies the I2C device that should be used.

cyg_boolsend_start

If true, generate a start condition and send the address and direction bit. If false, skip those steps and go
straight to receiving the actual data. The latter can be useful if the incoming data should be spread over
several buffers. The first rx call will involve generating the start condition but subsequent rx calls can skip
this and just continue from the previous one. Another use is for devices which can send variable length
data, consisting of an initial length and then the actual data. The first rx will involve generating the start
condition and reading the length, a subsequent rx will then just read the data.

send_start must be true if the rx call is the first operation in a transaction, if the previous call was a tx
or stop, or if the previous call was an an rx and thesend_nack flag was set.

195

I2C Interface

cyg_uint8*rx_data

cyg_uint32count

These arguments specify how much data should be received and where it should be placed.

cyg_boolsend_nack

If true generate a nack instead of an ack for the last byte received. This causes the slave to end its transmit.
The next operation should either involve a repeated start or a stop.send_nack should be set to false only
if send_stop is also false, the next operation will be another rx, and that rx does not specifysend_start .

cyg_boolsend_stop

If true, generate a stop condition at the end of the transmit. Usually this is done only if the transmit is the
last operation in a transaction.

The final transaction-oriented function iscyg_i2c_transaction_stop . This just generates a stop condition.
It should be used if the previous operation was a tx or rx that, for some reason, did not set thesend_stop flag.
A stop condition must be generated before the transaction is ended.

Initialization
The generic packageCYGPKG_IO_I2Carranges for all I2C bus devices to be initialized via a single prioritized
C++ static constructor. Usually this constructor will run early on during system startup, before any applica-
tion code. The default priority isCYG_INIT_DRIVERS, but this can be changed via the configuration option
CYGNUM_I2C_INIT_PRIORITY . Other code should not try to access any of the I2C devices until after the buses
have been initialized.

196

Porting to New Hardware

Name
Porting — Adding I2C support to new hardware

Description
Adding I2C support to an eCos port involves a number of steps. The generic I2C packageCYGPKG_IO_I2C

should be included in the appropriate ecos.db target entry or entries. Next cyg_i2c_device structures should
be provided for every device on the bus. Usually this is the responsibility of the platform HAL. In the case
of development boards where the I2C SDA and SCL lines are accessible via an expansion connector, more
devices may have been added and it will be the application’s responsibility to provide the structures. Finally
there is a need for one or more cyg_i2c_bus structures. Amongst other things these structures provide functions
for actually driving the bus. If the processor has dedicated I2C hardware then this structure will usually be
provided by a device driver package. If the bus is implemented by bit-banging then the bus structure will
usually be provided by the platform HAL.

Adding a Device
The eCos I2C API works in terms of cyg_i2c_device structures, and these provide the information needed to
access the hardware. A cyg_i2c_device structure contains the following fields:

cyg_i2c_bus*i2c_bus

This specifies the bus which the slave device is connected to. Most boards will only have a single I2C bus,
but multiple buses are possible.

cyg_uint16i2c_address

For most devices this will be the 7-bit I2C address the device will respond to. There is room for future
expansion, for example to support 10-bit addresses.

cyg_uint16i2c_flags

This field is not used at present. It exists for future expansion, for example to allow for fast mode or
high-speed mode, and incidentally pads the structure to a 32-bit boundary.

cyg_uint32i2c_delay

This holds the clock period which should be used when interacting with the device, in nanoseconds.
Usually this will be 10000 ns, corresponding to a 100KHz clock, and the headercyg/io/i2c.h provides
a #define CYG_I2C_DEFAULT_DELAY for this. Sometimes it may be desirable to use a slower clock, for
example to reduce noise problems.

The normal way to instantiate acyg_i2c_device structure uses theCYG_I2C_DEVICE macro, also provided
by cyg/io/i2c.h :

#include <cyg/io/i2c.h >

CYG_I2C_DEVICE(cyg_i2c_wallclock_ds1307,
&hal_alaia_i2c_bus,
0x68,
0x00,

197

Porting to New Hardware

CYG_I2C_DEFAULT_DELAY);

CYG_I2C_DEVICE(hal_alaia_i2c_fs6377,
&hal_alaia_i2c_bus,
0x58,
0x00,
CYG_I2C_DEFAULT_DELAY);

The arguments to the macro are the variable name, an I2C bus pointer, the device address, the flags field, and
the delay field. The above code fragment defines two I2C device variables,cyg_i2c_wallclock_ds1307 and
hal_alaia_i2c_fs6377 , which can be used for the first argument to thecyg_i2c_ functions. Both devices
are on the same bus. The device addresses are 0x68 and 0x58 respectively, and the devices do not have any
special requirements.

When the platform HAL provides these structures it should also export them for use by the application and
other packages. Usually this involves an entry incyg/hal/plf_io.h , which gets included automatically via
one of the main exported HAL header filescyg/hal/hal_io.h . Unfortunately exporting the structures directly
can be problematical because of circular dependencies between the I2C header and the HAL headers. Instead
the platform HAL should define a macroHAL_I2C_EXPORTED_DEVICES:

define HAL_I2C_EXPORTED_DEVICES \
extern cyg_i2c_bus hal_alaia_i2c_bus; \
extern cyg_i2c_device cyg_i2c_wallclock_ds1307; \
extern cyg_i2c_device hal_alaia_i2c_fs6377;

This macro gets expanded automatically bycyg/io/i2c.h once the data structures themselves have been
defined, so application code can just include that header and all the buses and devices will be properly exported
and usable.

There is no single convention for naming the I2C devices. If the device will be used by some other package
then typically that specifies the name that should be used. For example the DS1307 wallclock driver expects
the I2C device to be calledcyg_i2c_wallclock_ds1307 , so failing to observe that convention will lead to
compile-time and link-time errors. If the device will not be used by any other package then it is up to the
platform HAL to select the name, and as long as reasonable care is taken to avoid name space pollution the
exact name does not matter.

Bit-banged Bus
Some processors come with dedicated I2C hardware. On other hardware the I2C bus involves simply con-
necting some GPIO pins to the SCL and SDA lines and then using software to implement the I2C protocol.
This is usually referred to as bit-banging the bus. The generic I2C packageCYGPKG_IO_I2Cprovides the main
code for a bit-banged implementation, requiring one platform-specific function that does the actual GPIO pin
manipulation. This function is usually hardware-specific because different boards will use different pins for the
I2C bus, so typically it is left to the platform HAL to provide this function and instantiate the I2C bus object.
There is no point in creating a separate package for this because the code cannot be re-used for other platforms.

Instantiating a bit-banged I2C bus requires the following:

#include <cyg/io/i2c.h >

static cyg_bool
hal_alaia_i2c_bitbang(cyg_i2c_bus* bus, cyg_i2c_bitbang_op op)
{

cyg_bool result = 0;

198

Porting to New Hardware

switch(op) {
...

}
return result;

}

CYG_I2C_BITBANG_BUS(&hal_alaia_i2c_bus, &hal_alaia_i2c_bitbang);

This gives a structurehal_alaia_i2c_bus which can be used when defining thecyg_i2c_device structures.
The second argument specifies the function which will do the actual bit-banging. It takes two arguments. The
first identifies the bus, which can be useful if the hardware has multiple I2C buses. The second specifies the
bit-bang operation that should be performed. To understand these operations consider how I2C devices should
be wired up according to the specification:

Master and slave devices are interfaced to the bus in exactly the same way. The default state of the bus is to
have both lines high via the pull-up resistors. Any device on the bus can lower either line, when allowed to
do so by the protocol. Usually the SDA line only changes while SCL is low, but the start and stop conditions
involve SDA changing while SCL is high. All devices have the ability to both read and write both lines. In
reality not all bit-banged hardware works quite like this. Instead just two GPIO pins are used, and these are
switched between input and output mode as required.

The bitbang function should support the following operations:

199

Porting to New Hardware

CYG_I2C_BITBANG_INIT

This will be called during system initialization, as a side effect of a prioritized C++ static constructor. By
default this constructor will run atCYG_INIT_DRIVERS priority. The bitbang function should ensure that
both SCL and SDA are driven high.

CYG_I2C_BITBANG_SCL_HIGH

CYG_I2C_BITBANG_SCL_LOW

CYG_I2C_BITBANG_SDA_HIGH

CYG_I2C_BITBANG_SDA_LOW

These operations simply set the appropriate lines high or low.

CYG_I2C_BITBANG_SCL_HIGH_CLOCKSTRETCH

In its simplest form this operation should simply set the SCL line high, indicating that the data on the
SDA line is stable. However there is a complication: if a device is not ready yet then it can throttle back
the master by keeping the SCL line low. This is known as clock-stretching. Hence for this operation the
bitbang function should allow the SCL line to float high, then poll it until it really has become high. If a
single pin is used for the SCL line then this pin should be turned back into a high output at the end of the
call.

CYG_I2C_BITBANG_SCL_LOW_SDA_INPUT

This is used when there is a change of direction and the slave device is about to start driving the SDA
line. This can be significant if a single pin is used to handle both input and output of SDA, to avoid a
situation where both the master and the slave are driving the SDA line for an extended period of time. The
operation combines dropping the SCL line and switching SDA to an input in an atomic or near-atomic
operation.

CYG_I2C_BITBANG_SDA_READ

The SDA line is currently set as an input and the bitbang function should sample and return the current
state.

The bitbang function returns a boolean. For most operations this return value is ignored. For
CYG_I2C_BITBANG_SDA_READit should be the current level of the SDA line.

Depending on the hardware some care may have to be taken when manipulating the GPIO pins. Although
the I2C subsystem performs the required locking at the bus level, the device registers controlling the GPIO
pins may get used by other subsystems or by the application. It is the responsibility of the bitbang function to
perform appropriate locking, whether via a mutex or by briefly disabling interrupts around the register accesses.

Full Bus Driver
If the processor has dedicated I2C hardware then usually this will involve a separate device driver package
in the devs/i2c hierarchy of the eCos component repository. That package should also be included in the
appropriate ecos.db target entry or entries. The device driver may exist already, or it may have to be written
from scratch.

A new I2C driver basically involves creating an cyg_i2c_bus structure. The device driver should supply the
following fields:

200

Porting to New Hardware

i2c_init_fn

This function will be called during system initialization to set up the I2C hardware. The generic I2C code
creates a static object with a prioritized constructor, and this constructor will invoke the init functions for
the various I2C buses in the system.

i2c_tx_fn

i2c_rx_fn

i2c_stop_fn

These functions implement the core I2C functionality. The arguments and results are the same
as for the transaction functionscyg_i2c_transaction_tx , cyg_i2c_transaction_rx and
cyg_i2c_transaction_stop .

void* i2c_extra

This field holds any extra information that may be needed by the device driver. Typically it will be a
pointer to some driver-specific data structure.

To assist with instantiating a cyg_i2c_bus object the header filecyg/io/i2c.h provides a macro. Typical usage
would be:

struct xyzzy_data {
...

} xyzzy_object;

static void
xyzzy_i2c_init(struct cyg_i2c_bus* bus)
{

...
}

static cyg_uint32
xyzzy_i2c_tx(const cyg_i2c_device* dev,

cyg_bool send_start,
const cyg_uint8* tx_data, cyg_uint32 count,
cyg_bool send_stop)

{
...

}

static cyg_uint32
xyzzy_i2c_rx(const cyg_i2c_device* dev,

cyg_bool send_start,
cyg_uint8* rx_data, cyg_uint32 count,
cyg_bool send_nack, cyg_bool send_stop)

{
...

}

static void
xyzzy_i2c_stop(const cyg_i2c_device* dev)
{

...
}

CYG_I2C_BUS(cyg_i2c_xyzzy_bus,
&xyzzy_i2c_init,
&xyzzy_i2c_tx,
&xyzzy_i2c_rx,

201

Porting to New Hardware

&xyzzy_i2c_stop,
(void*) &xyzzy_object);

The generic I2C code contains these functions for a bit-banged I2C bus device. It can be used as a starting point
for new drivers. Note that the bit-bang code uses thei2c_extra field to hold the hardware-specific bitbang
function rather than a pointer to some data structure.

202

X. eCos POSIX compatibility layer

203

Porting to New Hardware

204

Chapter 27. POSIX Standard Support
eCos contains support for the POSIX Specification (ISO/IEC 9945-1)[POSIX].

POSIX support is divided between the POSIX and the FILEIO packages. The POSIX package provides support
for threads, signals, synchronization, timers and message queues. The FILEIO package provides support for
file and device I/O. The two packages may be used together or separately, depending on configuration.

This document takes a functional approach to the POSIX library. Support for a function implies that the data
types and definitions necessary to support that function, and the objects it manipulates, are also defined. Any
exceptions to this are noted, and unless otherwise noted, implemented functions behave as specified in the
POSIX standard.

This document only covers the differences between the eCos implementation and the standard; it does not
provide complete documentation. For full information, see the POSIX standard [POSIX]. Online, the Open
Group Single Unix Specification [SUS2] provides complete documentation of a superset of POSIX. If you
have access to a Unix system with POSIX compatibility, then the manual pages for this will be of use. There are
also a number of books available. [Lewine] covers the process, signal, file and I/O functions, while [Lewis1],
[Lewis2], [Nichols] and [Norton] cover Pthreads and related topics (see Bibliography, xref). However, many of
these books are oriented toward using POSIX in non-embedded systems, so care should be taken in applying
them to programming under eCos.

The remainder of this chapter broadly follows the structure of the POSIX Specification. References to the
appropriate section of the Standard are included.

Omitted functions marked with “// TBA” are potential candidates for later implementation.

Process Primitives [POSIX Section 3]

Functions Implemented
int kill(pid_t pid, int sig);
int pthread_kill(pthread_t thread, int sig);
int sigaction(int sig, const struct sigaction ∗act,

struct sigaction ∗oact);
int sigqueue(pid_t pid, int sig, const union sigval value);
int sigprocmask(int how, const sigset_t ∗set,

sigset_t ∗oset);
int pthread_sigmask(int how, const sigset_t ∗set,

sigset_t ∗oset);
int sigpending(sigset_t ∗set);
int sigsuspend(const sigset_t ∗set);
int sigwait(const sigset_t ∗set, int ∗sig);
int sigwaitinfo(const sigset_t ∗set, siginfo_t ∗info);
int sigtimedwait(const sigset_t ∗set, siginfo_t ∗info,

const struct timespec ∗timeout);
int sigemptyset(sigset_t ∗set);
int sigfillset(sigset_t ∗set);
int sigaddset(sigset_t ∗set, int signo);
int sigdelset(sigset_t ∗set, int signo);
int sigismember(const sigset_t ∗set, int signo);
unsigned int alarm(unsigned int seconds);
int pause(void);
unsigned int sleep(unsigned int seconds);

205

Chapter 27. POSIX Standard Support

Functions Omitted
pid_t fork(void);
int execl(const char ∗path, const char ∗arg, ...);
int execv(const char ∗path, char ∗const argv[]);
int execle(const char ∗path, const char ∗arg, ...);
int execve(const char ∗path, char ∗const argv[],

char ∗const envp[]);
int execlp(const char ∗path, const char ∗arg, ...);
int execvp(const char ∗path, char ∗const argv[]);
int pthread_atfork(void(∗prepare)(void),

void (∗parent)(void),
void (∗child)());

pid_t wait(int ∗stat_loc);
pid_t waitpid(pid_t pid, int ∗stat_loc,

int options);
void _exit(int status);

Notes

• Signal handling may be enabled or disabled with the CYGPKG_POSIX_SIGNALS option. Since signals
are used by other POSIX components, such as timers, disabling signals will disable those components too.

• kill() andsigqueue()may only take apid argument of zero, which maps to the current process.

• TheSIGEV_THREADnotification type is not currently implemented.

• Job Control and Memory Protection signals are not supported.

• An extra implementation definedsi_codevalue,SI_EXCEPT, is defined to distinguish hardware generated
exceptions from others.

• Extra signals are defined: _SIGTRAP_,_SIGIOT_, _SIGEMT_, and _SIGSYS_. These are largely to main-
tain compatibility with the signal numbers used by GDB.

• Signal delivery may currently occur at unexpected places in some API functions. Usinglongjmp()to transfer
control out of a signal handler may result in the interrupted function not being able to complete properly.
This may result in later function calls failing or deadlocking.

Process Environment [POSIX Section 4]

Functions Implemented
int uname(struct utsname ∗name);
time_t time(time_t ∗tloc);
char ∗getenv(const char ∗name);
int isatty(int fd);
long sysconf(int name);

206

Chapter 27. POSIX Standard Support

Functions Omitted
pid_t getpid(void);
pid_t getppid(void);
uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);
int setuid(uid_t uid);
int setgid(gid_t gid);
int getgroups(int gidsetsize, gid_t grouplist[]);
char ∗getlogin(void);
int getlogin_r(char ∗name, size_t namesize);
pid_t getpgrp(void);
pid_t setsid(void);
int setpgid(pid_t pid, pid_t pgid);
char ∗ctermid(char ∗s);
char ∗ttyname(int fd); // TBA
int ttyname_r(int fd, char ∗name, size_t namesize); // TBA
clock_t times(struct tms ∗buffer); // TBA

Notes

• The fields of theutsnamestructure are initialized as follows:

sysname “eCos”
nodename “” (gethostname() is currently not available)

release Major version number of the kernel
version Minor version number of the kernel
machine “” (Requires some config tool changes)

The sizes of these strings are defined by CYG_POSIX_UTSNAME_LENGTH and
CYG_POSIX_UTSNAME_NODENAME_LENGTH. The latter defaults to the value of the former, but
may also be set independently to accommodate a longer node name.

• Thetime()function is currently implemented in the C library.

• A set of environment strings may be defined at configuration time with the
CYGDAT_LIBC_DEFAULT_ENVIRONMENT option. The application may also define an environment
by direct assignment to theenviron variable.

• At presentisatty()assumes that any character device is a tty and that all other devices are not ttys. Since the
only kind of device that eCos currently supports is serial character devices, this is an adequate distinction.

• All system variables supported by sysconf will yield a value. However, those that are irrelevant to eCos will
either return the default minimum defined in<limits.h >, or zero.

207

Chapter 27. POSIX Standard Support

Files and Directories [POSIX Section 5]

Functions Implemented
DIR ∗opendir(const char ∗dirname);
struct dirent ∗readdir(DIR ∗dirp);
int readdir_r(DIR ∗dirp, struct dirent ∗entry,

struct dirent ∗∗result);
void rewinddir(DIR ∗dirp);
int closedir(DIR ∗dirp);
int chdir(const char ∗path);
char ∗getcwd(char ∗buf, size_t size);
int open(const char ∗ path , int oflag , ...);
int creat(const char ∗ path, mode_t mode);
int link(const char ∗existing, const char ∗new);
int mkdir(const char ∗path, mode_t mode);
int unlink(const char ∗path);
int rmdir(const char ∗path);
int rename(const char ∗old, const char ∗new);
int stat(const char ∗path, struct stat ∗buf);
int fstat(int fd, struct stat ∗buf);
int access(const char ∗path, int amode);
long pathconf(const char ∗path, int name);
long fpathconf(int fd, int name);

Functions Omitted
mode_t umask(mode_t cmask);
int mkfifo(const char ∗path, mode_t mode);
int chmod(const char ∗path, mode_t mode); // TBA
int fchmod(int fd, mode_t mode); // TBA
int chown(const char ∗path, uid_t owner, gid_t group);
int utime(const char ∗path, const struct utimbuf ∗times); // TBA
int ftruncate(int fd, off_t length); // TBA

Notes

• If a call to open() or creat() supplies the third _mode_ parameter, it will currently be ignored.

• Most of the functionality of these functions depends on the underlying filesystem.

• Currentlyaccess()only checks theF_OK mode explicitly, the others are all assumed to be true by default.

• The maximum number of open files allowed is supplied by the CYGNUM_FILEIO_NFILE option. The
maximum number of file descriptors is supplied by the CYGNUM_FILEIO_NFD option.

208

Chapter 27. POSIX Standard Support

Input and Output [POSIX Section 6]

Functions Implemented
int dup(int fd);
int dup2(int fd, int fd2);
int close(int fd);
ssize_t read(int fd, void ∗buf, size_t nbyte);
ssize_t write(int fd, const void ∗buf, size_t nbyte);
int fcntl(int fd, int cmd, ...);
off_t lseek(int fd, off_t offset, int whence);
int fsync(int fd);
int fdatasync(int fd);

Functions Omitted
int pipe(int fildes[2]);
int aio_read(struct aiocb ∗aiocbp); // TBA
int aio_write(struct aiocb ∗aiocbp); // TBA
int lio_listio(int mode, struct aiocb ∗const list[],

int nent, struct sigevent ∗sig); // TBA
int aio_error(struct aiocb ∗aiocbp); // TBA
int aio_return(struct aiocb ∗aiocbp); // TBA
int aio_cancel(int fd, struct aiocb ∗aiocbp); // TBA
int aio_suspend(const struct aiocb ∗const list[],

int nent, const struct timespec ∗timeout); // TBA
int aio_fsync(int op, struct aiocb ∗aiocbp);
// TBA

Notes

• Only theF_DUPFDcommand offcntl() is currently implemented.

• Most of the functionality of these functions depends on the underlying filesystem.

Device and Class Specific Functions [POSIX Section 7]

Functions Implemented
speed_t cfgetospeed(const struct termios ∗termios_p);
int cfsetospeed(struct termios ∗termios_p, speed_t speed);
speed_t cfgetispeed(const struct termios ∗termios_p);
int cfsetispeed(struct termios ∗termios_p, speed_t speed);
int tcgetattr(int fd, struct termios ∗termios_p);
int tcsetattr(int fd, int optional_actions,

const struct termios ∗termios_p);
int tcsendbreak(int fd, int duration);
int tcdrain(int fd);
int tcflush(int fd, int queue_selector);

209

Chapter 27. POSIX Standard Support

int tcsendbreak(int fd, int action);

Functions Omitted
pid_t tcgetpgrp(int fd);
int tcsetpgrp(int fd, pid_t pgrp);

Notes

• Only the functionality relevant to basic serial device control is implemented. Only very limited support
for canonical input is provided, and then only via the “tty” devices, not the “serial” devices. None of the
functionality relevant to job control, controlling terminals and sessions is implemented.

• Only MIN = 0 andTIME = 0 functionality is provided.

• Hardware flow control is supported if the underlying device driver and serial port support it.

• Support for break, framing and parity errors depends on the functionality of the hardware and device driver.

C Language Services [POSIX Section 8]

Functions Implemented
char ∗setlocale(int category, const char ∗locale);
int fileno(FILE ∗stream);
FILE ∗fdopen(int fd, const char ∗type);
int getc_unlocked(FILE ∗stream);
int getchar_unlocked(void);
int putc_unlocked(FILE ∗stream);
int putchar_unlocked(void);
char ∗strtok_r(char ∗s, const char ∗sep,

char ∗∗lasts);
char ∗asctime_r(const struct tm ∗tm, char ∗buf);
char ∗ctime_r(const time_t ∗clock, char ∗buf);
struct tm ∗gmtime_r(const time_t ∗clock,

struct tm ∗result);
struct tm ∗localtime_r(const time_t ∗clock,

struct tm ∗result);
int rand_r(unsigned int ∗seed);

Functions Omitted
void flockfile(FILE ∗file);
int ftrylockfile(FILE ∗file);
void funlockfile(FILE ∗file);
int sigsetjmp(sigjmp_buf env, int savemask); // TBA
void siglongjmp(sigjmp_buf env, int val); // TBA
void tzset(void); // TBA

210

Chapter 27. POSIX Standard Support

Notes

• setlocale()is implemented in the C library Internationalization package.

• Functionsfileno()andfdopen()are implemented in the C library STDIO package.

• Functionsgetc_unlocked(), getchar_unlocked(), putc_unlocked()andputchar_unlocked()are defined but are
currently identical to their non-unlocked equivalents.

• strtok_r(), asctime_r(), ctime_r(), gmtime_r(), localtime_r()andrand_r() are all currently in the C library,
alongside their non-reentrant versions.

System Databases [POSIX Section 9]

Functions Implemented
<none>

Functions Omitted
struct group ∗getgrgid(gid_t gid);
int getgrgid(gid_t gid, struct group ∗grp, char ∗buffer,

size_t bufsize, struct group ∗∗result);
struct group ∗getgrname(const char ∗name);
int getgrname_r(const char ∗name, struct group ∗grp,

char ∗buffer, size_t bufsize, struct group ∗∗result);
struct passwd ∗getpwuid(uid_t uid);
int getpwuid_r(uid_t uid, struct passwd ∗pwd,

char ∗buffer, size_t bufsize, struct passwd ∗∗result);
struct passwd ∗getpwnam(const char ∗name);
int getpwnam_r(const char ∗name, struct passwd ∗pwd,

char ∗buffer, size_t bufsize, struct passwd ∗∗result);

Notes

• None of the functions in this section are implemented.

Data Interchange Format [POSIX Section 10]
This section detailstar andcpio formats. Neither of these is supported by eCos.

211

Chapter 27. POSIX Standard Support

Synchronization [POSIX Section 11]

Functions Implemented
int sem_init(sem_t ∗sem, int pshared, unsigned int value);
int sem_destroy(sem_t ∗sem);
int sem_wait(sem_t ∗sem);
int sem_trywait(sem_t ∗sem);
int sem_post(sem_t ∗sem);
int sem_getvalue(sem_t ∗sem, int ∗sval);
int pthread_mutexattr_init(pthread_mutexattr_t ∗attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t ∗attr);
int pthread_mutex_init(pthread_mutex_t ∗mutex,

const pthread_mutexattr_t ∗mutex_attr);
int pthread_mutex_destroy(pthread_mutex_t ∗mutex);
int pthread_mutex_lock(pthread_mutex_t ∗mutex);
int pthread_mutex_trylock(pthread_mutex_t ∗mutex);
int pthread_mutex_unlock(pthread_mutex_t ∗mutex);
int pthread_condattr_init(pthread_condattr_t ∗attr);
int pthread_condattr_destroy(pthread_condattr_t ∗attr);
int pthread_cond_init(pthread_cond_t ∗cond,

const pthread_condattr_t ∗attr);
int pthread_cond_destroy(pthread_cond_t ∗cond);
int pthread_cond_signal(pthread_cond_t ∗cond);
int pthread_cond_broadcast(pthread_cond_t ∗cond);
int pthread_cond_wait(pthread_cond_t ∗cond,

pthread_mutex_t ∗mutex);
int pthread_cond_timedwait(pthread_cond_t ∗cond,

pthread_mutex_t ∗mutex,
const struct timespec ∗abstime);

Functions Omitted
sem_t ∗sem_open(const char ∗name, int oflag, ...); // TBA
int sem_close(sem_t ∗sem); // TBA
int sem_unlink(const char ∗name); // TBA
int pthread_mutexattr_getpshared(const pthread_mutexattr_t ∗attr,

int ∗pshared);
int pthread_mutexattr_setpshared(const pthread_mutexattr_t ∗attr,

int pshared);
int pthread_condattr_getpshared(const pthread_condattr_t ∗attr,

int ∗pshared);
int pthread_condattr_setpshared(const pthread_condattr_t ∗attr,

int pshared);

Notes

• The presence of semaphores is controlled by the CYGPKG_POSIX_SEMAPHORES option. This in turn
causes the _POSIX_SEMAPHORES feature test macro to be defined and the semaphore API to be made
available.

• Thepsharedargument tosem_init()is not implemented, its value is ignored.

• Functionssem_open(), sem_close()andsem_unlink()are present but always return an error (ENOSYS).

212

Chapter 27. POSIX Standard Support

• The exact priority inversion protocols supported may be controlled with the
_POSIX_THREAD_PRIO_INHERIT and _POSIX_THREAD_PRIO_PROTECT configuration options.

• {_POSIX_THREAD_PROCESS_SHARED} is not defined, so theprocess-sharedmutex and condition
variable attributes are not supported, and neither are the functionspthread_mutexattr_getpshared(),
pthread_mutexattr_setpshared(), pthread_condattr_getpshared()andpthread_condattr_setpshared().

• Condition variables do not become bound to a particular mutex whenpthread_cond_wait()is called. Hence
different threads may wait on a condition variable with different mutexes. This is at variance with the stan-
dard, which requires a condition variable to become (dynamically) bound by the first waiter, and unbound
when the last finishes. However, this difference is largely benign, and the cost of policing this feature is
non-trivial.

Memory Management [POSIX Section 12]

Functions Implemented
<none>

Functions Omitted
int mlockall(int flags);
int munlockall(void);
int mlock(const void ∗addr, size_t len);
int munlock(const void ∗addr, size_t len);
void mmap(void ∗addr, size_t len, int prot, int flags,

int fd, off_t off);
int munmap(void ∗addr, size_t len);
int mprotect(const void ∗addr, size_t len, int prot);
int msync(void ∗addr, size_t len, int flags);
int shm_open(const char ∗name, int oflag, mode_t mode);
int shm_unlink(const char ∗name);

Notes
None of these functions are currently provided. Some may be implemented in a restricted form in the future.

Execution Scheduling [POSIX Section 13]

Functions Implemented
int sched_yield(void);
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_rr_get_interval(pid_t pid, struct timespec ∗t);
int pthread_attr_setscope(pthread_attr_t ∗attr, int scope);

213

Chapter 27. POSIX Standard Support

int pthread_attr_getscope(const pthread_attr_t ∗attr, int ∗scope);
int pthread_attr_setinheritsched(pthread_attr_t ∗attr, int inherit);
int pthread_attr_getinheritsched(const pthread_attr_t ∗attr, int ∗inherit);
int pthread_attr_setschedpolicy(pthread_attr_t ∗attr, int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t ∗attr, int ∗policy);
int pthread_attr_setschedparam(pthread_attr_t ∗attr, const struct sched_param ∗param);
int pthread_attr_getschedparam(const pthread_attr_t ∗attr,

struct sched_param ∗param);
int pthread_setschedparam(pthread_t thread, int policy,

const struct sched_param ∗param);
int pthread_getschedparam(pthread_t thread, int ∗policy,

struct sched_param ∗param);
int pthread_mutexattr_setprotocol(pthread_mutexattr_t ∗attr,

int protocol);
int pthread_mutexattr_getprotocol(pthread_mutexattr_t ∗attr,

int ∗protocol);
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t ∗attr,

int prioceiling);
int pthread_mutexattr_getprioceiling(pthread_mutexattr_t ∗attr,

int ∗prioceiling);
int pthread_mutex_setprioceiling(pthread_mutex_t ∗mutex,

int prioceiling,
int ∗old_ceiling);

int pthread_mutex_getprioceiling(pthread_mutex_t ∗mutex,
int ∗prioceiling);

Functions Omitted
int sched_setparam(pid_t pid, const struct sched_param ∗param);
int sched_getparam(pid_t pid, struct sched_param ∗param);
int sched_setscheduler(pid_t pid, int policy,

const struct sched_param ∗param);
int sched_getscheduler(pid_t pid);

Notes

• The functionssched_setparam(), sched_getparam(), sched_setscheduler()and sched_getscheduler()are
present but always return an error.

• The scheduler policySCHED_OTHERis equivalent toSCHED_RR.

• Only PTHREAD_SCOPE_SYSTEMis supported as acontentionscopeattribute.

• The default thread scheduling attributes are:

contentionscope PTHREAD_SCOPE_SYSTEM
inheritsched PTHREAD_INHERIT_SCHED
schedpolicy SCHED_OTHER
schedparam.sched 0

• Mutex priority inversion protection is controlled by a number of kernel configuration options.
If CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT
is defined then {_POSIX_THREAD_PRIO_INHERIT} will be defined and
PTHREAD_PRIO_INHERIT may be set as the protocol in apthread_mutexattr_tobject. If
CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING is defined

214

Chapter 27. POSIX Standard Support

then{_POSIX_THREAD_PRIO_PROTECT} will be defined and PTHREAD_PRIO_PROTECT may be
set as the protocol in apthread_mutexattr_tobject.

• The default attribute values set bypthread_mutexattr_init()is to set the protocol attribute to
PTHREAD_PRIO_NONE and the prioceiling attribute to zero.

Clocks and Timers [POSIX Section 14]

Functions Implemented
int clock_settime(clockid_t clock_id,
const struct timespec ∗tp);
int clock_gettime(clockid_t clock_id, struct timespec ∗tp);
int clock_getres(clockid_t clock_id, struct timespec ∗tp);
int timer_create(clockid_t clock_id, struct sigevent ∗evp,

timer_t ∗timer_id);
int timer_delete(timer_t timer_id);
int timer_settime(timer_t timerid, int flags,

const struct itimerspec ∗value,
struct itimerspec ∗ovalue);

int timer_gettime(timer_t timerid, struct itimerspec ∗value);
int timer_getoverrun(timer_t timerid);
int nanosleep(const struct timespec ∗rqtp, struct timespec ∗rmtp);

Functions Omitted
<none>

Notes

• Currentlytimer_getoverrun()only reports timer notifications that are delayed in the timer subsystem. If they
are delayed in the signal subsystem, due to signal masks for example, this is not counted as an overrun.

• The option CYGPKG_POSIX_TIMERS allows the timer support to be enabled or disabled, and causes
_POSIX_TIMERS to be defined appropriately. This will cause other parts of the POSIX system to have
limited functionality.

Message Passing [POSIX Section 15]

Functions Implemented
mqd_t mq_open(const char ∗name, int oflag, ...);
int mq_close(mqd_t mqdes);
int mq_unlink(const char ∗name);
int mq_send(mqd_t mqdes, const char ∗msg_ptr,

215

Chapter 27. POSIX Standard Support

size_t msg_len, unsigned int msg_prio);
ssize_t mq_receive(mqd_t mqdes, char ∗msg_ptr,

size_t msg_len, unsigned int ∗msg_prio);
int mq_setattr(mqd_t mqdes, const struct mq_attr ∗mqstat,

struct mq_attr ∗omqstat);
int mq_getattr(mqd_t mqdes, struct mq_attr ∗mqstat);
int mq_notify(mqd_t mqdes, const struct sigevent ∗notification);

From POSIX 1003.1d draft:

int mq_send(mqd_t mqdes, const char ∗msg_ptr,
size_t msg_len, unsigned int msg_prio,

const struct timespec *abs_timeout);
ssize_t mq_receive(mqd_t mqdes, char ∗msg_ptr,

size_t msg_len, unsigned int ∗msg_prio,
const struct timespec *abs_timeout);

Functions Omitted
<none>

Notes

• The presence of message queues is controlled by the CYGPKG_POSIX_MQUEUES option. Setting this
will cause [_POSIX_MESSAGE_PASSING] to be defined and the message queue API to be made available.

• Message queues are not currently filesystem objects. They live in their own name and descriptor spaces.

Thread Management [POSIX Section 16]

Functions Implemented
int pthread_attr_init(pthread_attr_t ∗attr);
int pthread_attr_destroy(pthread_attr_t ∗attr);
int pthread_attr_setdetachstate(pthread_attr_t ∗attr,

int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t ∗attr,

int ∗detachstate);
int pthread_attr_setstackaddr(pthread_attr_t ∗attr,

void ∗stackaddr);
int pthread_attr_getstackaddr(const pthread_attr_t ∗attr,

void ∗∗stackaddr);
int pthread_attr_setstacksize(pthread_attr_t ∗attr,

size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t ∗attr,

size_t ∗stacksize);
int pthread_create(pthread_t ∗thread,

const pthread_attr_t ∗attr,
void ∗(∗start_routine)(void ∗),
void ∗arg);

pthread_t pthread_self(void);

216

Chapter 27. POSIX Standard Support

int pthread_equal(pthread_t thread1, pthread_t thread2);
void pthread_exit(void ∗retval);
int pthread_join(pthread_t thread, void ∗∗thread_return);
int pthread_detach(pthread_t thread);
int pthread_once(pthread_once_t ∗once_control,

void (∗init_routine)(void));

Functions Omitted
<none>

Notes

• The presence of thread support as a whole is controlled by the the CYGPKG_POSIX_PTHREAD config-
uration option. Note that disabling this will also disable many other features of the POSIX package, since
these are intimately bound up with the thread mechanism.

• The default (non-scheduling) thread attributes are:

detachstate PTHREAD_CREATE_JOINABLE
stackaddr unset
stacksize unset

• Dynamic thread stack allocation is only provided if there is an implementation ofmalloc()configured (i.e.
a package implements the CYGINT_MEMALLOC_MALLOC_ALLOCATORS interface). If there is no
malloc() available, then the thread creator must supply a stack. If only a stack address is supplied then the
stack is assumed to be PTHREAD_STACK_MIN bytes long. This size is seldom useful for any but the most
trivial of threads. If a different sized stack is used, both the stack address and stack size must be supplied.

• The value of PTHREAD_THREADS_MAX is supplied by the
CYGNUM_POSIX_PTHREAD_THREADS_MAX option. This defines the maximum
number of threads allowed. The POSIX standard requires this value to be at least 64, and this is the default
value set.

• When the POSIX package is installed, the thread that callsmain() is initialized as a POSIX thread. The
priority of that thread is controlled by the CYGNUM_POSIX_MAIN_DEFAULT_PRIORITY option.

Thread-Specific Data [POSIX Section 17]

Functions Implemented
int pthread_key_create(pthread_key_t ∗key,

void (∗destructor)(void ∗));
int pthread_setspecific(pthread_key_t key, const void ∗pointer);
void ∗pthread_getspecific(pthread_key_t key);
int pthread_key_delete(pthread_key_t key);

217

Chapter 27. POSIX Standard Support

Functions Omitted
<none>

Notes

• The value of PTHREAD_DESTRUCTOR_ITERATIONS is provided by the
CYGNUM_POSIX_PTHREAD_DESTRUCTOR_ITERATIONS option. This controls the number of
times that a key destructor will be called while the data item remains non-NULL.

• The value of PTHREAD_KEYS_MAX is provided by the CYGNUM_POSIX_PTHREAD_KEYS_MAX
option. This defines the maximum number of per-thread data items supported. The POSIX standard calls for
this to be a minimum of 128, which is rather large for an embedded system. The default value for this option
is set to 128 for compatibility but it should be reduced to a more usable value.

Thread Cancellation [POSIX Section 18]

Functions Implemented
int pthread_cancel(pthread_t thread);
int pthread_setcancelstate(int state, int ∗oldstate);
int pthread_setcanceltype(int type, int ∗oldtype);
void pthread_testcancel(void);
void pthread_cleanup_push(void (∗routine)(void ∗),

void ∗arg);
void pthread_cleanup_pop(int execute);

Functions Omitted
<none>

Notes
Asynchronous cancellation is only partially implemented. In particular, cancellation may occur in unexpected
places in some functions. It is strongly recommended that only synchronous cancellation be used.

Non-POSIX Functions
In addition to the standard POSIX functions defined above, the following non-POSIX functions are defined in
the FILEIO package.

218

Chapter 27. POSIX Standard Support

General I/O Functions
int ioctl(int fd, CYG_ADDRWORD com, CYG_ADDRWORD data);
int select(int nfd, fd_set ∗in, fd_set ∗out, fd_set ∗ex, struct timeval ∗tv);

Socket Functions
int socket(int domain, int type, int protocol);
int bind(int s, const struct sockaddr ∗sa, unsigned int len);
int listen(int s, int len);
int accept(int s, struct sockaddr ∗sa, socklen_t ∗addrlen);
int connect(int s, const struct sockaddr ∗sa, socklen_t len);
int getpeername(int s, struct sockaddr ∗sa, socklen_t ∗len);
int getsockname(int s, struct sockaddr ∗sa, socklen_t ∗len);
int setsockopt(int s, int level, int optname, const void ∗optval,

socklen_t optlen);
int getsockopt(int s, int level, int optname, void ∗optval,

socklen_t ∗optlen);
ssize_t recvmsg(int s, struct msghdr ∗msg, int flags);
ssize_t recvfrom(int s, void ∗buf, size_t len, int flags,

struct sockaddr ∗from, socklen_t ∗fromlen);
ssize_t recv(int s, void ∗buf, size_t len, int flags);
ssize_t sendmsg(int s, const struct msghdr ∗msg, int flags);
ssize_t sendto(int s, const void ∗buf, size_t len, int flags,

const struct sockaddr ∗to, socklen_t tolen);
ssize_t send(int s, const void ∗buf, size_t len, int flags);
int shutdown(int s, int how);

Notes

• The precise behaviour of these functions depends mainly on the functionality of the underlying filesystem
or network stack to which they are applied.

219

Chapter 27. POSIX Standard Support

220

References and Bibliography
[Lewine] Donald A. LweinePosix Programmer’s Guide: Writing Portable Unix Programs With the POSIX.1 Standard

O’Reilly & Associates; ISBN: 0937175730.

[Lewis1] Bil Lewis Daniel J. BergThreads Primer: A Guide to Multithreaded Programming Prentice Hall ISBN:
013443698

[Lewis2] Bil Lewis Daniel J. BergMultithreaded Programming With Pthreads Prentice Hall Computer Books ISBN:
0136807291

[Nichols] Bradford Nichols Dick Buttlar Jacqueline Proulx FarrellPthreads Programming: A POSIX Standard for Better
Multiprocessing (O’Reilly Nutshell) O’Reilly & Associates ISBN: 1565921151

[Norton] Scott J. Norton Mark D. DepasqualeThread Time: The MultiThreaded Programming Guide Prentice Hall ISBN:
0131900676

[POSIX] Portable Operating System Interface(POSIX) - Part 1: System Application Programming Interface (API)[C Lan-
guage] ISO/IEC 9945-1:1996, IEEE

[SUS2]Open Group; Single Unix Specification, Version 2 http://www.opengroup.org/public/pubs/online/7908799/index.html

XI. µITRON

Chapter 28. µITRON API

Introduction to µITRON
The µITRON specification defines a highly flexible operating system architecture designed specifically for
application in embedded systems. The specification addresses features which are common to the majority of
processor architectures and deliberately avoids virtualization which would adversely impact real-time perfor-
mance. TheµITRON specification may be implemented on many hardware platforms and provides significant
advantages by reducing the effort involved in understanding and porting application software to new processor
architectures.

Several revisions of theµITRON specification exist. In this release,eCossupports theµITRON version 3.02
specification, with complete “Standard functionality” (level S), plus many “Extended” (level E) functions.
The definitive reference onµITRON is Dr. Sakamura’s book:µITRON 3.0, An Open and Portable Real-
Time Operating System for Embedded Systems. The book can be purchased from the IEEE Press, and an
ASCII version of the standard can be found online at http://www.itron.gr.jp/. The old address http://tron.um.u-
tokyo.ac.jp/TRON/ITRON/ still exists as a mirror site.

µITRON and eCos
TheeCoskernel implements the functionality used by theµITRON compatibility subsystem. The configuration
of the kernel influences the behavior ofµITRON programs.

In particular, the default configuration has time slicing (also known as round-robin scheduling) switched on;
this means that a task can be moved fromRUNstate toREADYstate at any time, in order that one of its peers
may run. This is not strictly conformant to theµITRON specification, which states that timeslicing may be im-
plemented by periodically issuing arot_rdq(0) call from within a periodic task or cyclic handler; otherwise
it is expected that a task runs until it is pre-empted in consequence of synchronization or communication calls
it makes, or the effects of an interrupt or other external event on a higher priority task cause that task to be-
comeREADY. To disable timeslicing functionality in the kernel andµITRON compatibility environment, please
disable theCYGSEM_KERNEL_SCHED_TIMESLICEconfiguration option in the kernel package. A description of
kernel scheduling is inKernel Overview.

For another example, the semantics of task queueing when waiting on a synchronization object depend solely
on the way the underlying kernel is configured. As discussed above, the multi-level queue scheduler is the only
one which isµITRON compliant, and it queues waiting tasks in FIFO order. Future releases of that scheduler
might be configurable to support priority ordering of task queues. Other schedulers might be different again:
for example the bitmap scheduler can be used with theµITRON compatibility layer, even though it only allows
one task at each priority and as such is notµITRON compliant, but it supports only priority ordering of task
queues. So which queueing scheme is supported is not really a property of theµITRON compatibility layer; it
depends on the kernel.

In this version of theµITRON compatibility layer, the calls to disable and enable scheduling and inter-
rupts (dis_dsp() , ena_dsp() , loc_cpu() and unl_cpu()) call underlying kernel functions; in particular,
the xxx_dsp() functions lock the scheduler entirely, which prevents dispatching of DSRs; functions imple-
mented by DSRs include clock counters and alarm timers. Thus time “stops” while dispatching is disabled
with dis_dsp() .

Like all parts of theeCossystem, the detailed semantics of theµITRON layer are dependent on its configuration
and the configuration of other components that it uses. TheµITRON configuration options are all defined in

223

Chapter 28.µITRON API

the filepkgconf/uitron.h , and can be set using the configuration tool or editing the.ecc file in your build
directory by hand.

An important configuration option for theµITRON compatibility layer is “Option: Return Error Codes for Bad
Params” (CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS), which allows a lot of the error checking code in
theµITRON compatibility layer to be removed. Of course this leaves a program open to undetected errors, so
it should only be used once an application is fully debugged and tested. Its benefits include reduced code size
and faster execution. However, it affects the API significantly, in that with this option enabled, bad calls do not
return errors, but cause an assert failure (if that is itself enabled) or malfunction internally. There is discussion
in more detail about this in each section below.

We now give a brief description of theµITRON functions which are implemented in this release. Note that all
C and C++ source files should have the following#include statement:

#include <cyg/compat/uitron/uit_func.h >

Task Management Functions
The following functions are fully supported in this release:

ER sta_tsk (
ID tskid,
INT stacd)

void ext_tsk (void)

void exd_tsk (void)

ER dis_dsp (void)

ER ena_dsp (void)

ER chg_pri (
ID tskid,
PRI tskpri)

ER rot_rdq (
PRI tskpri)

ER get_tid (
ID * p_tskid)

ER ref_tsk (
T_RTSK *pk_rtsk,
ID tskid)

ER ter_tsk (
ID tskid)

ER rel_wai (
ID tskid)

The following two functions are supported in this release, when enabled with the configuration option
CYGPKG_UITRON_TASKS_CREATE_DELETEwith some restrictions:

ER cre_tsk (
ID tskid,
T_CTSK *pk_ctsk)

224

Chapter 28.µITRON API

ER del_tsk (
ID tskid)

These functions are restricted as follows:

Because of the static initialization facilities provided for system objects, a task is allocated stack space statically
in the configuration. So while tasks can be created and deleted, the same stack space is used for that task (task
ID number) each time. Thus the stack size (pk_ctsk->stksz) requested incre_tsk() is checked for being less
than that which was statically allocated, and otherwise ignored. This ensures that the new task will have enough
stack to run. For this reasondel_tsk() does not in any sense free the memory that was in use for the task’s
stack.

The task attributes (pk_ctsk->tskatr) are ignored; current versions ofeCosdo not need to know whether a task
is written in assembler or C/C++ so long as the procedure call standard appropriate to the CPU is followed.

Extended information (pk_ctsk->exinf) is ignored.

Error checking
For all these calls, an invalid task id (tskid) (less than 1 or greater than the number of configured tasks) only
returns E_ID when bad params return errors (CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled, see
above).

Similarly, the following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled:

• pk_crtk incre_tsk() is a valid pointer, otherwise return E_PAR

• ter_tsk() or rel_wai() on the calling task returns E_OBJ

• the CPU is not locked already indis_dsp() andena_dsp() ; returns E_CTX

• priority level in chg_pri() androt_rdq() is checked for validity, E_PAR

• return value pointer inget_tid() andref_tsk() is a valid pointer, or E_PAR

The following conditions are checked for, and return error codes if appropriate, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:

• When create and delete functionscre_tsk() anddel_tsk() are supported, all calls which use a valid task
ID number check that the task exists; if not, E_NOEXS is returned

• When supported,cre_tsk() : the task must not already exist; otherwise E_OBJ

• When supported,cre_tsk() : the requested stack size must not be larger than that statically configured for
the task; see the configuration options “Static initializers”, and “Default stack size”. Else E_NOMEM

• When supported,del_tsk() : the underlyingeCosthread must not be running - this would imply either
a bug or some program bypassing theµITRON compatibility layer and manipulating the thread directly.
E_OBJ

• sta_tsk() : the task must be dormant, else E_OBJ

• ter_tsk() : the task must not be dormant, else E_OBJ

• chg_pri() : the task must not be dormant, else E_OBJ

• rel_wai() : the task must be inWAIT or WAIT-SUSPENDstate, else E_OBJ

225

Chapter 28.µITRON API

Task-Dependent Synchronization Functions
These functions are fully supported in this release:

ER sus_tsk (
ID tskid)

ER rsm_tsk (
ID tskid)

ER frsm_tsk (
ID tskid)

ER slp_tsk (void)

ER tslp_tsk (
TMO tmout)

ER wup_tsk (
ID tskid)

ER can_wup (
INT * p_wupcnt, ID tskid)

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled (see the configuration option “Return Error Codes
for Bad Params”):

• invalid tskid; less than 1 or greater thanCYGNUM_UITRON_TASKSreturns E_ID

• wup_tsk() , sus_tsk() , rsm_tsk() , frsm_tsk() on the calling task returns E_OBJ

• dispatching is enabled intslp_tsk() andslp_tsk() , or E_CTX

• tmout must be positive, otherwise E_PAR

• return value pointer incan_wup() is a valid pointer, or E_PAR

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:

• When create and delete functionscre_tsk() anddel_tsk() are supported, all calls which use a valid task
ID number check that the task exists; if not, E_NOEXS is returned

• sus_tsk() : the task must not be dormant, else E_OBJ

• frsm/rsm_tsk() : the task must be suspended, else E_OBJ

• tslp/slp_tsk() : return codes E_TMOUT, E_RLWAI and E_DLT are returned depending on the reason
for terminating the sleep

• wup_tsk() andcan_wup() : the task must not be dormant, or E_OBJ is returned

226

Chapter 28.µITRON API

Synchronization and Communication Functions
These functions are fully supported in this release:

ER sig_sem (
ID semid)

ER wai_sem (
ID semid)

ER preq_sem (
ID semid)

ER twai_sem (
ID semid, TMO tmout)

ER ref_sem (
T_RSEM *pk_rsem , ID semid)

ER set_flg (
ID flgid, UINT setptn)

ER clr_flg (
ID flgid, UINT clrptn)

ER wai_flg (
UINT * p_flgptn, ID flgid ,
UINT waiptn , UINT wfmode)

ER pol_flg (
UINT * p_flgptn, ID flgid ,
UINT waiptn , UINT wfmode)

ER twai_flg (
UINT * p_flgptn ID flgid ,
UINT waiptn , UINT wfmode, TMO tmout)

ER ref_flg (
T_RFLG *pk_rflg, ID flgid)

ER snd_msg (
ID mbxid, T_MSG *pk_msg)

ER rcv_msg (
T_MSG **ppk_msg, ID mbxid)

ER prcv_msg (
T_MSG **ppk_msg, ID mbxid)

ER trcv_msg (
T_MSG **ppk_msg, ID mbxid , TMO tmout)

ER ref_mbx (
T_RMBX *pk_rmbx, ID mbxid)

The following functions are supported in this release (with some restrictions) if enabled with the appropriate
configuration option for the object type (for exampleCYGPKG_UITRON_SEMAS_CREATE_DELETE):

ER cre_sem (
ID semid, T_CSEM *pk_csem)

ER del_sem (

227

Chapter 28.µITRON API

ID semid)

ER cre_flg (
ID flgid, T_CFLG *pk_cflg)

ER del_flg (
ID flgid)

ER cre_mbx (
ID mbxid, T_CMBX *pk_cmbx)

ER del_mbx (
ID mbxid)

In general the queueing order when waiting on a synchronization object depends on the underlying kernel
configuration. The multi-level queue scheduler is required for strictµITRON conformance and it queues tasks
in FIFO order, so requests to create an object with priority queueing of tasks (pk_cxxx- >xxxatr = TA_TPRI)
are rejected with E_RSATR. Additional undefined bits in the attributes fields must be zero.

In general, extended information (pk_cxxx->exinf) is ignored.

For semaphores, the initial semaphore count (pk_csem->isemcnt) is supported; the new semaphore’s count is
set. The maximum count is not supported, and is not in fact defined in type pk_csem.

For flags, multiple tasks are allowed to wait. Because single task waiting is a subset of this, the W bit
(TA_WMUL) of the flag attributes is ignored; all other bits must be zero. The initial flag value is supported.

For mailboxes, the buffer count is defined statically by kernel configuration option
CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE; therefore the buffer count field is not supported and is not in fact
defined in type pk_cmbx. Queueing of messages is FIFO ordered only, so TA_MPRI (in pk_cmbx->mbxatr)
is not supported.

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled:

• invalid object id; less than 1 or greater thanCYGNUM_UITRON_TASKS/SEMAS/MBOXESas appropriate returns
E_ID

• dispatching is enabled in any call which can sleep, or E_CTX

• tmout must be positive, otherwise E_PAR

• pk_cxxx pointers incre_xxx() must be valid pointers, or E_PAR

• return value pointer inref_xxx() is valid pointer, or E_PAR

• flag wait pattern must be non-zero, and mode must be valid, or E_PAR

• return value pointer in flag wait calls is a valid pointer, or E_PAR

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:

• When create and delete functionscre_xxx() anddel_xxx() are supported, all calls which use a valid object
ID number check that the object exists. If not, E_NOEXS is returned.

• In create functionscre_xxx() , when supported, if the object already exists, then E_OBJ

228

Chapter 28.µITRON API

• In any call which can sleep, such astwai_sem() : return codes E_TMOUT, E_RLWAI, E_DLT or of course
E_OK are returned depending on the reason for terminating the sleep

• In polling functions such aspreq_sem() return codes E_TMOUT or E_OK are returned depending on the
state of the synchronization object

• In creation functions, the attributes must be compatible with the selected underlying kernel configuration: in
cre_sem() pk_csem- >sematr must be equal toTA_TFIFO else E_RSATR.

• In cre_flg() pk_cflg- >flgatr must be eitherTA_WMULor TA_WSGLelseE_RSATR.

• In cre_mbx() pk_cmbx- >mbxatr must beTA_TFIFO + TA_MFIFO else E_RSATR.

Extended Synchronization and Communication Functions
None of these functions are supported in this release.

Interrupt management functions
These functions are fully supported in this release:

void ret_int (void)

ER loc_cpu (void)

ER unl_cpu (void)

ER dis_int (
UINT eintno)

ER ena_int (
UINT eintno)

void ret_wup (
ID tskid)

ER iwup_tsk (
ID tskid)

ER isig_sem (
ID semid)

ER iset_flg (
ID flgid ,
UID setptn)

ER isend_msg (
ID mbxid ,
T_MSG *pk_msg)

Note thatret_int() and theret_wup() are implemented as macros, containing a “return” statement.

Also note thatret_wup() and theixxx_yyy() style functions will only work when called from an ISR whose
associated DSR iscyg_uitron_dsr() , as specified in include file<cyg/compat/uitron/uit_ifnc.h >,
which defines theixxx_yyy() style functions also.

229

Chapter 28.µITRON API

If you are writing interrupt handlers more in theeCosstyle, with separate ISR and DSR routines both of your
own devising, do not use these special functions from a DSR: use plainxxx_yyy() style functions (with no ‘i’
prefix) instead, and do not call anyµITRON functions from the ISR at all.

The following functions are not supported in this release:

ER def_int (
UINT dintno,

T_DINT * pk_dint)

ER chg_iXX (
UINT iXXXX)

ER ref_iXX (
UINT * p_iXXXX)

These unsupported functions are all Level C (CPU dependent). Equivalent functionality is available via other
eCos-specific APIs.

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled:

• loc/unl_cpu() : these must only be called in aµITRON task context, else E_CTX.

• dis/ena_int() : the interrupt number must be in range as specified by the platform HAL in qustion, else
E_PAR.

Memory pool Management Functions
These functions are fully supported in this release:

ER get_blf (
VP *p_blf, ID mpfid)

ER pget_blf (
VP *p_blf, ID mpfid)

ER tget_blf (
VP *p_blf, ID mpfid, TMO tmout)

ER rel_blf (
ID mpfid, VP blf)

ER ref_mpf (
T_RMPF *pk_rmpf, ID mpfid)

ER get_blk (
VP *p_blk, ID mplid, INT blksz)

ER pget_blk (
VP *p_blk, ID mplid, INT blksz)

ER tget_blk (

230

Chapter 28.µITRON API

VP *p_blk, ID mplid, INT blksz, TMO tmout)

ER rel_blk (
ID mplid, VP blk)

ER ref_mpl (
T_RMPL *pk_rmpl, ID mplid)

Note that of the memory provided for a particular pool to manage in the static initialization of the memory pool
objects, some memory will be used to manage the pool itself. Therefore the number of blocks * the blocksize
will be less than the total memory size.

The following functions are supported in this release, when enabled with
CYGPKG_UITRON_MEMPOOLVAR_CREATE_DELETEor CYGPKG_UITRON_MEMPOOLFIXED_CREATE_DELETEas
appropriate, with some restrictions:

ER cre_mpl (
ID mplid, T_CMPL *pk_cmpl)

ER del_mpl (
ID mplid)

ER cre_mpf (
ID mpfid, T_CMPF *pk_cmpf)

ER del_mpf (
ID mpfid)

Because of the static initialization facilities provided for system objects, a memory pool is allocated a region of
memory to manage statically in the configuration. So while memory pools can be created and deleted, the same
area of memory is used for that memory pool (memory pool ID number) each time. The requested variable pool
size (pk_cmpl->mplsz) or the number of fixed-size blocks (pk_cmpf->mpfcnt) times the block size (pk_cmpf-
>blfsz) are checked for fitting within the statically allocated memory area, so if a create call succeeds, the
resulting pool will be at least as large as that requested. For this reasondel_mpl() anddel_mpf() do not
in any sense free the memory that was managed by the deleted pool for use by other pools; it may only be
managed by a pool of the same object id.

For both fixed and variable memory pools, the queueing order when waiting on a synchronization object
depends on the underlying kernel configuration. The multi-level queue scheduler is required for strictµITRON
conformance and it queues tasks in FIFO order, so requests to create an object with priority queueing of tasks
(pk_cxxx->xxxatr = TA_TPRI) are rejected with E_RSATR. Additional undefined bits in the attributes fields
must be zero.

In general, extended information (pk_cxxx->exinf) is ignored.

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled:

• invalid object id; less than 1 or greater thanCYGNUM_UITRON_MEMPOOLVAR/MEMPOOLFIXEDas appropriate
returns E_ID

• dispatching is enabled in any call which can sleep, or E_CTX

• tmout must be positive, otherwise E_PAR

• pk_cxxx pointers incre_xxx() must be valid pointers, or E_PAR

231

Chapter 28.µITRON API

• return value pointer inref_xxx() is a valid pointer, or E_PAR

• return value pointers in get block routines is a valid pointer, or E_PAR

• blocksize request in get variable block routines is greater than zero, or E_PAR

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:

• When create and delete functionscre_xxx() anddel_xxx() are supported, all calls which use a valid object
ID number check that the object exists. If not, E_NOEXS is returned.

• When create functionscre_xxx() are supported, if the object already exists, then E_OBJ

• In any call which can sleep, such asget_blk() : return codes E_TMOUT, E_RLWAI, E_DLT or of course
E_OK are returned depending on the reason for terminating the sleep

• In polling functions such aspget_blk() return codes E_TMOUT or E_OK are returned depending on the
state of the synchronization object

• In creation functions, the attributes must be compatible with the selected underlying kernel configuration: in
cre_mpl() pk_cmpl- >mplatr must be equal toTA_TFIFO else E_RSATR.

• In cre_mpf() pk_cmpf- >mpfatr must be equal toTA_TFIFO else E_RSATR.

• In creation functions, the requested size of the memory pool must not be larger than that statically config-
ured for the pool else E_RSATR; see the configuration option “Option: Static initializers”. Incre_mpl()

pk_cmpl- >mplsz is the field of interest

• In cre_mpf() the product ofpk_cmpf- >blfsz andpk_cmpf- >mpfcnt must be smaller than the memory
statically configured for the pool else E_RSATR

• In functions which return memory to the poolrel_blk() and rel_blf() , if the free fails, for example
because the memory did not come from that pool originally, then E_PAR is returned

Time Management Functions
These functions are fully supported in this release:

ER set_tim (
SYSTIME *pk_tim)

Caution
Setting the time may cause erroneous operation of the kernel, for example a task per-
forming a wait with a time-out may never awaken.

ER get_tim (
SYSTIME *pk_tim)

ER dly_tsk (
DLYTIME dlytim)

ER def_cyc (
HNO cycno, T_DCYC *pk_dcyc)

ER act_cyc (
HNO cycno, UINT cycact)

232

Chapter 28.µITRON API

ER ref_cyc (
T_RCYC *pk_rcyc, HNO cycno)

ER def_alm (
HNO almno, T_DALM *pk_dalm)

ER ref_alm (
T_RALM *pk_ralm, HNO almno)

void ret_tmr (void)

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled:

• invalid handler number; less than 1 or greater thanCYGNUM_UITRON_CYCLICS/ALARMSas appropriate, or
E_PAR

• dispatching is enabled indly_tsk() , or E_CTX

• dlytim must be positive or zero, otherwise E_PAR

• return value pointer inref_xxx() is a valid pointer, or E_PAR

• params within pk_dalm and pk_dcyc must be valid, or E_PAR

• cycact inact_cyc() must be valid, or E_PAR

• handler must be defined inref_xxx() andact_cyc() , or E_NOEXS

• parameter pointer must be a good pointer inget_tim() andset_tim() , otherwise E_PAR is returned

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:

• dly_tsk() : return code E_RLWAI is returned depending on the reason for terminating the sleep

System Management Functions
These functions are fully supported in this release:

ER get_ver (
T_VER *pk_ver)

ER ref_sys (
T_RSYS *pk_rsys)

ER ref_cfg (
T_RCFG *pk_rcfg)

Note that the information returned by each of these calls may be configured to match the user’s own versioning
system, and the values supplied by the default configuration may be inappropriate.

These functions are not supported in this release:

ER def_svc (
FN s_fncd,

233

Chapter 28.µITRON API

T_DSVC *pk_dsvc)

ER def_exc (
UINT exckind,
T_DEXC *pk_dexc)

Error checking
The following conditions are only checked for, and only return errors if
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORSis enabled:

• return value pointer in all calls is a valid pointer, or E_PAR

Network Support Functions
None of these functions are supported in this release.

µITRON Configuration FAQ
Q: How areµITRON objects created?

For each type of uITRON object (tasks, semaphores, flags, mboxes, mpf, mpl) these two quantities are con-
trolled by configuration:

• Themaximumnumber of this type of object.

• The number of these objects which existinitially .

This is assuming that for the relevant object type,createanddeleteoperations are enabled; enabled is the
default. For example, the optionCYGPKG_UITRON_MBOXES_CREATE_DELETEcontrols whether the functions
cre_mbx() and del_mbx() exist in the API. If not, then the maximum number of mboxes is the same as
the initial number of mboxes, and so on for allµITRON object types.

Mboxes have no initialization, so there are only a few, simple configuration options:

• CYGNUM_UITRON_MBOXESis the total number of mboxes that you can have in the system. By default this is 4,
so you can use mboxes 1,2,3 and 4. You cannot create mboxes outside this range; trying tocre_mbx(5,...)

will return an error.

• CYGNUM_UITRON_MBOXES_INITIALLYis the number of mboxes created automatically for you, during startup.
By default this is 4, so all 4 mboxes exist already, and an attempt to create one of these eg.cre_mbx(3,...)

will return an error because the mbox in quesion already exists. You can delete a pre-existing mbox, and
then re-create it.

If you changeCYGNUM_UITRON_MBOXES_INITIALLY, for example to 0, no mboxes are created automatically
for you during startup. Any attempt to use an mbox without creating it will return E_NOEXS because the mbox
does not exist. You can create an mbox, saycre_mbx(3,...) and then use it, saysnd_msg(3,&foo) , and all
will be well.

Q: How areµITRON objects initialized?

234

Chapter 28.µITRON API

Some object types have optional initialization. Semaphores are an example. You could have
CYGNUM_UITRON_SEMAS=10 and CYGNUM_UITRON_SEMAS_INITIALLY=5 which means you can use
semaphores 1-5 straight off, but you must create semaphores 6-10 before you can use them. If you decide not
to initialize semaphores, semaphores 1-5 will have an initial count of zero. If you decide to initialize them,
you must supply a dummy initializer for semaphores 6-10 also. For example, in terms of the configuration
output inpkgconf/uitron.h :

#define CYGDAT_UITRON_SEMA_INITIALIZERS \
CYG_UIT_SEMA(1), \
CYG_UIT_SEMA(0), \
CYG_UIT_SEMA(0), \
CYG_UIT_SEMA(99), \
CYG_UIT_SEMA(1), \
CYG_UIT_SEMA_NOEXS, \
CYG_UIT_SEMA_NOEXS, \
CYG_UIT_SEMA_NOEXS, \
CYG_UIT_SEMA_NOEXS, \
CYG_UIT_SEMA_NOEXS

Semaphore 1 will have initial count 1, semaphores 2 and 3 will be zero, number 4 will be 99 initially, 5 will be
one and numbers 6 though 10 do not exist initially.

Aside: this is how the definition of the symbol would appear in the configuration header file
pkgconf/uitron.h — unfortunately editing such a long, multi-line definition is somewhat cumbersome in
the GUI config tool in current releases. The macrosCYG_UIT_SEMA() — to create a semaphore initializer —
andCYG_UIT_SEMA_NOEXS— to invoke a dummy initializer — are provided in in the environment to help
with this. Similar macros are provided for other object types. The resulting #define symbol is used in the
context of a C++ array initializer, such as:

Cyg_Counting_Semaphore2 cyg_uitron_SEMAS[CYGNUM_UITRON_SEMAS] = {
CYGDAT_UITRON_SEMA_INITIALIZERS

};

which is eventually macro-processed to give

Cyg_Counting_Semaphore2 cyg_uitron_SEMAS[10] = {
Cyg_Counting_Semaphore2((1)),
Cyg_Counting_Semaphore2((0)),
Cyg_Counting_Semaphore2((0)),
Cyg_Counting_Semaphore2((99)),
Cyg_Counting_Semaphore2((1)),
Cyg_Counting_Semaphore2(0),
Cyg_Counting_Semaphore2(0),
Cyg_Counting_Semaphore2(0),
Cyg_Counting_Semaphore2(0),
Cyg_Counting_Semaphore2(0),

};

so you can see how it is necessary to include the dummy entries in that definition, otherwise the resulting code
will not compile correctly.

If you chooseCYGNUM_UITRON_SEMAS_INITIALLY=0 it is meaningless to initialize them, for they must be
created and so initialized then, before use.

Q: What aboutµITRON tasks?

Some object types require initialization. Tasks are an example of this. You must provide a task with a priority,
a function to enter when the task starts, a name (for debugging purposes), and some memory to use for the
stack. For example (again in terms of the resulting definitions inpkgconf/uitron.h):

235

Chapter 28.µITRON API

#define CYGNUM_UITRON_TASKS 4 // valid task ids are 1,2,3,4
#define CYGNUM_UITRON_TASKS_INITIALLY 4 // they all exist at start

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void startup(unsigned int); \
extern "C" void worktask(unsigned int); \
extern "C" void lowtask(unsigned int); \
static char stack1[CYGNUM_UITRON_STACK_SIZE], \

stack2[CYGNUM_UITRON_STACK_SIZE], \
stack3[CYGNUM_UITRON_STACK_SIZE], \
stack4[CYGNUM_UITRON_STACK_SIZE];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
CYG_UIT_TASK("main task", 8, startup, &stack1, sizeof(stack1)), \
CYG_UIT_TASK("worker 2" , 9, worktask, &stack2, sizeof(stack2)), \
CYG_UIT_TASK("worker 3" , 9, worktask, &stack3, sizeof(stack3)), \
CYG_UIT_TASK("low task" ,20, lowtask, &stack4, sizeof(stack4)), \

So this example has all four tasks statically configured to exist, ready to run, from the start of time. The “main
task” runs a routine calledstartup() at priority 8. Two “worker” tasks run both a priority 9, and a “low
priority” task runs at priority 20 to do useful non-urgent background work.

Task ID | Exists at | Function | Priority | Stack | Stack
number | startup | entry | | address | size

--------+-----------+----------+----------+---------+----------
1 | Yes | startup | 8 | &stack1 | CYGNUM...
2 | Yes | worktask | 9 | &stack2 | CYGNUM...
3 | Yes | worktask | 9 | &stack3 | CYGNUM...
4 | Yes | lowtask | 20 | &stack4 | CYGNUM...

--------+-----------+----------+----------+---------+----------

Q: How can I createµITRON tasks in the program?

You must provide free slots in the task table in which to create new tasks, by configuring the number of tasks
existing initially to be smaller than the total. For a task ID which does not initially exist, it will be told what
routine to call, and what priority it is, when the task is created. But you must still set aside memory for the task
to use for its stack, and give it a name during initialization. For example:

#define CYGNUM_UITRON_TASKS 4 // valid task ids are 1-4
#define CYGNUM_UITRON_TASKS_INITIALLY 1 // only task #1 exists

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void startup(unsigned int); \
static char stack1[CYGNUM_UITRON_STACK_SIZE], \

stack2[CYGNUM_UITRON_STACK_SIZE], \
stack3[CYGNUM_UITRON_STACK_SIZE], \
stack4[CYGNUM_UITRON_STACK_SIZE];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
CYG_UIT_TASK("main", 8, startup, &stack1, sizeof(stack1)), \
CYG_UIT_TASK_NOEXS("slave", &stack2, sizeof(stack2)), \
CYG_UIT_TASK_NOEXS("slave2", &stack3, sizeof(stack3)), \
CYG_UIT_TASK_NOEXS("slave3", &stack4, sizeof(stack4)), \

So tasks numbered 2,3 and 4 have been given their stacks during startup, though they do not yet exist in terms
of cre_tsk() anddel_tsk() so you can create tasks 2–4 at runtime.

Task ID | Exists at | Function | Priority | Stack | Stack
number | startup | entry | | address | size

--------+-----------+----------+----------+---------+----------

236

Chapter 28.µITRON API

1 | Yes | startup | 8 | &stack1 | CYGNUM...
2 | No | N/A | N/A | &stack2 | CYGNUM...
3 | No | N/A | N/A | &stack3 | CYGNUM...
4 | No | N/A | N/A | &stack4 | CYGNUM...

--------+-----------+----------+----------+---------+----------

(you must have at least one task at startup in order that the system can actually run; this is not so for other
uITRON object types)

Q: Can I have different stack sizes forµITRON tasks?

Simply set aside different amounts of memory for each task to use for its stack. Going back to a typical default
setting for theµITRON tasks, the definitions inpkgconf/uitron.h might look like this:

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void task1(unsigned int); \
extern "C" void task2(unsigned int); \
extern "C" void task3(unsigned int); \
extern "C" void task4(unsigned int); \
static char stack1[CYGNUM_UITRON_STACK_SIZE], \

stack2[CYGNUM_UITRON_STACK_SIZE], \
stack3[CYGNUM_UITRON_STACK_SIZE], \
stack4[CYGNUM_UITRON_STACK_SIZE];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
CYG_UIT_TASK("t1", 1, task1, &stack1, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK("t2", 2, task2, &stack2, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK("t3", 3, task3, &stack3, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK("t4", 4, task4, &stack4, CYGNUM_UITRON_STACK_SIZE)

Note thatCYGNUM_UITRON_STACK_SIZEis used to control the size of the stack objects themselves, and to tell
the system what size stack is being provided.

Suppose instead stack sizes of 2000, 1000, 800 and 800 were required: this could be achieved by using the
GUI config tool to edit these options, or editting the.ecc file to get these results inpkgconf/uitron.h :

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void task1(unsigned int); \
extern "C" void task2(unsigned int); \
extern "C" void task3(unsigned int); \
extern "C" void task4(unsigned int); \
static char stack1[2000], \

stack2[1000], \
stack3[800], \
stack4[800];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
CYG_UIT_TASK("t1", 1, task1, &stack1, sizeof(stack1)), \
CYG_UIT_TASK("t2", 2, task2, &stack2, sizeof(stack2)), \
CYG_UIT_TASK("t3", 3, task3, &stack3, sizeof(stack3)), \
CYG_UIT_TASK("t4", 4, task4, &stack4, sizeof(stack4))

Note that the sizeof() operator has been used to tell the system what size stacks are provided, rather than
quoting a number (which is difficult for maintenance) or the symbolCYGNUM_UITRON_STACK_SIZE(which is
wrong).

We recommend using (if available in your release) the stacksize symbols provided in the architectural HAL for
your target, calledCYGNUM_HAL_STACK_SIZE_TYPICALandCYGNUM_HAL_STACK_SIZE_MINIMUM. So a better
(more portable) version of the above might be:

#define CYGDAT_UITRON_TASK_EXTERNS \

237

Chapter 28.µITRON API

extern "C" void task1(unsigned int); \
extern "C" void task2(unsigned int); \
extern "C" void task3(unsigned int); \
extern "C" void task4(unsigned int); \
static char stack1[CYGNUM_HAL_STACK_SIZE_TYPICAL + 1200], \

stack2[CYGNUM_HAL_STACK_SIZE_TYPICAL + 200], \
stack3[CYGNUM_HAL_STACK_SIZE_TYPICAL], \
stack4[CYGNUM_HAL_STACK_SIZE_TYPICAL];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
CYG_UIT_TASK("t1", 1, task1, &stack1, sizeof(stack1)), \
CYG_UIT_TASK("t2", 2, task2, &stack2, sizeof(stack2)), \
CYG_UIT_TASK("t3", 3, task3, &stack3, sizeof(stack3)), \
CYG_UIT_TASK("t4", 4, task4, &stack4, sizeof(stack4))

238

XII. TCP/IP Stack Support for eCos
The Common Networking for eCos package provides support for a complete TCP/IP networking stack. The
design allows for the actual stack to be modular and at the current time two different implementations, one
based on OpenBSD from 2000 and a new version based on FreeBSD, are available. The particulars of each
stack implementation are presented in separate sections following this top-level discussion.

Chapter 29. Ethernet Driver Design
Currently, the networking stack only supports ethernet based networking.

The network drivers use a two-layer design. One layer is hardware independent and contains all the stack
specific code. The other layer is platform dependent and communicates with the hardware independent layer
via a very simple API. In this way, hardware device drivers can actually be used with other stacks, if the same
API can be provided by that stack. We designed the drivers this way to encourage the development of other
stacks in eCos while allowing re-use of the actual hardware specific code.

More comprehensive documentation of the ethernet device driver and the associated API can be found in the
generic ethernet device driver documentationPart XVIII in eCos Reference ManualThe driver and API is the
same as the minimal debug stack used by the RedBoot application. See the RedBoot documentation for further
information.

241

Chapter 29. Ethernet Driver Design

242

Chapter 30. Sample Code
Many examples using the networking support are provided. These are arranged as eCos test programs,
primarily for use in verifying the package, but they can also serve as useful frameworks for program
design. We have taken a KISS approach to building programs which use the network. A single include file
<network.h > is all that is required to access the stack. A complete, annotated test program can be found at
net/common/ VERSION/tests/ftp_test.c , with its associated files.

243

Chapter 30. Sample Code

244

Chapter 31. Configuring IP Addresses
Each interface (“eth0” and “eth1”) has independent configuration of its setup. Each can be set up manually (in
which case you must write code to do this), or by using BOOTP/DHCP, or explicitly, with configured values.
If additional interfaces are added, these must be configured manually.

The configurable values are:

• IP address

• netmask

• broadcast address

• gateway/router

• server address.

Server address is the DHCP server if applicable, but in addition, many test cases use it as “the machine to talk
to” in whatever manner the test exercises the protocol stack.

The initialization is invoked by calling the C routine

void init_all_network_interfaces (void);

Additionally, if the system is configured to support IPv6 then each interface may have an address assigned
which is a composite of a 64 bit prefix and the 32 bit IPv4 address for that interface. The prefix is controlled
by the CDL setting CYGHWR_NET_DRIVER_ETH0_IPV6_PREFIX for “eth0”, etc. This is a CDL booldata
type, allowing this address to be suppressed if not desired.

Alternatively, the system can configure its IPv6 address using router solicitation. When the CDL option
CYGOPT_NET_IPV6_ROUTING_THREAD is enabled,init_all_network_interface will start a thread
which sends out router solicit messages, process router advertisements and thus configure an IPv6 address to
the interface.

Refer to the test cases,.../packages/net/common/ VERSION/tests/ftp_test.c for example usage, and
the source files in.../packages/net/common/ VERSION/src/bootp_support.c andnetwork_support.c

to see what that call does.

This assumes that the MAC address (also known as ESA or Ethernet Station Address) is already defined in
the serial EEPROM or however the particular target implements this; support for setting the MAC address is
hardware dependent.

DHCP support is active by default, and there are configuration options to control it. Firstly, in the top level
of the “Networking” configuration tree, “Use full DHCP instead of BOOTP” enables DHCP, and it contains
an option to have the system provide a thread to renew DHCP leases and manage lease expiry. Secondly, the
individual interfaces “eth0” and “eth1” each have new options within the “Use BOOTP/DHCP to initialize
‘ethX’” to select whether to use DHCP rather than BOOTP.

Note that you are completely at liberty to ignore this startup code and its configuration in building your appli-
cation.init_all_network_interfaces() is provided for three main purposes:

• For use by Red Hat’s own test programs.

• As an easy “get you going” utility for newcomers to eCos.

245

Chapter 31. Configuring IP Addresses

• As readable example code from which further development might start.

If your application has different requirements for bringing up available network interfaces, setting up routes,
determining IP addresses and the like from the defaults that the example code provides, you can write your
own initialization code to use whatever sequence ofioctl() function calls carries out the desired setup.
Analogously, in larger systems, a sequence of “ifconfig” invocations is used; these mostly map toioctl()

calls to manipulate the state of the interface in question.

246

Chapter 32. Tests and Demonstrations

Loopback tests
By default, only tests which can execute on any target will be built. These therefore do not actually use external
network interfaces (though they may configure and initialize them) but are limited to testing via the loopback
interface.

ping_lo_test - ping test of the loopback address
tcp_lo_select - simple test of select with TCP via loopback
tcp_lo_test - trivial TCP test via loopback
udp_lo_test - trivial UDP test via loopback
multi_lo_select - test of multiple select() calls simultaneously

Building the Network Tests
To build further network tests, ensure that the configuration option CYGPKG_NET_BUILD_TESTS is set in
your build and then make the tests in the usual way. Alternatively (with that option set) use

make -C net/common/ VERSION/ tests

after building the eCos library, if you wish to buildonly the network tests.

This should give test executables ininstall/tests/net/common/ VERSION/tests including the following:

socket_test - trivial test of socket creation API
mbuf_test - trivial test of mbuf allocation API
ftp_test - simple FTP test, connects to “server”
ping_test - pings “server” and non-existent host to test timeout
dhcp_test - ping test, but also relinquishes and

reacquires DHCP leases periodically
flood - a flood ping test; use with care
tcp_echo - data forwarding program for performance test
nc_test_master - network characterization master
nc_test_slave - network characterization slave
server_test - a very simple server example
tftp_client_test - performs a tftp get and put from/to “server”
tftp_server_test - runs a tftp server for a short while
set_mac_address - set MAC address(es) of interfaces in NVRAM
bridge - contributed network bridge code
nc6_test_master - IPv4/IPv6 network characterization master
nc6_test_slave - IPv4/IPv6 network characterization slave
ga_server_test - a very simple IPv4/IPv6 server example

Standalone Tests
socket_test - trivial test of socket creation API
mbuf_test - trivial test of mbuf allocation API

247

Chapter 32. Tests and Demonstrations

These two do not communicate over the net; they just perform simple API tests then exit.

ftp_test - simple FTP test, connects to “server”

This test initializes the interface(s) then connects to the FTP server on the “server” machine for for each active
interface in turn, confirms that the connection was successful, disconnects and exits. This tests interworking
with the server.

ping_test - pings “server” and non-existent host to test timeout

This test initializes the interface(s) then pings the server machine in the standard way, then pings address “32
up” from the server in the expectation that there is no machine there. This confirms that the successful ping
is not a false positive, and tests the receive timeout. If there is such a machine, of course the 2nd set of pings
succeeds, confirming that we can talk to a machine not previously mentioned by configuration or by bootp. It
then does the same thing on the other interface, eth1.

If IPv6 is enabled, the program will also ping to the address it last received a router advertisement from. Also
a ping will be made to that address plus 32, in a similar way the the IPv4 case.

dhcp_test - ping test, but also manipulates DHCP leases

This test is very similar to the ping test, but in addition, provided the network package is not configured to do
this automatically, it manually relinquishes and reclaims DHCP leases for all available interfaces. This tests
the external API to DHCP. See section below describing this.

flood - a flood ping test; use with care

This test performs pings on all interfaces as quickly as possible, and only prints status information periodically.
Flood pinging is bad for network performance; so do not use this test on general purpose networks unless
protected by a switch.

Performance Test
tcp_echo - data forwarding program for performance test

tcp_echois one part of the standard performance test we use. The other parts are host programstcp_source

andtcp_sink . To make these (under yourHOSTsystem) cd to the tests source directory in the eCos repository
and type “make -f make.host ” - this should buildtcp_source andtcp_sink .

The host program “tcp_source ” sends data to the target. On the target, “tcp_echo ” sends it onwards to
“ tcp_sink ” running on your host. So the target must receive and send on all the data thattcp_source sends
it; the time taken for this is measured and the data rate is calculated.

To invoke the test, first starttcp_echo on the target board and wait for it to become quiescent - it will report
work to calibrate a CPU load which can be used to simulate real operating conditions for the stack.

Then on your host machine, in one terminal window, invoketcp_sink giving it the IP address (or hostname)
of one interface of the target board. For example “tcp_sink 10.130.39.66 ”. tcp_echo on the target will
print something like “SINK connection from 10.130.39.13:1143 ” when tcp_sink is correctly invoked.

Next, in another host terminal window, invoketcp_source , giving it the IP address (or hostname) of an
interface of the target board, and optionally a background load to apply to the target while the test runs. For
example, “tcp_source 194.130.39.66 ” to run the test with no additional target CPU load, or “tcp_source

194.130.39.66 85 ” to load it up to 85% used. The target load must be a multiple of 5.tcp_echo on the target
will print something like “SOURCE connection from 194.130.39.13:1144 ” when tcp_source is correctly
invoked.

248

Chapter 32. Tests and Demonstrations

You can connect tcp_sink to one target interface and tcp_source to another, or both to the same interface.
Similarly, you can runtcp_sink and tcp_source on the same host machine or different ones. TCP/IP and
ARP look after them finding one another, as intended.

nc_test_master - network characterization master
nc_test_slave - network characterization slave

These tests talk to each other to measure network performance. They can each run on either a test target or a
host computer given some customization to your local environment. As provided,nc_test_slave must run on
the test target, andnc_test_master must be run on a host computer, and be given the test target’s IP address
or hostname.

The tests print network performance for various packet sizes over UDP and TCP, versus various additional
CPU loads on the target.

The programs

nc6_test_slave
nc6_test_master

are additional forms which support both IPv4 and IPv6 addressing.

Interactive Tests
server_test - a very simple server example

This test simply awaits a connection on port 7734 and after accepting a connection, gets a packet (with a
timeout of a few seconds) and prints it.

The connection is then closed. We then loop to await the next connection, and so on. To use it, telnet to the
target on port 7734 then type something (quickly!)

% telnet 172.16.19.171 7734
Hello target board

and the test program will print something like:

connection from 172.16.19.13:3369
buf = "Hello target board"

ga_server_test - another very simple server example

This is a variation on thega_server_testtest with the difference being that it uses thegetaddrinfo function to
set up its addresses. On a system with IPv6 enabled, it will listen on port 7734 for a TCP connection via either
IPv4 or IPv6.

tftp_client_test - performs a tftp get and put from/to “server”

This is only partially interactive. You need to set things up on the “server” in order for this to work, and you
will need to look at the server afterwards to confirm that all was well.

For each interface in turn, this test attempts to read by tftp from the server, a file calledtftp_get and prints
the status and contents it read (if any). It then writes the same data to a file calledtftp_put on the same server.

In order for this to succeed, both files must already exist. The TFTP protocol does not require that a WRQ
request _create_ a file, just that it can write it. The TFTP server on Linux certainly will only allow writes
to an existing file, given the appropriate permission. Thus, you need to have these files in place, with proper
permission, before running the test.

249

Chapter 32. Tests and Demonstrations

The conventional place for the tftp server to operate in LINUX is /tftpboot/; you will likely need root privileges
to create files there. The data contents oftftp_get can be anything you like, but anything very large will
waste lots of time printing it on the test’s stdout, and anything above 32kB will cause a buffer overflow and
unpredictable failure.

Creating an empty tftp_put file (eg. by copying /dev/null to it) is neatest. So before the test you should have
something like:

-rw-rw-rw- 1 root 1076 May 1 11:39 tftp_get
-rw-rw-rw- 1 root 0 May 1 15:52 tftp_put

note that both files have public permissions wide open. After running the test,tftp_put should be a copy of
tftp_get .

-rw-rw-rw- 1 root 1076 May 1 11:39 tftp_get
-rw-rw-rw- 1 root 1076 May 1 15:52 tftp_put

If the configuration contains IPv6 support, the test program will also use IPv6. It will attempt to put/get the
files listed above from the address it last received a routers solicit from.

tftp_server_test - runs a tftp server for a short while

This test is truly interactive, in that you can use a standard tftp application to get and put files from the server,
during the 5 minutes that it runs. The dummy filesystem which underlies the server initially contains one file,
called “uu” which contains part of a familiar text and some padding. It also accommodates creation of 3 further
files of up to 1Mb in size and names of up to 256 bytes. Exceeding these limits will cause a buffer overflow
and unpredictable failure.

The dummy filesystem is an implementation of the generic API which allows a true filesystem to be attached
to the tftp server in the network stack.

We have been testing the tftp server by running the test on the target board, then using two different host
computers connecting to the different target interfaces, putting a file from each, getting the “uu” file, and
getting the file from the other computer. This verifies that data is preserved during the transfer as well as
interworking with standard tftp applications.

Maintenance Tools
set_mac_address - set MAC address(es) of interfaces in NVRAM

This program makes an exampleioctl() call SIOCSIFHWADDR “Socket IO Set InterFace HardWare AD-
DRess” to set the MAC address on targets where this is supported and enabled in the configuration. You must
edit the source to choose a MAC address and further edit it to allow this very dangerous operation. Not all eth-
ernet drivers support this operation, because most ethernet hardware does not support it — or it comes pre-set
from the factory.Do not use this program.

250

Chapter 33. Support Features

TFTP
The TFTP client and server are described intftp_support.h ;

The TFTP client has and new and an older, deprecated, API. The new API works for both IPv4 and IPv6 where
as the deprecated API is IPv4 only.

The new API is as follows:

int tftp_client_get(char *filename,
char *server,
int port,
char *buf,
int len,
int mode,
int *err);

int tftp_client_put(char *filename,
char *server,
int port,
char *buf,
int len,
int mode,
int *err);

Currentlyserver can only be a numeric IPv4 or IPv6 address. The resolver is currently not used, but it is
planned to add this feature (patches welcome). Ifport is zero the client connects to the default TFTP port on
the server. Otherwise the specified port is used.

The deprecated API is:

int tftp_client_get(char *filename,
struct sockaddr_in *server,
char *buf,
int len,
int mode,
int *err);

int tftp_client_put(char *filename,
struct sockaddr_in *server,
char *buf,
int len,
int mode,
int *err);

The server should contain the address of the server to contact. If thesin_port member of the structure is
zero the default TFTP port is used. Otherwise the specified port is used.

Both API’s report errors in the same way. The functions return a value of -1 and*err will be set to one of the
following values:

251

Chapter 33. Support Features

#define TFTP_ENOTFOUND 1 /* file not found */
#define TFTP_EACCESS 2 /* access violation */
#define TFTP_ENOSPACE 3 /* disk full or allocation exceeded */
#define TFTP_EBADOP 4 /* illegal TFTP operation */
#define TFTP_EBADID 5 /* unknown transfer ID */
#define TFTP_EEXISTS 6 /* file already exists */
#define TFTP_ENOUSER 7 /* no such user */
#define TFTP_TIMEOUT 8 /* operation timed out */
#define TFTP_NETERR 9 /* some sort of network error */
#define TFTP_INVALID 10 /* invalid parameter */
#define TFTP_PROTOCOL 11 /* protocol violation */
#define TFTP_TOOLARGE 12 /* file is larger than buffer */

If there are no errors the return value is the number of bytes transfered.

The server is more complex. It requires a filesystem implementation to be supplied by the user, and attached
to the tftp server by means of a vector of function pointers:

struct tftpd_fileops {
int (∗open)(const char ∗, int);
int (∗close)(int);
int (∗write)(int, const void ∗, int);
int (∗read)(int, void ∗, int);

};

These functions have the obvious semantics. The structure describing the filesystem is an argument to the
tftpd_start :

int tftp_start(int port,
struct tftpd_fileops *ops);

The first argument is the port to use for the server. If this port number is zero, the default TFTP port number
will be used. The return value fromtftpd_start is a handle which can be passed totftpd_stop . This will
kill the tftpd thread. Note that this is not a clean shutdown. The thread will simply be killed.tftpd_stop will
attempt to close the sockets the thread was listening on and free some of its allocated memory. But if the thread
was actively transferreing data at the timetftpd_stop is called, it is quite likely some memory and a socket
will be leaked. Use this function with caution (or implement a clean shutdown and please contribute the code
back :-).

There are two CDL configuration options that control how many servers on how many different ports tftp
can be started. CYGSEM_NET_TFTPD_MULTITHREADED, when enabled, allows multiple tftpd threads
to operate on the same port number. With only one thread, while the thread is active transferring data, new
requests for transfers will not be served until the active transfer is complete. When multiple threads are started
on the same port, multiple transfers can take place simultaneous, up to the number of threads started. How-
ever a semaphore is required to synchronise the threads. This semaphore is required per port. The CDL op-
tion CYGNUM_NET_TFTPD_MULTITHREADED_PORTS controls how many different port numbers mul-
tithreaded servers can service.

If CYGSEM_NET_TFTPD_MULTITHREADED is not enabled, only one thread may be run per port number.
But this removes the need for a semaphore and so CYGNUM_NET_TFTPD_MULTITHREADED_PORTS is
not required and unlimited number of ports can be used.

It should be noted that the TFTPD does not perform any form of file locking. When multiple servers are active,
it is assumed the underlying filesystem will refuse to open the same file multiple times, operate correctly with
simultaneous read/writes to the same file, or if you are unlucky, corrupt itself beyond all repair.

When IPv6 is enabled the tftpd thread will listen for requests from both IPv4 and IPv6 addresses.

252

Chapter 33. Support Features

As discussed in the description of the tftp_server_test above, an example filesystem is provided in
net/common/ VERSION/src/tftp_dummy_file.c for use by the tftp server test. The dummy filesystem is not
a supported part of the network stack, it exists purely for demonstration purposes.

DHCP
This API publishes a routine to maintain DHCP state, and a semaphore that is signalled when a lease requires
attention: this is your clue to call the aforementioned routine.

The intent with this API is that a simple DHCP client thread, which maintains the state of the interfaces, can
go as follows: (afterinit_all_network_interfaces() is called from elsewhere)

while (1) {
while (1) {

cyg_semaphore_wait(&dhcp_needs_attention);
if (! dhcp_bind()) // a lease expired

break; // If we need to re-bind
}
dhcp_halt(); // tear everything down
init_all_network_interfaces(); // re-initialize

}

and if the application does not want to suffer the overhead of a separate thread and its stack for this, this
functionality can be placed in the app’s server loop in an obvious fashion. That is the goal of breaking out
these internal elements. For example, some server might be arranged to poll DHCP from time to time like this:

while (1) {
init_all_network_interfaces();
open-my-listen-sockets();
while (1) {

serve-one-request();
// sleeps if no connections, but not forever;
// so this loop is polled a few times a minute...
if (cyg_semaphore_trywait(&dhcp_needs_attention)) {

if (! dhcp_bind()) {
close-my-listen-sockets();
dhcp_halt();
break;

}
}

}
}

If the configuration option CYGOPT_NET_DHCP_DHCP_THREAD is defined, then eCos provides a
thread as described initially. Independent of this option, initialization of the interfaces still occurs in
init_all_network_interfaces() and your startup code can call that. It will start the DHCP management
thread if configured. If a lease fails to be renewed, the management thread will shut down all interfaces and
attempt to initialize all the interfaces again from scratch. This may cause chaos in the app, which is why
managing the DHCP state in an application aware thread is actually better, just far less convenient for testing.

If the configuration option CYGOPT_NET_DHCP_OPTION_HOST_NAME is defined, then the
TAG_HOST_NAME DHCP option will be included in any DHCP lease requests. The text for the
hostname is set by callingdhcp_set_hostname() . Any DHCP lease requests made prior to calling
dhcp_set_hostname() will not include the TAG_HOST_NAME DHCP option. The configuration option
CYGNUM_NET_DHCP_OPTION_HOST_NAME_LEN controls the maximum length allowed for the

253

Chapter 33. Support Features

hostname. This permits the hostname text to be determined at run-time. Setting the hostname to the empty
string will have the effect of disabling the TAG_HOST_NAME DHCP option.

If the configuration option CYGOPT_NET_DHCP_OPTION_DHCP_CLIENTID_MAC is defined, then the
TAG_DHCP_CLIENTID DHCP option will be included in any DHCP lease requests. The client ID used will
be the current MAC address of the network interface.

The option CYGOPT_NET_DHCP_PARM_REQ_LIST_ADDITIONAL allows additional DHCP options to
be added to the request sent to the DHCP server. This option should be set to a comma separated list of options.

The option CYGOPT_NET_DHCP_PARM_REQ_LIST_REPLACE is similar to
CYGOPT_NET_DHCP_PARM_REQ_LIST_ADDITIONAL but in this case it completely replaces the
default list of options with the configured set of comma separated options.

254

Chapter 34. TCP/IP Library Reference

getdomainname
GETDOMAINNAME(3) System Library Functions Manual GETDOMAINNAME(3)

NAME
getdomainname, setdomainname - get/set YP domain name of current host

SYNOPSIS
#include <unistd.h>

int
getdomainname(char *name, size_t namelen);

int
setdomainname(const char *name, size_t namelen);

DESCRIPTION
The getdomainname() function returns the YP domain name for the current
processor, as previously set by setdomainname(). The parameter namelen
specifies the size of the name array. If insufficient space is provided,
the returned name is truncated. The returned name is always null termi-
nated.

setdomainname() sets the domain name of the host machine to be name,
which has length namelen. This call is restricted to the superuser and
is normally used only when the system is bootstrapped.

RETURN VALUES
If the call succeeds a value of 0 is returned. If the call fails, a
value of -1 is returned and an error code is placed in the global vari-
able errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.

[EPERM] The caller tried to set the domain name and was not
the superuser.

SEE ALSO
domainname(1), gethostid(3), gethostname(3), sysctl(3), sysctl(8), yp(8)

BUGS
Domain names are limited to MAXHOSTNAMELEN (from <sys/param.h>) charac-
ters, currently 256. This includes the terminating NUL character.

If the buffer passed to getdomainname() is too small, other operating
systems may not guarantee termination with NUL.

HISTORY
The getdomainname function call appeared in SunOS 3.x.

255

Chapter 34. TCP/IP Library Reference

BSD May 6, 1994 BSD

gethostname
GETHOSTNAME(3) System Library Functions Manual GETHOSTNAME(3)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
#include <unistd.h>

int
gethostname(char *name, size_t namelen);

int
sethostname(const char *name, size_t namelen);

DESCRIPTION
The gethostname() function returns the standard host name for the current
processor, as previously set by sethostname(). The parameter namelen
specifies the size of the name array. If insufficient space is provided,
the returned name is truncated. The returned name is always null termi-
nated.

sethostname() sets the name of the host machine to be name, which has
length namelen. This call is restricted to the superuser and is normally
used only when the system is bootstrapped.

RETURN VALUES
If the call succeeds a value of 0 is returned. If the call fails, a
value of -1 is returned and an error code is placed in the global vari-
able errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.

[EPERM] The caller tried to set the hostname and was not the
superuser.

SEE ALSO
hostname(1), getdomainname(3), gethostid(3), sysctl(3), sysctl(8), yp(8)

STANDARDS
The gethostname() function call conforms to X/Open Portability Guide
Issue 4.2 (“XPG4.2”).

HISTORY
The gethostname() function call appeared in 4.2BSD.

BUGS
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters,
currently 256. This includes the terminating NUL character.

If the buffer passed to gethostname() is smaller than MAXHOSTNAMELEN,

256

Chapter 34. TCP/IP Library Reference

other operating systems may not guarantee termination with NUL.

BSD June 4, 1993 BSD

byteorder
BYTEORDER(3) System Library Functions Manual BYTEORDER(3)

NAME
htonl, htons, ntohl, ntohs, htobe32, htobe16, betoh32, betoh16, htole32,
htole16, letoh32, letoh16, swap32, swap16 - convert values between dif-
ferent byte orderings

SYNOPSIS
#include <sys/types.h>
#include <machine/endian.h>

u_int32_t
htonl(u_int32_t host32);

u_int16_t
htons(u_int16_t host16);

u_int32_t
ntohl(u_int32_t net32);

u_int16_t
ntohs(u_int16_t net16);

u_int32_t
htobe32(u_int32_t host32);

u_int16_t
htobe16(u_int16_t host16);

u_int32_t
betoh32(u_int32_t big32);

u_int16_t
betoh16(u_int16_t big16);

u_int32_t
htole32(u_int32_t host32);

u_int16_t
htole16(u_int16_t host16);

u_int32_t
letoh32(u_int32_t little32);

u_int16_t
letoh16(u_int16_t little16);

u_int32_t
swap32(u_int32_t val32);

u_int16_t

257

Chapter 34. TCP/IP Library Reference

swap16(u_int16_t val16);

DESCRIPTION
These routines convert 16- and 32-bit quantities between different byte
orderings. The “swap” functions reverse the byte ordering of the given
quantity, the others converts either from/to the native byte order used
by the host to/from either little- or big-endian (a.k.a network) order.

Apart from the swap functions, the names can be described by this form:
{src-order}to{dst-order}{size}. Both {src-order} and {dst-order} can
take the following forms:

h Host order.
n Network order (big-endian).
be Big-endian (most significant byte first).
le Little-endian (least significant byte first).

One of the specified orderings must be ‘h’. {size} will take these
forms:

l Long (32-bit, used in conjunction with forms involving ‘n’).
s Short (16-bit, used in conjunction with forms involving ‘n’).
16

16-bit.
32

32-bit.

The swap functions are of the form: swap{size}.

Names involving ‘n’ convert quantities between network byte order and
host byte order. The last letter (‘s’ or ‘l’) is a mnemonic for the tra-
ditional names for such quantities, short and long, respectively. Today,
the C concept of short and long integers need not coincide with this tra-
ditional misunderstanding. On machines which have a byte order which is
the same as the network order, routines are defined as null macros.

The functions involving either “be”, “le”, or “swap” use the num-
bers 16 and 32 for specifying the bitwidth of the quantities they operate
on. Currently all supported architectures are either big- or little-
endian so either the “be” or “le” variants are implemented as null
macros.

The routines mentioned above which have either {src-order} or {dst-order}
set to ‘n’ are most often used in conjunction with Internet addresses and
ports as returned by gethostbyname(3) and getservent(3).

SEE ALSO
gethostbyname(3), getservent(3)

HISTORY
The byteorder functions appeared in 4.2BSD.

BUGS
On the vax, alpha, i386, and so far mips, bytes are handled backwards
from most everyone else in the world. This is not expected to be fixed
in the near future.

BSD June 4, 1993 BSD

258

Chapter 34. TCP/IP Library Reference

ethers
ETHERS(3) System Library Functions Manual ETHERS(3)

NAME
ether_aton, ether_ntoa, ether_addr, ether_ntohost, ether_hostton,
ether_line - get ethers entry

SYNOPSIS
#include <netinet/if_ether.h>

char *
ether_ntoa(struct ether_addr *e);

struct ether_addr *
ether_aton(char *s);

int
ether_ntohost(char *hostname, struct ether_addr *e);

int
ether_hostton(char *hostname, struct ether_addr *e);

int
ether_line(char *l, struct ether_addr *e, char *hostname);

DESCRIPTION
Ethernet addresses are represented by the following structure:

struct ether_addr {
u_int8_t ether_addr_octet[6];

};

The ether_ntoa() function converts this structure into an ASCII string of
the form “xx:xx:xx:xx:xx:xx”, consisting of 6 hexadecimal numbers sepa-
rated by colons. It returns a pointer to a static buffer that is reused
for each call. The ether_aton() converts an ASCII string of the same
form and to a structure containing the 6 octets of the address. It
returns a pointer to a static structure that is reused for each call.

The ether_ntohost() and ether_hostton() functions interrogate the
database mapping host names to Ethernet addresses, /etc/ethers. The
ether_ntohost() function looks up the given Ethernet address and writes
the associated host name into the character buffer passed. This buffer
should be MAXHOSTNAMELEN characters in size. The ether_hostton() func-
tion looks up the given host name and writes the associated Ethernet
address into the structure passed. Both functions return zero if they
find the requested host name or address, and -1 if not.

Each call reads /etc/ethers from the beginning; if a ‘+’ appears alone on
a line in the file, then ether_hostton() will consult the ethers.byname
YP map, and ether_ntohost() will consult the ethers.byaddr YP map.

The ether_line() function parses a line from the /etc/ethers file and
fills in the passed struct ether_addr and character buffer with the Eth-
ernet address and host name on the line. It returns zero if the line was
successfully parsed and -1 if not. The character buffer should be
MAXHOSTNAMELEN characters in size.

FILES
/etc/ethers

259

Chapter 34. TCP/IP Library Reference

SEE ALSO
ethers(5)

HISTORY
The ether_ntoa(), ether_aton(), ether_ntohost(), ether_hostton(), and
ether_line() functions were adopted from SunOS and appeared in NetBSD 0.9
b.

BUGS
The data space used by these functions is static; if future use requires
the data, it should be copied before any subsequent calls to these func-
tions overwrite it.

BSD December 16, 1993 BSD

getaddrinfo
GETADDRINFO(3) System Library Functions Manual GETADDRINFO(3)

NAME
getaddrinfo, freeaddrinfo, gai_strerror - nodename-to-address translation
in protocol-independent manner

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int
getaddrinfo(const char *nodename, const char *servname,

const struct addrinfo *hints, struct addrinfo **res);

void
freeaddrinfo(struct addrinfo *ai);

char *
gai_strerror(int ecode);

DESCRIPTION
The getaddrinfo() function is defined for protocol-independent nodename-
to-address translation. It performs the functionality of
gethostbyname(3) and getservbyname(3), but in a more sophisticated man-
ner.

The addrinfo structure is defined as a result of including the <netdb.h>
header:

struct addrinfo { *
int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST */
int ai_family; /* PF_xxx */
int ai_socktype; /* SOCK_xxx */
int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
size_t ai_addrlen; /* length of ai_addr */
char *ai_canonname; /* canonical name for nodename */
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */

260

Chapter 34. TCP/IP Library Reference

};

The nodename and servname arguments are pointers to NUL-terminated
strings or NULL. One or both of these two arguments must be a non-null
pointer. In the normal client scenario, both the nodename and servname
are specified. In the normal server scenario, only the servname is spec-
ified. A non-null nodename string can be either a node name or a numeric
host address string (i.e., a dotted-decimal IPv4 address or an IPv6 hex
address). A non-null servname string can be either a service name or a
decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the
third argument, to provide hints concerning the type of socket that the
caller supports. In this hints structure all members other than
ai_flags, ai_family, ai_socktype, and ai_protocol must be zero or a null
pointer. A value of PF_UNSPEC for ai_family means the caller will accept
any protocol family. A value of 0 for ai_socktype means the caller will
accept any socket type. A value of 0 for ai_protocol means the caller
will accept any protocol. For example, if the caller handles only TCP
and not UDP, then the ai_socktype member of the hints structure should be
set to SOCK_STREAM when getaddrinfo() is called. If the caller handles
only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to PF_INET when getaddrinfo() is called. If the third
argument to getaddrinfo() is a null pointer, this is the same as if the
caller had filled in an addrinfo structure initialized to zero with
ai_family set to PF_UNSPEC.

Upon successful return a pointer to a linked list of one or more addrinfo
structures is returned through the final argument. The caller can pro-
cess each addrinfo structure in this list by following the ai_next
pointer, until a null pointer is encountered. In each returned addrinfo
structure the three members ai_family, ai_socktype, and ai_protocol are
the corresponding arguments for a call to the socket() function. In each
addrinfo structure the ai_addr member points to a filled-in socket
address structure whose length is specified by the ai_addrlen member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints struc-
ture, then the caller plans to use the returned socket address structure
in a call to bind(). In this case, if the nodename argument is a null
pointer, then the IP address portion of the socket address structure will
be set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6
address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints
structure, then the returned socket address structure will be ready for a
call to connect() (for a connection-oriented protocol) or either
connect(), sendto(), or sendmsg() (for a connectionless protocol). In
this case, if the nodename argument is a null pointer, then the IP
address portion of the socket address structure will be set to the loop-
back address.

If the AI_CANONNAME bit is set in the ai_flags member of the hints struc-
ture, then upon successful return the ai_canonname member of the first
addrinfo structure in the linked list will point to a NUL-terminated
string containing the canonical name of the specified nodename.

If the AI_NUMERICHOST bit is set in the ai_flags member of the hints
structure, then a non-null nodename string must be a numeric host address
string. Otherwise an error of EAI_NONAME is returned. This flag pre-
vents any type of name resolution service (e.g., the DNS) from being
called.

261

Chapter 34. TCP/IP Library Reference

The arguments to getaddrinfo() must sufficiently be consistent and unam-
biguous. Here are pitfall cases you may encounter:

o getaddrinfo() will raise an error if members of the hints structure
are not consistent. For example, for internet address families,
getaddrinfo() will raise an error if you specify SOCK_STREAM to
ai_socktype while you specify IPPROTO_UDP to ai_protocol.

o If you specify a servname which is defined only for certain
ai_socktype, getaddrinfo() will raise an error because the arguments
are not consistent. For example, getaddrinfo() will raise an error
if you ask for “tftp” service on SOCK_STREAM.

o For internet address families, if you specify servname while you set
ai_socktype to SOCK_RAW, getaddrinfo() will raise an error, because
service names are not defined for the internet SOCK_RAW space.

o If you specify a numeric servname, while leaving ai_socktype and
ai_protocol unspecified, getaddrinfo() will raise an error. This is
because the numeric servname does not identify any socket type, and
getaddrinfo() is not allowed to glob the argument in such case.

All of the information returned by getaddrinfo() is dynamically allo-
cated: the addrinfo structures, the socket address structures, and canon-
ical node name strings pointed to by the addrinfo structures. To return
this information to the system the function freeaddrinfo() is called.
The addrinfo structure pointed to by the ai argument is freed, along with
any dynamic storage pointed to by the structure. This operation is
repeated until a NULL ai_next pointer is encountered.

To aid applications in printing error messages based on the EAI_xxx codes
returned by getaddrinfo(), gai_strerror() is defined. The argument is
one of the EAI_xxx values defined earlier and the return value points to
a string describing the error. If the argument is not one of the EAI_xxx
values, the function still returns a pointer to a string whose contents
indicate an unknown error.

Extension for scoped IPv6 address
The implementation allows experimental numeric IPv6 address notation with
scope identifier. By appending the percent character and scope identi-
fier to addresses, you can fill sin6_scope_id field for addresses. This
would make management of scoped address easier, and allows cut-and-paste
input of scoped address.

At this moment the code supports only link-local addresses with the for-
mat. Scope identifier is hardcoded to name of hardware interface associ-
ated with the link. (such as ne0). Example would be like
“fe80::1%ne0”, which means “fe80::1 on the link associated with ne0
interface”.

The implementation is still very experimental and non-standard. The cur-
rent implementation assumes one-by-one relationship between interface and
link, which is not necessarily true from the specification.

EXAMPLES
The following code tries to connect to “www.kame.net” service “http”.
via stream socket. It loops through all the addresses available, regard-
less from address family. If the destination resolves to IPv4 address,
it will use AF_INET socket. Similarly, if it resolves to IPv6, AF_INET6
socket is used. Observe that there is no hardcoded reference to particu-

262

Chapter 34. TCP/IP Library Reference

lar address family. The code works even if getaddrinfo returns addresses
that are not IPv4/v6.

struct addrinfo hints, *res, *res0;
int error;
int s;
const char *cause = NULL;

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
error = getaddrinfo("www.kame.net", "http", &hints, &res0);
if (error) {

errx(1, "%s", gai_strerror(error));
/*NOTREACHED*/

}
s = -1;
for (res = res0; res; res = res->ai_next) {

s = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

if (s < 0) {
cause = "socket";
continue;

}

if (connect(s, res->ai_addr, res->ai_addrlen) < 0) {
cause = "connect";
close(s);
s = -1;
continue;

}

break; /* okay we got one */
}
if (s < 0) {

err(1, cause);
/*NOTREACHED*/

}
freeaddrinfo(res0);

The following example tries to open a wildcard listening socket onto ser-
vice “http”, for all the address families available.

struct addrinfo hints, *res, *res0;
int error;
int s[MAXSOCK];
int nsock;
const char *cause = NULL;

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
error = getaddrinfo(NULL, "http", &hints, &res0);
if (error) {

errx(1, "%s", gai_strerror(error));
/*NOTREACHED*/

}
nsock = 0;
for (res = res0; res && nsock < MAXSOCK; res = res->ai_next) {

s[nsock] = socket(res->ai_family, res->ai_socktype,

263

Chapter 34. TCP/IP Library Reference

res->ai_protocol);
if (s[nsock] < 0) {

cause = "socket";
continue;

}

if (bind(s[nsock], res->ai_addr, res->ai_addrlen) < 0) {
cause = "bind";
close(s[nsock]);
continue;

}
(void) listen(s[nsock], 5);

nsock++;
}
if (nsock == 0) {

err(1, cause);
/*NOTREACHED*/

}
freeaddrinfo(res0);

DIAGNOSTICS
Error return status from getaddrinfo() is zero on success and non-zero on
errors. Non-zero error codes are defined in <netdb.h>, and as follows:

EAI_ADDRFAMILY Address family for nodename not supported.
EAI_AGAIN Temporary failure in name resolution.
EAI_BADFLAGS Invalid value for ai_flags.
EAI_FAIL Non-recoverable failure in name resolution.
EAI_FAMILY ai_family not supported.
EAI_MEMORY Memory allocation failure.
EAI_NODATA No address associated with nodename.
EAI_NONAME nodename nor servname provided, or not known.
EAI_SERVICE servname not supported for ai_socktype.
EAI_SOCKTYPE ai_socktype not supported.
EAI_SYSTEM System error returned in errno.

If called with proper argument, gai_strerror() returns a pointer to a
string describing the given error code. If the argument is not one of
the EAI_xxx values, the function still returns a pointer to a string
whose contents indicate an unknown error.

SEE ALSO
getnameinfo(3), gethostbyname(3), getservbyname(3), hosts(5),
resolv.conf(5), services(5), hostname(7), named(8)

R. Gilligan, S. Thomson, J. Bound, and W. Stevens, Basic Socket Interface
Extensions for IPv6, RFC2553, March 1999.

Tatsuya Jinmei and Atsushi Onoe, An Extension of Format for IPv6 Scoped
Addresses, internet draft, draft-ietf-ipngwg-scopedaddr-format-02.txt,
work in progress material.

Craig Metz, "Protocol Independence Using the Sockets API", Proceedings of
the freenix track: 2000 USENIX annual technical conference, June 2000.

HISTORY
The implementation first appeared in WIDE Hydrangea IPv6 protocol stack
kit.

STANDARDS

264

Chapter 34. TCP/IP Library Reference

The getaddrinfo() function is defined in IEEE POSIX 1003.1g draft speci-
fication, and documented in “Basic Socket Interface Extensions for
IPv6” (RFC2553).

BUGS
The current implementation is not thread-safe.

The text was shamelessly copied from RFC2553.

BSD May 25, 1995 BSD

gethostbyname
GETHOSTBYNAME(3) System Library Functions Manual GETHOSTBYNAME(3)

NAME
gethostbyname, gethostbyname2, gethostbyaddr, gethostent, sethostent,
endhostent, hstrerror, herror - get network host entry

SYNOPSIS
#include <netdb.h>
extern int h_errno;

struct hostent *
gethostbyname(const char *name);

struct hostent *
gethostbyname2(const char *name, int af);

struct hostent *
gethostbyaddr(const char *addr, int len, int af);

struct hostent *
gethostent(void);

void
sethostent(int stayopen);

void
endhostent(void);

void
herror(const char *string);

const char *
hstrerror(int err);

DESCRIPTION
The gethostbyname() and gethostbyaddr() functions each return a pointer
to an object with the following structure describing an internet host
referenced by name or by address, respectively. This structure contains
either information obtained from the name server (i.e., resolver(3) and
named(8)), broken-out fields from a line in /etc/hosts, or database
entries supplied by the yp(8) system. resolv.conf(5) describes how the
particular database is chosen.

struct hostent {

265

Chapter 34. TCP/IP Library Reference

char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses from name server */

};
#define h_addr h_addr_list[0] /* address, for backward compatibility */

The members of this structure are:

h_name Official name of the host.

h_aliases A zero-terminated array of alternate names for the host.

h_addrtype The type of address being returned.

h_length The length, in bytes, of the address.

h_addr_list A zero-terminated array of network addresses for the host.
Host addresses are returned in network byte order.

h_addr The first address in h_addr_list; this is for backward com-
patibility.

The function gethostbyname() will search for the named host in the cur-
rent domain and its parents using the search lookup semantics detailed in
resolv.conf(5) and hostname(7).

gethostbyname2() is an advanced form of gethostbyname() which allows
lookups in address families other than AF_INET, for example AF_INET6.

The gethostbyaddr() function will search for the specified address of
length len in the address family af. The only address family currently
supported is AF_INET.

The sethostent() function may be used to request the use of a connected
TCP socket for queries. If the stayopen flag is non-zero, this sets the
option to send all queries to the name server using TCP and to retain the
connection after each call to gethostbyname() or gethostbyaddr(). Other-
wise, queries are performed using UDP datagrams.

The endhostent() function closes the TCP connection.

The herror() function prints an error message describing the failure. If
its argument string is non-null, it is prepended to the message string
and separated from it by a colon (‘:’) and a space. The error message is
printed with a trailing newline. The contents of the error message is
the same as that returned by hstrerror() with argument h_errno.

FILES
/etc/hosts
/etc/resolv.conf

DIAGNOSTICS
Error return status from gethostbyname(), gethostbyname2(), and
gethostbyaddr() is indicated by return of a null pointer. The external
integer h_errno may then be checked to see whether this is a temporary
failure or an invalid or unknown host.

The variable h_errno can have the following values:

266

Chapter 34. TCP/IP Library Reference

HOST_NOT_FOUND No such host is known.

TRY_AGAIN This is usually a temporary error and means that the
local server did not receive a response from an authori-
tative server. A retry at some later time may succeed.

NO_RECOVERY Some unexpected server failure was encountered. This is
a non-recoverable error.

NO_DATA The requested name is valid but does not have an IP
address; this is not a temporary error. This means that
the name is known to the name server but there is no
address associated with this name. Another type of
request to the name server using this domain name will
result in an answer; for example, a mail-forwarder may be
registered for this domain.

SEE ALSO
resolver(3), getaddrinfo(3), getnameinfo(3), hosts(5), resolv.conf(5),
hostname(7), named(8)

CAVEAT
If the search routines in resolv.conf(5) decide to read the /etc/hosts
file, gethostent() and other functions will read the next line of the
file, re-opening the file if necessary.

The sethostent() function opens and/or rewinds the file /etc/hosts. If
the stayopen argument is non-zero, the file will not be closed after each
call to gethostbyname(), gethostbyname2(), or gethostbyaddr().

The endhostent() function closes the file.

HISTORY
The herror() function appeared in 4.3BSD. The endhostent(),
gethostbyaddr(), gethostbyname(), gethostent(), and sethostent() func-
tions appeared in 4.2BSD.

BUGS
These functions use static data storage; if the data is needed for future
use, it should be copied before any subsequent calls overwrite it. Only
the Internet address formats are currently understood.

YP does not support any address families other than AF_INET and uses the
traditional database format.

BSD March 13, 1997 BSD

getifaddrs
GETIFADDRS(3) System Library Functions Manual GETIFADDRS(3)

NAME
getifaddrs - get interface addresses

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

267

Chapter 34. TCP/IP Library Reference

#include <ifaddrs.h>

int
getifaddrs(struct ifaddrs **ifap);

void
freeifaddrs(struct ifaddrs *ifap);

DESCRIPTION
The getifaddrs() function stores a reference to a linked list of the net-
work interfaces on the local machine in the memory referenced by ifap.
The list consists of ifaddrs structures, as defined in the include file
<ifaddrs.h>. The ifaddrs structure contains at least the following
entries:

struct ifaddrs *ifa_next; /* Pointer to next struct */
char *ifa_name; /* Interface name */
u_int ifa_flags; /* Interface flags */
struct sockaddr *ifa_addr; /* Interface address */
struct sockaddr *ifa_netmask; /* Interface netmask */
struct sockaddr *ifa_broadaddr; /* Interface broadcast address */
struct sockaddr *ifa_dstaddr; /* P2P interface destination */
void *ifa_data; /* Address specific data */

ifa_next
Contains a pointer to the next structure on the list. This field
is set to NULL in last structure on the list.

ifa_name
Contains the interface name.

ifa_flags
Contains the interface flags, as set by ifconfig(8).

ifa_addr
References either the address of the interface or the link level
address of the interface, if one exists, otherwise it is NULL.
(The sa_family field of the ifa_addr field should be consulted to
determine the format of the ifa_addr address.)

ifa_netmask
References the netmask associated with ifa_addr, if one is set,
otherwise it is NULL.

ifa_broadaddr
This field, which should only be referenced for non-P2P inter-
faces, references the broadcast address associated with ifa_addr,
if one exists, otherwise it is NULL.

ifa_dstaddr
References the destination address on a P2P interface, if one
exists, otherwise it is NULL.

ifa_data
References address family specific data. For AF_LINK addresses
it contains a pointer to the struct if_data (as defined in
include file <net/if.h>) which contains various interface
attributes and statistics. For all other address families, it
contains a pointer to the struct ifa_data (as defined in include
file <net/if.h>) which contains per-address interface statistics.

268

Chapter 34. TCP/IP Library Reference

The data returned by getifaddrs() is dynamically allocated and should be
freed using freeifaddrs() when no longer needed.

RETURN VALUES
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

ERRORS
The getifaddrs() may fail and set errno for any of the errors specified
for the library routines ioctl(2), socket(2), malloc(3), or sysctl(3).

BUGS
If both <net/if.h> and <ifaddrs.h> are being included, <net/if.h> must be
included before <ifaddrs.h>.

SEE ALSO
ioctl(2), socket(2), sysctl(3), networking(4), ifconfig(8)

HISTORY
The getifaddrs() function first appeared in BSDI BSD/OS. The function is
supplied on OpenBSD since OpenBSD 2.7.

BSD February 24, 2003 BSD

getnameinfo
GETNAMEINFO(3) System Library Functions Manual GETNAMEINFO(3)

NAME
getnameinfo - address-to-nodename translation in protocol-independent
manner

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int
getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host,

size_t hostlen, char *serv, size_t servlen, int flags);

DESCRIPTION
The getnameinfo() function is defined for protocol-independent address-
to-nodename translation. Its functionality is a reverse conversion of
getaddrinfo(3), and implements similar functionality with
gethostbyaddr(3) and getservbyport(3) in more sophisticated manner.

This function looks up an IP address and port number provided by the
caller in the DNS and system-specific database, and returns text strings
for both in buffers provided by the caller. The function indicates suc-
cessful completion by a zero return value; a non-zero return value indi-
cates failure.

The first argument, sa, points to either a sockaddr_in structure (for
IPv4) or a sockaddr_in6 structure (for IPv6) that holds the IP address
and port number. The salen argument gives the length of the sockaddr_in
or sockaddr_in6 structure.

269

Chapter 34. TCP/IP Library Reference

The function returns the nodename associated with the IP address in the
buffer pointed to by the host argument. The caller provides the size of
this buffer via the hostlen argument. The service name associated with
the port number is returned in the buffer pointed to by serv, and the
servlen argument gives the length of this buffer. The caller specifies
not to return either string by providing a zero value for the hostlen or
servlen arguments. Otherwise, the caller must provide buffers large
enough to hold the nodename and the service name, including the terminat-
ing null characters.

Unfortunately most systems do not provide constants that specify the max-
imum size of either a fully-qualified domain name or a service name.
Therefore to aid the application in allocating buffers for these two
returned strings the following constants are defined in <netdb.h>:

#define NI_MAXHOST MAXHOSTNAMELEN
#define NI_MAXSERV 32

The first value is actually defined as the constant MAXDNAME in recent
versions of BIND’s <arpa/nameser.h> header (older versions of BIND define
this constant to be 256) and the second is a guess based on the services
listed in the current Assigned Numbers RFC.

The final argument is a flag that changes the default actions of this
function. By default the fully-qualified domain name (FQDN) for the host
is looked up in the DNS and returned. If the flag bit NI_NOFQDN is set,
only the nodename portion of the FQDN is returned for local hosts.

If the flag bit NI_NUMERICHOST is set, or if the host’s name cannot be
located in the DNS, the numeric form of the host’s address is returned
instead of its name (e.g., by calling inet_ntop() instead of
gethostbyaddr()). If the flag bit NI_NAMEREQD is set, an error is
returned if the host’s name cannot be located in the DNS.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service
address is returned (e.g., its port number) instead of its name. The two
NI_NUMERICxxx flags are required to support the -n flag that many com-
mands provide.

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram ser-
vice, and causes getservbyport() to be called with a second argument of
"udp" instead of its default of "tcp". This is required for the few
ports (512-514) that have different services for UDP and TCP.

These NI_xxx flags are defined in <netdb.h>.

Extension for scoped IPv6 address
The implementation allows experimental numeric IPv6 address notation with
scope identifier. IPv6 link-local address will appear as string like
“fe80::1%ne0”, if NI_WITHSCOPEID bit is enabled in flags argument.
Refer to getaddrinfo(3) for the notation.

EXAMPLES
The following code tries to get numeric hostname, and service name, for
given socket address. Observe that there is no hardcoded reference to
particular address family.

struct sockaddr *sa; /* input */
char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

270

Chapter 34. TCP/IP Library Reference

if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), sbuf,
sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV)) {

errx(1, "could not get numeric hostname");
/*NOTREACHED*/

}
printf("host=%s, serv=%s\n", hbuf, sbuf);

The following version checks if the socket address has reverse address
mapping.

struct sockaddr *sa; /* input */
char hbuf[NI_MAXHOST];

if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), NULL, 0,
NI_NAMEREQD)) {

errx(1, "could not resolve hostname");
/*NOTREACHED*/

}
printf("host=%s\n", hbuf);

DIAGNOSTICS
The function indicates successful completion by a zero return value; a
non-zero return value indicates failure. Error codes are as below:

EAI_AGAIN The name could not be resolved at this time. Future
attempts may succeed.

EAI_BADFLAGS The flags had an invalid value.

EAI_FAIL A non-recoverable error occurred.

EAI_FAMILY The address family was not recognized or the address
length was invalid for the specified family.

EAI_MEMORY There was a memory allocation failure.

EAI_NONAME The name does not resolve for the supplied parameters.
NI_NAMEREQD is set and the host’s name cannot be
located, or both nodename and servname were null.

EAI_SYSTEM A system error occurred. The error code can be found
in errno.

SEE ALSO
getaddrinfo(3), gethostbyaddr(3), getservbyport(3), hosts(5),
resolv.conf(5), services(5), hostname(7), named(8)

R. Gilligan, S. Thomson, J. Bound, and W. Stevens, Basic Socket Interface
Extensions for IPv6, RFC2553, March 1999.

Tatsuya Jinmei and Atsushi Onoe, An Extension of Format for IPv6 Scoped
Addresses, internet draft, draft-ietf-ipngwg-scopedaddr-format-02.txt,
work in progress material.

Craig Metz, "Protocol Independence Using the Sockets API", Proceedings of
the freenix track: 2000 USENIX annual technical conference, June 2000.

HISTORY
The implementation first appeared in WIDE Hydrangea IPv6 protocol stack
kit.

271

Chapter 34. TCP/IP Library Reference

STANDARDS
The getaddrinfo() function is defined IEEE POSIX 1003.1g draft specifica-
tion, and documented in “Basic Socket Interface Extensions for IPv6”
(RFC2553).

BUGS
The current implementation is not thread-safe.

The text was shamelessly copied from RFC2553.

OpenBSD intentionally uses different NI_MAXHOST value from what RFC2553
suggests, to avoid buffer length handling mistakes.

BSD May 25, 1995 BSD

getnetent
GETNETENT(3) System Library Functions Manual GETNETENT(3)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network
entry

SYNOPSIS
#include <netdb.h>

struct netent *
getnetent(void);

struct netent *
getnetbyname(char *name);

struct netent *
getnetbyaddr(in_addr_t net, int type);

void
setnetent(int stayopen);

void
endnetent(void);

DESCRIPTION
The getnetent(), getnetbyname(), and getnetbyaddr() functions each return
a pointer to an object with the following structure containing the bro-
ken-out fields of a line in the network database, /etc/networks.

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net number type */
in_addr_t n_net; /* net number */

};

The members of this structure are:

n_name The official name of the network.

272

Chapter 34. TCP/IP Library Reference

n_aliases A zero-terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only
AF_INET.

n_net The network number. Network numbers are returned in machine
byte order.

The getnetent() function reads the next line of the file, opening the
file if necessary.

The setnetent() function opens and rewinds the file. If the stayopen
flag is non-zero, the net database will not be closed after each call to
getnetbyname() or getnetbyaddr().

The endnetent() function closes the file.

The getnetbyname() and getnetbyaddr() functions search the domain name
server if the system is configured to use one. If the search fails, or
no name server is configured, they sequentially search from the beginning
of the file until a matching net name or net address and type is found,
or until EOF is encountered. Network numbers are supplied in host order.

FILES
/etc/networks

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

SEE ALSO
resolver(3), networks(5)

HISTORY
The getnetent(), getnetbyaddr(), getnetbyname(), setnetent(), and
endnetent() functions appeared in 4.2BSD.

BUGS
The data space used by these functions is static; if future use requires
the data, it should be copied before any subsequent calls to these func-
tions overwrite it. Only Internet network numbers are currently under-
stood. Expecting network numbers to fit in no more than 32 bits is
naive.

BSD March 13, 1997 BSD

getprotoent
GETPROTOENT(3) System Library Functions Manual GETPROTOENT(3)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent -
get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *

273

Chapter 34. TCP/IP Library Reference

getprotoent(void);

struct protoent *
getprotobyname(char *name);

struct protoent *
getprotobynumber(int proto);

void
setprotoent(int stayopen);

void
endprotoent(void);

DESCRIPTION
The getprotoent(), getprotobyname(), and getprotobynumber() functions
each return a pointer to an object with the following structure contain-
ing the broken-out fields of a line in the network protocol database,
/etc/protocols.

struct protoent {
char *p_name; /* official name of protocol */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

The members of this structure are:

p_name The official name of the protocol.

p_aliases A zero-terminated list of alternate names for the protocol.

p_proto The protocol number.

The getprotoent() function reads the next line of the file, opening the
file if necessary.

The setprotoent() function opens and rewinds the file. If the stayopen
flag is non-zero, the net database will not be closed after each call to
getprotobyname() or getprotobynumber().

The endprotoent() function closes the file.

The getprotobyname() and getprotobynumber() functions sequentially search
from the beginning of the file until a matching protocol name or protocol
number is found, or until EOF is encountered.

RETURN VALUES
Null pointer (0) returned on EOF or error.

FILES
/etc/protocols

SEE ALSO
protocols(5)

HISTORY
The getprotoent(), getprotobynumber(), getprotobyname(), setprotoent(),
and endprotoent() functions appeared in 4.2BSD.

274

Chapter 34. TCP/IP Library Reference

BUGS
These functions use a static data space; if the data is needed for future
use, it should be copied before any subsequent calls overwrite it. Only
the Internet protocols are currently understood.

BSD June 4, 1993 BSD

getrrsetbyname
GETRRSETBYNAME(3) System Library Functions Manual GETRRSETBYNAME(3)

NAME
getrrsetbyname - retrieve DNS records

SYNOPSIS
#include <netdb.h>

int
getrrsetbyname(const char *hostname, unsigned int rdclass,

unsigned int rdtype, unsigned int flags, struct rrsetinfo **res);

int
freerrset(struct rrsetinfo **rrset);

DESCRIPTION
getrrsetbyname() gets a set of resource records associated with a
hostname, class and type. hostname is a pointer a to null-terminated
string. The flags field is currently unused and must be zero.

After a successful call to getrrsetbyname(), *res is a pointer to an
rrsetinfo structure, containing a list of one or more rdatainfo struc-
tures containing resource records and potentially another list of
rdatainfo structures containing SIG resource records associated with
those records. The members rri_rdclass and rri_rdtype are copied from
the parameters. rri_ttl and rri_name are properties of the obtained
rrset. The resource records contained in rri_rdatas and rri_sigs are in
uncompressed DNS wire format. Properties of the rdataset are represented
in the rri_flags bitfield. If the RRSET_VALIDATED bit is set, the data
has been DNSSEC validated and the signatures verified.

The following structures are used:

struct rdatainfo {
unsigned int rdi_length; /* length of data */
unsigned char *rdi_data; /* record data */

};

struct rrsetinfo {
unsigned int rri_flags; /* RRSET_VALIDATED ... */
unsigned int rri_rdclass; /* class number */
unsigned int rri_rdtype; /* RR type number */
unsigned int rri_ttl; /* time to live */
unsigned int rri_nrdatas; /* size of rdatas array */
unsigned int rri_nsigs; /* size of sigs array */
char *rri_name; /* canonical name */
struct rdatainfo *rri_rdatas; /* individual records */
struct rdatainfo *rri_sigs; /* individual signatures */

275

Chapter 34. TCP/IP Library Reference

};

All of the information returned by getrrsetbyname() is dynamically allo-
cated: the rrsetinfo and rdatainfo structures, and the canonical host
name strings pointed to by the rrsetinfostructure. Memory allocated for
the dynamically allocated structures created by a successful call to
getrrsetbyname() is released by freerrset(). rrset is a pointer to a
struct rrset created by a call to getrrsetbyname().

If the EDNS0 option is activated in resolv.conf(3), getrrsetbyname() will
request DNSSEC authentication using the EDNS0 DNSSEC OK (DO) bit.

RETURN VALUES
getrrsetbyname() returns zero on success, and one of the following error
codes if an error occurred:

ERRSET_NONAME the name does not exist
ERRSET_NODATA the name exists, but does not have data of the desired

type
ERRSET_NOMEMORY memory could not be allocated
ERRSET_INVAL a parameter is invalid
ERRSET_FAIL other failure

SEE ALSO
resolver(3), resolv.conf(5), named(8)

AUTHORS
Jakob Schlyter <jakob@openbsd.org>

HISTORY
getrrsetbyname() first appeared in OpenBSD 3.0. The API first appeared
in ISC BIND version 9.

BUGS
The data in *rdi_data should be returned in uncompressed wire format.
Currently, the data is in compressed format and the caller can’t uncom-
press since it doesn’t have the full message.

CAVEATS
The RRSET_VALIDATED flag in rri_flags is set if the AD (autenticated
data) bit in the DNS answer is set. This flag should not be trusted
unless the transport between the nameserver and the resolver is secure
(e.g. IPsec, trusted network, loopback communication).

BSD Oct 18, 2000 BSD

getservent
GETSERVENT(3) System Library Functions Manual GETSERVENT(3)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get
service entry

SYNOPSIS
#include <netdb.h>

276

Chapter 34. TCP/IP Library Reference

struct servent *
getservent(void);

struct servent *
getservbyname(char *name, char *proto);

struct servent *
getservbyport(int port, char *proto);

void
setservent(int stayopen);

void
endservent(void);

DESCRIPTION
The getservent(), getservbyname(), and getservbyport() functions each
return a pointer to an object with the following structure containing the
broken-out fields of a line in the network services database,
/etc/services.

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

};

The members of this structure are:

s_name The official name of the service.

s_aliases A zero-terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers
are returned in network byte order.

s_proto The name of the protocol to use when contacting the service.

The getservent() function reads the next line of the file, opening the
file if necessary.

The setservent() function opens and rewinds the file. If the stayopen
flag is non-zero, the net database will not be closed after each call to
getservbyname() or getservbyport().

The endservent() function closes the file.

The getservbyname() and getservbyport() functions sequentially search
from the beginning of the file until a matching protocol name or port
number (specified in network byte order) is found, or until EOF is
encountered. If a protocol name is also supplied (non-null), searches
must also match the protocol.

FILES
/etc/services

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

SEE ALSO

277

Chapter 34. TCP/IP Library Reference

getprotoent(3), services(5)

HISTORY
The getservent(), getservbyport(), getservbyname(), setservent(), and
endservent() functions appeared in 4.2BSD.

BUGS
These functions use static data storage; if the data is needed for future
use, it should be copied before any subsequent calls overwrite it.
Expecting port numbers to fit in a 32-bit quantity is probably naive.

BSD January 12, 1994 BSD

if_nametoindex
IF_NAMETOINDEX(3) System Library Functions Manual IF_NAMETOINDEX(3)

NAME
if_nametoindex, if_indextoname, if_nameindex, if_freenameindex - convert
interface index to name, and vice versa

SYNOPSIS
#include <net/if.h>

unsigned int
if_nametoindex(const char *ifname);

char *
if_indextoname(unsigned int ifindex, char *ifname);

struct if_nameindex *
if_nameindex(void);

void
if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
These functions map interface indexes to interface names (such as
“lo0”), and vice versa.

The if_nametoindex() function converts an interface name specified by the
ifname argument to an interface index (positive integer value). If the
specified interface does not exist, 0 will be returned.

if_indextoname() converts an interface index specified by the ifindex
argument to an interface name. The ifname argument must point to a
buffer of at least IF_NAMESIZE bytes into which the interface name corre-
sponding to the specified index is returned. (IF_NAMESIZE is also
defined in <net/if.h> and its value includes a terminating null byte at
the end of the interface name.) This pointer is also the return value of
the function. If there is no interface corresponding to the specified
index, NULL is returned.

if_nameindex() returns an array of if_nameindex structures.
if_nametoindex is also defined in <net/if.h>, and is as follows:

struct if_nameindex {

278

Chapter 34. TCP/IP Library Reference

unsigned int if_index; /* 1, 2, ... */
char *if_name; /* null terminated name: "le0", ... */

};

The end of the array of structures is indicated by a structure with an
if_index of 0 and an if_name of NULL. The function returns a null
pointer on error. The memory used for this array of structures along
with the interface names pointed to by the if_name members is obtained
dynamically. This memory is freed by the if_freenameindex() function.

if_freenameindex() takes a pointer that was returned by if_nameindex() as
argument (ptr), and it reclaims the region allocated.

DIAGNOSTICS
if_nametoindex() returns 0 on error, positive integer on success.
if_indextoname() and if_nameindex() return NULL on errors.

SEE ALSO
R. Gilligan, S. Thomson, J. Bound, and W. Stevens, “Basic Socket Inter-
face Extensions for IPv6,” RFC2553, March 1999.

STANDARDS
These functions are defined in “Basic Socket Interface Extensions for
IPv6” (RFC2533).

BSD May 21, 1998 BSD

inet
INET(3) System Library Functions Manual INET(3)

NAME
inet_addr, inet_aton, inet_lnaof, inet_makeaddr, inet_netof,
inet_network, inet_ntoa, inet_ntop, inet_pton - Internet address manipu-
lation routines

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

in_addr_t
inet_addr(const char *cp);

int
inet_aton(const char *cp, struct in_addr *addr);

in_addr_t
inet_lnaof(struct in_addr in);

struct in_addr
inet_makeaddr(unsigned long net, unsigned long lna);

in_addr_t
inet_netof(struct in_addr in);

in_addr_t

279

Chapter 34. TCP/IP Library Reference

inet_network(const char *cp);

char *
inet_ntoa(struct in_addr in);

const char *
inet_ntop(int af, const void *src, char *dst, size_t size);

int
inet_pton(int af, const char *src, void *dst);

DESCRIPTION
The routines inet_aton(), inet_addr() and inet_network() interpret char-
acter strings representing numbers expressed in the Internet standard ‘.’
notation. The inet_pton() function converts a presentation format
address (that is, printable form as held in a character string) to net-
work format (usually a struct in_addr or some other internal binary rep-
resentation, in network byte order). It returns 1 if the address was
valid for the specified address family, or 0 if the address wasn’t
parseable in the specified address family, or -1 if some system error
occurred (in which case errno will have been set). This function is
presently valid for AF_INET and AF_INET6. The inet_aton() routine inter-
prets the specified character string as an Internet address, placing the
address into the structure provided. It returns 1 if the string was suc-
cessfully interpreted, or 0 if the string was invalid. The inet_addr()
and inet_network() functions return numbers suitable for use as Internet
addresses and Internet network numbers, respectively.

The function inet_ntop() converts an address from network format (usually
a struct in_addr or some other binary form, in network byte order) to
presentation format (suitable for external display purposes). It returns
NULL if a system error occurs (in which case, errno will have been set),
or it returns a pointer to the destination string. The routine
inet_ntoa() takes an Internet address and returns an ASCII string repre-
senting the address in ‘.’ notation. The routine inet_makeaddr() takes
an Internet network number and a local network address and constructs an
Internet address from it. The routines inet_netof() and inet_lnaof()
break apart Internet host addresses, returning the network number and
local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from
left to right). All network numbers and local address parts are returned
as machine format integer values.

INTERNET ADDRESSES (IP VERSION 4)
Values specified using the ‘.’ notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.
Note that when an Internet address is viewed as a 32-bit integer quantity
on a system that uses little-endian byte order (such as the Intel 386,
486 and Pentium processors) the bytes referred to above appear as
“d.c.b.a”. That is, little-endian bytes are ordered from right to
left.

When a three part address is specified, the last part is interpreted as a

280

Chapter 34. TCP/IP Library Reference

16-bit quantity and placed in the rightmost two bytes of the network
address. This makes the three part address format convenient for speci-
fying Class B network addresses as “128.net.host”.

When a two part address is supplied, the last part is interpreted as a
24-bit quantity and placed in the rightmost three bytes of the network
address. This makes the two part address format convenient for specify-
ing Class A network addresses as “net.host”.

When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

All numbers supplied as “parts” in a ‘.’ notation may be decimal,
octal, or hexadecimal, as specified in the C language (i.e., a leading 0x
or 0X implies hexadecimal; otherwise, a leading 0 implies octal; other-
wise, the number is interpreted as decimal).

INTERNET ADDRESSES (IP VERSION 6)
In order to support scoped IPv6 addresses, getaddrinfo(3) and
getnameinfo(3) are recommended rather than the functions presented here.

The presentation format of an IPv6 address is given in [RFC1884 2.2]:

There are three conventional forms for representing IPv6 addresses as
text strings:

1. The preferred form is x:x:x:x:x:x:x:x, where the ’x’s are the hex-
adecimal values of the eight 16-bit pieces of the address. Exam-
ples:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0:0:0:8:800:200C:417A

Note that it is not necessary to write the leading zeros in an indi-
vidual field, but there must be at least one numeral in every field
(except for the case described in 2.).

2. Due to the method of allocating certain styles of IPv6 addresses, it
will be common for addresses to contain long strings of zero bits.
In order to make writing addresses

containing zero bits easier a special syntax is available to com-
press the zeros. The use of “::” indicates multiple groups of 16
bits of zeros. The “::” can only appear once in an address. The
“::” can also be used to compress the leading and/or trailing
zeros in an address.

For example the following addresses:

1080:0:0:0:8:800:200C:417A a unicast address
FF01:0:0:0:0:0:0:43 a multicast address
0:0:0:0:0:0:0:1 the loopback address
0:0:0:0:0:0:0:0 the unspecified addresses

may be represented as:

1080::8:800:200C:417A a unicast address
FF01::43 a multicast address
::1 the loopback address
:: the unspecified addresses

281

Chapter 34. TCP/IP Library Reference

3. An alternative form that is sometimes more convenient when dealing
with a mixed environment of IPv4 and IPv6 nodes is
x:x:x:x:x:x:d.d.d.d, where the ’x’s are the hexadecimal values of
the six high-order 16-bit pieces of the address, and the ’d’s are
the decimal values of the four low-order 8-bit pieces of the address
(standard IPv4 representation). Examples:

0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:

::13.1.68.3
::FFFF:129.144.52.38

DIAGNOSTICS
The constant INADDR_NONE is returned by inet_addr() and inet_network()
for malformed requests.

SEE ALSO
byteorder(3), gethostbyname(3), getnetent(3), inet_net(3), hosts(5),
networks(5)

STANDARDS
The inet_ntop and inet_pton functions conforms to the IETF IPv6 BSD API
and address formatting specifications. Note that inet_pton does not
accept 1-, 2-, or 3-part dotted addresses; all four parts must be speci-
fied. This is a narrower input set than that accepted by inet_aton.

HISTORY
The inet_addr, inet_network, inet_makeaddr, inet_lnaof and inet_netof
functions appeared in 4.2BSD. The inet_aton and inet_ntoa functions
appeared in 4.3BSD. The inet_pton and inet_ntop functions appeared in
BIND 4.9.4.

BUGS
The value INADDR_NONE (0xffffffff) is a valid broadcast address, but
inet_addr() cannot return that value without indicating failure. Also,
inet_addr() should have been designed to return a struct in_addr. The
newer inet_aton() function does not share these problems, and almost all
existing code should be modified to use inet_aton() instead.

The problem of host byte ordering versus network byte ordering is confus-
ing.

The string returned by inet_ntoa() resides in a static memory area.

BSD June 18, 1997 BSD

inet6_option_space
INET6_OPTION_SPACE(3) System Library Functions Manual INET6_OPTION_SPACE(3)

NAME
inet6_option_space, inet6_option_init, inet6_option_append,
inet6_option_alloc, inet6_option_next, inet6_option_find - IPv6 Hop-by-
Hop and Destination Options manipulation

282

Chapter 34. TCP/IP Library Reference

SYNOPSIS
#include <netinet/in.h>

int
inet6_option_space(int nbytes);

int
inet6_option_init(void *bp, struct cmsghdr **cmsgp, int type);

int
inet6_option_append(struct cmsghdr *cmsg, const u_int8_t *typep,

int multx, int plusy);

u_int8_t *
inet6_option_alloc(struct cmsghdr *cmsg, int datalen, int multx,

int plusy);;

int
inet6_option_next(const struct cmsghdr *cmsg, u_int8_t **tptrp);

int
inet6_option_find(const struct cmsghdr *cmsg, u_int8_t **tptrp,

int type);

DESCRIPTION
Building and parsing the Hop-by-Hop and Destination options is compli-
cated due to alignment constranints, padding and ancillary data manipula-
tion. RFC2292 defines a set of functions to help the application. The
function prototypes for these functions are all in the <netinet/in.h>
header.

inet6_option_space
inet6_option_space() returns the number of bytes required to hold an
option when it is stored as ancillary data, including the cmsghdr struc-
ture at the beginning, and any padding at the end (to make its size a
multiple of 8 bytes). The argument is the size of the structure defining
the option, which must include any pad bytes at the beginning (the value
y in the alignment term “xn + y”), the type byte, the length byte, and
the option data.

Note: If multiple options are stored in a single ancillary data object,
which is the recommended technique, this function overestimates the
amount of space required by the size of N-1 cmsghdr structures, where N
is the number of options to be stored in the object. This is of little
consequence, since it is assumed that most Hop-by-Hop option headers and
Destination option headers carry only one option (appendix B of
[RFC-2460]).

inet6_option_init
inet6_option_init() is called once per ancillary data object that will
contain either Hop-by-Hop or Destination options. It returns 0 on suc-
cess or -1 on an error.

bp is a pointer to previously allocated space that will contain the
ancillary data object. It must be large enough to contain all the indi-
vidual options to be added by later calls to inet6_option_append() and
inet6_option_alloc().

cmsgp is a pointer to a pointer to a cmsghdr structure. *cmsgp is ini-
tialized by this function to point to the cmsghdr structure constructed

283

Chapter 34. TCP/IP Library Reference

by this function in the buffer pointed to by bp.

type is either IPV6_HOPOPTS or IPV6_DSTOPTS. This type is stored in the
cmsg_type member of the cmsghdr structure pointed to by *cmsgp.

inet6_option_append
This function appends a Hop-by-Hop option or a Destination option into an
ancillary data object that has been initialized by inet6_option_init().
This function returns 0 if it succeeds or -1 on an error.

cmsg is a pointer to the cmsghdr structure that must have been initial-
ized by inet6_option_init().

typep is a pointer to the 8-bit option type. It is assumed that this
field is immediately followed by the 8-bit option data length field,
which is then followed immediately by the option data. The caller ini-
tializes these three fields (the type-length-value, or TLV) before call-
ing this function.

The option type must have a value from 2 to 255, inclusive. (0 and 1 are
reserved for the Pad1 and PadN options, respectively.)

The option data length must have a value between 0 and 255, inclusive,
and is the length of the option data that follows.

multx is the value x in the alignment term “xn + y”. It must have a
value of 1, 2, 4, or 8.

plusy is the value y in the alignment term “xn + y”. It must have a
value between 0 and 7, inclusive.

inet6_option_alloc
This function appends a Hop-by-Hop option or a Destination option into an
ancillary data object that has been initialized by inet6_option_init().
This function returns a pointer to the 8-bit option type field that
starts the option on success, or NULL on an error.

The difference between this function and inet6_option_append() is that
the latter copies the contents of a previously built option into the
ancillary data object while the current function returns a pointer to the
space in the data object where the option’s TLV must then be built by the
caller.

cmsg is a pointer to the cmsghdr structure that must have been initial-
ized by inet6_option_init().

datalen is the value of the option data length byte for this option.
This value is required as an argument to allow the function to determine
if padding must be appended at the end of the option. (The
inet6_option_append() function does not need a data length argument since
the option data length must already be stored by the caller.)

multx is the value x in the alignment term “xn + y”. It must have a
value of 1, 2, 4, or 8.

plusy is the value y in the alignment term “xn + y”. It must have a
value between 0 and 7, inclusive.

inet6_option_next
This function processes the next Hop-by-Hop option or Destination option
in an ancillary data object. If another option remains to be processed,

284

Chapter 34. TCP/IP Library Reference

the return value of the function is 0 and *tptrp points to the 8-bit
option type field (which is followed by the 8-bit option data length,
followed by the option data). If no more options remain to be processed,
the return value is -1 and *tptrp is NULL. If an error occurs, the
return value is -1 and *tptrp is not NULL.

cmsg is a pointer to cmsghdr structure of which cmsg_level equals
IPPROTO_IPV6 and cmsg_type equals either IPV6_HOPOPTS or IPV6_DSTOPTS.

tptrp is a pointer to a pointer to an 8-bit byte and *tptrp is used by
the function to remember its place in the ancillary data object each time
the function is called. The first time this function is called for a
given ancillary data object, *tptrp must be set to NULL.

Each time this function returns success, *tptrp points to the 8-bit
option type field for the next option to be processed.

inet6_option_find
This function is similar to the previously described inet6_option_next()
function, except this function lets the caller specify the option type to
be searched for, instead of always returning the next option in the
ancillary data object. cmsg is a pointer to cmsghdr structure of which
cmsg_level equals IPPROTO_IPV6 and cmsg_type equals either IPV6_HOPOPTS
or IPV6_DSTOPTS.

tptrp is a pointer to a pointer to an 8-bit byte and *tptrp is used by
the function to remember its place in the ancillary data object each time
the function is called. The first time this function is called for a
given ancillary data object, *tptrp must be set to NULL. ~ This function
starts searching for an option of the specified type beginning after the
value of *tptrp. If an option of the specified type is located, this
function returns 0 and *tptrp points to the 8- bit option type field for
the option of the specified type. If an option of the specified type is
not located, the return value is -1 and *tptrp is NULL. If an error
occurs, the return value is -1 and *tptrp is not NULL.

DIAGNOSTICS
inet6_option_init() and inet6_option_append() return 0 on success or -1
on an error.

inet6_option_alloc() returns NULL on an error.

On errors, inet6_option_next() and inet6_option_find() return -1 setting
*tptrp to non NULL value.

EXAMPLES
RFC2292 gives comprehensive examples in chapter 6.

SEE ALSO
W. Stevens and M. Thomas, Advanced Sockets API for IPv6, RFC2292,
February 1998.

S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification, RFC2460, December 1998.

HISTORY
The implementation first appeared in KAME advanced networking kit.

STANDARDS
The functions are documented in “Advanced Sockets API for IPv6”
(RFC2292).

285

Chapter 34. TCP/IP Library Reference

BUGS
The text was shamelessly copied from RFC2292.

BSD December 10, 1999 BSD

inet6_rthdr_space
INET6_RTHDR_SPACE(3) System Library Functions Manual INET6_RTHDR_SPACE(3)

NAME
inet6_rthdr_space, inet6_rthdr_init, inet6_rthdr_add,
inet6_rthdr_lasthop, inet6_rthdr_reverse, inet6_rthdr_segments,
inet6_rthdr_getaddr, inet6_rthdr_getflags - IPv6 Routing Header Options
manipulation

SYNOPSIS
#include <netinet/in.h>

size_t
inet6_rthdr_space(int type, int segments);

struct cmsghdr *
inet6_rthdr_init(void *bp, int type);

int
inet6_rthdr_add(struct cmsghdr *cmsg, const struct in6_addr *addr,

unsigned int flags);

int
inet6_rthdr_lasthop(struct cmsghdr *cmsg, unsigned int flags);

int
inet6_rthdr_reverse(const struct cmsghdr *in, struct cmsghdr *out);

int
inet6_rthdr_segments(const struct cmsghdr *cmsg);

struct in6_addr *
inet6_rthdr_getaddr(struct cmsghdr *cmsg, int index);

int
inet6_rthdr_getflags(const struct cmsghdr *cmsg, int index);

DESCRIPTION
RFC2292 IPv6 advanced API defines eight functions that the application
calls to build and examine a Routing header. Four functions build a
Routing header:

inet6_rthdr_space() return #bytes required for ancillary data

inet6_rthdr_init() initialize ancillary data for Routing header

inet6_rthdr_add() add IPv6 address & flags to Routing header

inet6_rthdr_lasthop() specify the flags for the final hop

286

Chapter 34. TCP/IP Library Reference

Four functions deal with a returned Routing header:

inet6_rthdr_reverse() reverse a Routing header

inet6_rthdr_segments() return #segments in a Routing header

inet6_rthdr_getaddr() fetch one address from a Routing header

inet6_rthdr_getflags() fetch one flag from a Routing header

The function prototypes for these functions are all in the <netinet/in.h>
header.

inet6_rthdr_space
This function returns the number of bytes required to hold a Routing
header of the specified type containing the specified number of segments
(addresses). For an IPv6 Type 0 Routing header, the number of segments
must be between 1 and 23, inclusive. The return value includes the size
of the cmsghdr structure that precedes the Routing header, and any
required padding.

If the return value is 0, then either the type of the Routing header is
not supported by this implementation or the number of segments is invalid
for this type of Routing header.

Note: This function returns the size but does not allocate the space
required for the ancillary data. This allows an application to allocate
a larger buffer, if other ancillary data objects are desired, since all
the ancillary data objects must be specified to sendmsg(2) as a single
msg_control buffer.

inet6_rthdr_init
This function initializes the buffer pointed to by bp to contain a
cmsghdr structure followed by a Routing header of the specified type.
The cmsg_len member of the cmsghdr structure is initialized to the size
of the structure plus the amount of space required by the Routing header.
The cmsg_level and cmsg_type members are also initialized as required.

The caller must allocate the buffer and its size can be determined by
calling inet6_rthdr_space().

Upon success the return value is the pointer to the cmsghdr structure,
and this is then used as the first argument to the next two functions.
Upon an error the return value is NULL.

inet6_rthdr_add
This function adds the address pointed to by addr to the end of the Rout-
ing header being constructed and sets the type of this hop to the value
of flags. For an IPv6 Type 0 Routing header, flags must be either
IPV6_RTHDR_LOOSE or IPV6_RTHDR_STRICT.

If successful, the cmsg_len member of the cmsghdr structure is updated to
account for the new address in the Routing header and the return value of
the function is 0. Upon an error the return value of the function is -1.

inet6_rthdr_lasthop
This function specifies the Strict/Loose flag for the final hop of a
Routing header. For an IPv6 Type 0 Routing header, flags must be either
IPV6_RTHDR_LOOSE or IPV6_RTHDR_STRICT.

The return value of the function is 0 upon success, or -1 upon an error.

287

Chapter 34. TCP/IP Library Reference

Notice that a Routing header specifying N intermediate nodes requires N+1
Strict/Loose flags. This requires N calls to inet6_rthdr_add() followed
by one call to inet6_rthdr_lasthop().

inet6_rthdr_reverse
This function takes a Routing header that was received as ancillary data
(pointed to by the first argument, in) and writes a new Routing header
that sends datagrams along the reverse of that route. Both arguments are
allowed to point to the same buffer (that is, the reversal can occur in
place).

The return value of the function is 0 on success, or -1 upon an error.

inet6_rthdr_segments
This function returns the number of segments (addresses) contained in the
Routing header described by cmsg. On success the return value is between
1 and 23, inclusive. The return value of the function is -1 upon an
error.

inet6_rthdr_getaddr
This function returns a pointer to the IPv6 address specified by index
(which must have a value between 1 and the value returned by
inet6_rthdr_segments()) in the Routing header described by cmsg. An
application should first call inet6_rthdr_segments() to obtain the number
of segments in the Routing header.

Upon an error the return value of the function is NULL.

inet6_rthdr_getflags
This function returns the flags value specified by index (which must have
a value between 0 and the value returned by inet6_rthdr_segments()) in
the Routing header described by cmsg. For an IPv6 Type 0 Routing header
the return value will be either IPV6_RTHDR_LOOSE or IPV6_RTHDR_STRICT.

Upon an error the return value of the function is -1.

Note: Addresses are indexed starting at 1, and flags starting at 0, to
maintain consistency with the terminology and figures in RFC2460.

DIAGNOSTICS
inet6_rthdr_space() returns 0 on errors.

inet6_rthdr_add(), inet6_rthdr_lasthop() and inet6_rthdr_reverse() return
0 on success, and returns -1 on error.

inet6_rthdr_init() and inet6_rthdr_getaddr() return NULL on error.

inet6_rthdr_segments() and inet6_rthdr_getflags() return -1 on error.

EXAMPLES
RFC2292 gives comprehensive examples in chapter 8.

SEE ALSO
W. Stevens and M. Thomas, Advanced Sockets API for IPv6, RFC2292,
February 1998.

S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification, RFC2460, December 1998.

HISTORY

288

Chapter 34. TCP/IP Library Reference

The implementation first appeared in KAME advanced networking kit.

STANDARDS
The functions are documented in “Advanced Sockets API for IPv6”
(RFC2292).

BUGS
The text was shamelessly copied from RFC2292.

inet6_rthdr_reverse() is not implemented yet.

BSD December 10, 1999 BSD

inet_net
INET_NET(3) System Library Functions Manual INET_NET(3)

NAME
inet_net_ntop, inet_net_pton - Internet network number manipulation rou-
tines

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *
inet_net_ntop(int af, const void *src, int bits, char *dst, size_t size);

int
inet_net_pton(int af, const char *src, void *dst, size_t size);

DESCRIPTION
The inet_net_ntop() function converts an Internet network number from
network format (usually a struct in_addr or some other binary form, in
network byte order) to CIDR presentation format (suitable for external
display purposes). bits is the number of bits in src that are the net-
work number. It returns NULL if a system error occurs (in which case,
errno will have been set), or it returns a pointer to the destination
string.

The inet_net_pton() function converts a presentation format Internet net-
work number (that is, printable form as held in a character string) to
network format (usually a struct in_addr or some other internal binary
representation, in network byte order). It returns the number of bits
(either computed based on the class, or specified with /CIDR), or -1 if a
failure occurred (in which case errno will have been set. It will be set
to ENOENT if the Internet network number was not valid).

The only value for af currently supported is AF_INET. size is the size
of the result buffer dst.

NETWORK NUMBERS (IP VERSION 4)
Internet network numbers may be specified in one of the following forms:

a.b.c.d/bits
a.b.c.d

289

Chapter 34. TCP/IP Library Reference

a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet network
number. Note that when an Internet network number is viewed as a 32-bit
integer quantity on a system that uses little-endian byte order (such as
the Intel 386, 486, and Pentium processors) the bytes referred to above
appear as “d.c.b.a”. That is, little-endian bytes are ordered from
right to left.

When a three part number is specified, the last part is interpreted as a
16-bit quantity and placed in the rightmost two bytes of the Internet
network number. This makes the three part number format convenient for
specifying Class B network numbers as “128.net.host”.

When a two part number is supplied, the last part is interpreted as a
24-bit quantity and placed in the rightmost three bytes of the Internet
network number. This makes the two part number format convenient for
specifying Class A network numbers as “net.host”.

When only one part is given, the value is stored directly in the Internet
network number without any byte rearrangement.

All numbers supplied as “parts” in a ‘.’ notation may be decimal,
octal, or hexadecimal, as specified in the C language (i.e., a leading 0x
or 0X implies hexadecimal; otherwise, a leading 0 implies octal; other-
wise, the number is interpreted as decimal).

SEE ALSO
byteorder(3), inet(3), networks(5)

HISTORY
The inet_net_ntop and inet_net_pton functions first appeared in BIND
4.9.4.

BSD June 18, 1997 BSD

ipx
IPX(3) System Library Functions Manual IPX(3)

NAME
ipx_addr, ipx_ntoa - IPX address conversion routines

SYNOPSIS
#include <sys/types.h>
#include <netipx/ipx.h>

struct ipx_addr
ipx_addr(const char *cp);

char *
ipx_ntoa(struct ipx_addr ipx);

DESCRIPTION

290

Chapter 34. TCP/IP Library Reference

The routine ipx_addr() interprets character strings representing IPX
addresses, returning binary information suitable for use in system calls.
The routine ipx_ntoa() takes IPX addresses and returns ASCII strings rep-
resenting the address in a notation in common use:

<network number>. <host number>. <port number>

Trailing zero fields are suppressed, and each number is printed in hex-
adecimal, in a format suitable for input to ipx_addr(). Any fields lack-
ing super-decimal digits will have a trailing ‘H’ appended.

An effort has been made to ensure that ipx_addr() be compatible with most
formats in common use. It will first separate an address into 1 to 3
fields using a single delimiter chosen from period (‘.’), colon (‘:’), or
pound-sign (‘#’). Each field is then examined for byte separators (colon
or period). If there are byte separators, each subfield separated is
taken to be a small hexadecimal number, and the entirety is taken as a
network-byte-ordered quantity to be zero extended in the high-network-
order bytes. Next, the field is inspected for hyphens, in which case the
field is assumed to be a number in decimal notation with hyphens separat-
ing the millenia. Next, the field is assumed to be a number: It is
interpreted as hexadecimal if there is a leading ‘0x’ (as in C), a trail-
ing ‘H’ (as in Mesa), or there are any super-decimal digits present. It
is interpreted as octal is there is a leading ‘0’ and there are no super-
octal digits. Otherwise, it is converted as a decimal number.

RETURN VALUES
None. (See BUGS.)

SEE ALSO
ns(4), hosts(5), networks(5)

HISTORY
The precursor ns_addr() and ns_ntoa() functions appeared in 4.3BSD.

BUGS
The string returned by ipx_ntoa() resides in a static memory area. The
function ipx_addr() should diagnose improperly formed input, and there
should be an unambiguous way to recognize this.

BSD June 4, 1993 BSD

iso_addr
ISO_ADDR(3) System Library Functions Manual ISO_ADDR(3)

NAME
iso_addr, iso_ntoa - network address conversion routines for Open System
Interconnection

SYNOPSIS
#include <sys/types.h>
#include <netiso/iso.h>

struct iso_addr *
iso_addr(char *cp);

291

Chapter 34. TCP/IP Library Reference

char *
iso_ntoa(struct iso_addr *isoa);

DESCRIPTION
The routine iso_addr() interprets character strings representing OSI
addresses, returning binary information suitable for use in system calls.
The routine iso_ntoa() takes OSI addresses and returns ASCII strings rep-
resenting NSAPs (network service access points) in a notation inverse to
that accepted by iso_addr().

Unfortunately, no universal standard exists for representing OSI network
addresses.

The format employed by iso_addr() is a sequence of hexadecimal “digits”
(optionally separated by periods), of the form:

<hex digits>. <hex digits>. <hex digits>

Each pair of hexadecimal digits represents a byte with the leading digit
indicating the higher-ordered bits. A period following an even number of
bytes has no effect (but may be used to increase legibility). A period
following an odd number of bytes has the effect of causing the byte of
address being translated to have its higher order bits filled with zeros.

RETURN VALUES
iso_ntoa() always returns a null terminated string. iso_addr() always
returns a pointer to a struct iso_addr. (See BUGS.)

SEE ALSO
iso(4)

HISTORY
The iso_addr() and iso_ntoa() functions appeared in 4.3BSD-Reno.

BUGS
The returned values reside in a static memory area.

The function iso_addr() should diagnose improperly formed input, and
there should be an unambiguous way to recognize this.

BSD June 4, 1993 BSD

link_addr
LINK_ADDR(3) System Library Functions Manual LINK_ADDR(3)

NAME
link_addr, link_ntoa - elementary address specification routines for link
level access

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if_dl.h>

void
link_addr(const char *addr, struct sockaddr_dl *sdl);

292

Chapter 34. TCP/IP Library Reference

char *
link_ntoa(const struct sockaddr_dl *sdl);

DESCRIPTION
The link_addr() function interprets character strings representing link-
level addresses, returning binary information suitable for use in system
calls. link_ntoa() takes a link-level address and returns an ASCII
string representing some of the information present, including the link
level address itself, and the interface name or number, if present. This
facility is experimental and is still subject to change.

For link_addr(), the string addr may contain an optional network inter-
face identifier of the form “name unit-number”, suitable for the first
argument to ifconfig(8), followed in all cases by a colon and an inter-
face address in the form of groups of hexadecimal digits separated by
periods. Each group represents a byte of address; address bytes are
filled left to right from low order bytes through high order bytes.

Thus le0:8.0.9.13.d.30 represents an Ethernet address to be transmitted
on the first Lance Ethernet interface.

RETURN VALUES
link_ntoa() always returns a null-terminated string. link_addr() has no
return value. (See BUGS.)

SEE ALSO
iso(4), ifconfig(8)

HISTORY
The link_addr() and link_ntoa() functions appeared in 4.3BSD-Reno.

BUGS
The returned values for link_ntoa reside in a static memory area.

The function link_addr() should diagnose improperly formed input, and
there should be an unambiguous way to recognize this.

If the sdl_len field of the link socket address sdl is 0, link_ntoa()
will not insert a colon before the interface address bytes. If this
translated address is given to link_addr() without inserting an initial
colon, the latter will not interpret it correctly.

BSD July 28, 1993 BSD

net_addrcmp
NET_ADDRCMP(3) System Library Functions Manual NET_ADDRCMP(3)

NAME
net_addrcmp - compare socket address structures

SYNOPSIS
#include <netdb.h>

int
net_addrcmp(struct sockaddr *sa1, struct sockaddr *sa2);

293

Chapter 34. TCP/IP Library Reference

DESCRIPTION
The net_addrcmp() function compares two socket address structures, sa1
and sa2.

RETURN VALUES
If sa1 and sa2 are for the same address, net_addrcmp() returns 0.

The sa_len fields are compared first. If they do not match,
net_addrcmp() returns -1 or 1 if sa1->sa_len is less than or greater than
sa2->sa_len, respectively.

Next, the sa_family members are compared. If they do not match,
net_addrcmp() returns -1 or 1 if sa1->sa_family is less than or greater
than sa2->sa_family, respectively.

Lastly, if each socket address structure’s sa_len and sa_family fields
match, the protocol-specific data (the sa_data field) is compared. If
there’s a match, both sa1 and sa2 must refer to the same address, and 0
is returned; otherwise, a value >0 or <0 is returned.

HISTORY
A net_addrcmp() function was added in OpenBSD 2.5.

BSD July 3, 1999 BSD

ns
NS(3) System Library Functions Manual NS(3)

NAME
ns_addr, ns_ntoa - Xerox NS(tm) address conversion routines

SYNOPSIS
#include <sys/types.h>
#include <netns/ns.h>

struct ns_addr
ns_addr(char *cp);

char *
ns_ntoa(struct ns_addr ns);

DESCRIPTION
The routine ns_addr() interprets character strings representing XNS
addresses, returning binary information suitable for use in system calls.
The routine ns_ntoa() takes XNS addresses and returns ASCII strings rep-
resenting the address in a notation in common use in the Xerox Develop-
ment Environment:

<network number>. <host number>. <port number>

Trailing zero fields are suppressed, and each number is printed in hex-
adecimal, in a format suitable for input to ns_addr(). Any fields lack-
ing super-decimal digits will have a trailing ‘H’ appended.

Unfortunately, no universal standard exists for representing XNS

294

Chapter 34. TCP/IP Library Reference

addresses. An effort has been made to ensure that ns_addr() be compati-
ble with most formats in common use. It will first separate an address
into 1 to 3 fields using a single delimiter chosen from period (‘.’),
colon (‘:’), or pound-sign ‘#’. Each field is then examined for byte
separators (colon or period). If there are byte separators, each sub-
field separated is taken to be a small hexadecimal number, and the
entirety is taken as a network-byte-ordered quantity to be zero extended
in the high-network-order bytes. Next, the field is inspected for
hyphens, in which case the field is assumed to be a number in decimal
notation with hyphens separating the millenia. Next, the field is
assumed to be a number: It is interpreted as hexadecimal if there is a
leading ‘0x’ (as in C), a trailing ‘H’ (as in Mesa), or there are any
super-decimal digits present. It is interpreted as octal is there is a
leading ‘0’ and there are no super-octal digits. Otherwise, it is con-
verted as a decimal number.

RETURN VALUES
None. (See BUGS.)

SEE ALSO
hosts(5), networks(5)

HISTORY
The ns_addr() and ns_toa() functions appeared in 4.3BSD.

BUGS
The string returned by ns_ntoa() resides in a static memory area. The
function ns_addr() should diagnose improperly formed input, and there
should be an unambiguous way to recognize this.

BSD June 4, 1993 BSD

resolver
RESOLVER(3) System Library Functions Manual RESOLVER(3)

NAME
res_query, res_search, res_mkquery, res_send, res_init, dn_comp,
dn_expand - resolver routines

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int
res_query(char *dname, int class, int type, u_char *answer, int anslen);

int
res_search(char *dname, int class, int type, u_char *answer, int anslen);

int
res_mkquery(int op, char *dname, int class, int type, char *data,

int datalen, struct rrec *newrr, char *buf, int buflen);

int

295

Chapter 34. TCP/IP Library Reference

res_send(char *msg, int msglen, char *answer, int anslen);

int
res_init(void);

int
dn_comp(char *exp_dn, char *comp_dn, int length, char **dnptrs,

char **lastdnptr);

int
dn_expand(u_char *msg, u_char *eomorig, u_char *comp_dn, u_char *exp_dn,

int length);

DESCRIPTION
These routines are used for making, sending, and interpreting query and
reply messages with Internet domain name servers.

Global configuration and state information that is used by the resolver
routines is kept in the structure _res. Most of the values have reason-
able defaults and can be ignored. Options stored in _res.options are
defined in <resolv.h> and are as follows. Options are stored as a simple
bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default domain
name are initialized (i.e., res_init() has been called).

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() should continue until it finds an authoritative
answer or finds an error. Currently this is not imple-
mented.

RES_USEVC Use TCP connections for queries instead of UDP datagrams.

RES_STAYOPEN Used with RES_USEVC to keep the TCP connection open
between queries. This is useful only in programs that
regularly do many queries. UDP should be the normal mode
used.

RES_IGNTC Unused currently (ignore truncation errors, i.e., don’t
retry with TCP).

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. (res_send() does not do iterative queries and
expects the name server to handle recursion.)

RES_DEFNAMES If set, res_search() will append the default domain name
to single-component names (those that do not contain a
dot). This option is enabled by default.

RES_DNSRCH If this option is set, res_search() will search for host
names in the current domain and in parent domains; see
hostname(7). This is used by the standard host lookup
routine gethostbyname(3). This option is enabled by
default.

RES_USE_INET6 Enables support for IPv6-only applications. This causes
IPv4 addresses to be returned as an IPv4 mapped address.
For example, 10.1.1.1 will be returned as ::ffff:10.1.1.1.
The option is not meaningful on OpenBSD.

296

Chapter 34. TCP/IP Library Reference

The res_init() routine reads the configuration file (if any; see
resolv.conf(5)) to get the default domain name, search list, and the
Internet address of the local name server(s). If no server is config-
ured, the host running the resolver is tried. The current domain name is
defined by the hostname if not specified in the configuration file; it
can be overridden by the environment variable LOCALDOMAIN. This environ-
ment variable may contain several blank-separated tokens if you wish to
override the search list on a per-process basis. This is similar to the
search command in the configuration file. Another environment variable
RES_OPTIONS can be set to override certain internal resolver options
which are otherwise set by changing fields in the _res structure or are
inherited from the configuration file’s options command. The syntax of
the RES_OPTIONS environment variable is explained in resolv.conf(5).
Initialization normally occurs on the first call to one of the following
routines.

The res_query() function provides an interface to the server query mecha-
nism. It constructs a query, sends it to the local server, awaits a
response, and makes preliminary checks on the reply. The query requests
information of the specified type and class for the specified fully qual-
ified domain name dname. The reply message is left in the answer buffer
with length anslen supplied by the caller.

The res_search() routine makes a query and awaits a response like
res_query(), but in addition, it implements the default and search rules
controlled by the RES_DEFNAMES and RES_DNSRCH options. It returns the
first successful reply.

The remaining routines are lower-level routines used by res_query(). The
res_mkquery() function constructs a standard query message and places it
in buf. It returns the size of the query, or -1 if the query is larger
than buflen. The query type op is usually QUERY, but can be any of the
query types defined in <arpa/nameser.h>. The domain name for the query
is given by dname. newrr is currently unused but is intended for making
update messages.

The res_send() routine sends a pre-formatted query and returns an answer.
It will call res_init() if RES_INIT is not set, send the query to the
local name server, and handle timeouts and retries. The length of the
reply message is returned, or -1 if there were errors.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. The size of the compressed name is returned or -1 if there were
errors. The size of the array pointed to by comp_dn is given by length.
The compression uses an array of pointers dnptrs to previously compressed
names in the current message. The first pointer points to the beginning
of the message and the list ends with NULL. The limit to the array is
specified by lastdnptr. A side effect of dn_comp() is to update the list
of pointers for labels inserted into the message as the name is com-
pressed. If dnptr is NULL, names are not compressed. If lastdnptr is
NULL, the list of labels is not updated.

The dn_expand() entry expands the compressed domain name comp_dn to a
full domain name The compressed name is contained in a query or reply
message; msg is a pointer to the beginning of the message. The uncom-
pressed name is placed in the buffer indicated by exp_dn which is of size
length. The size of compressed name is returned or -1 if there was an
error.

FILES

297

Chapter 34. TCP/IP Library Reference

/etc/resolv.conf configuration file see resolv.conf(5).

SEE ALSO
gethostbyname(3), resolv.conf(5), hostname(7), named(8)

RFC1032, RFC1033, RFC1034, RFC1035, RFC1535, RFC974

Name Server Operations Guide for BIND.

HISTORY
The res_query function appeared in 4.3BSD.

BSD June 4, 1993 BSD

accept
ACCEPT(2) System Calls Manual ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
accept(int s, struct sockaddr *addr, socklen_t *addrlen);

DESCRIPTION
The argument s is a socket that has been created with socket(2), bound to
an address with bind(2), and is listening for connections after a
listen(2). The accept() argument extracts the first connection request
on the queue of pending connections, creates a new socket with the same
properties of s, and allocates a new file descriptor for the socket. If
no pending connections are present on the queue, and the socket is not
marked as non-blocking, accept() blocks the caller until a connection is
present. If the socket is marked non-blocking and no pending connections
are present on the queue, accept() returns an error as described below.
The accepted socket may not be used to accept more connections. The
original socket s remains open.

The argument addr is a result parameter that is filled in with the
address of the connecting entity as known to the communications layer.
The exact format of the addr parameter is determined by the domain in
which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by
addr; on return it will contain the actual length (in bytes) of the
address returned. This call is used with connection-based socket types,
currently with SOCK_STREAM.

It is possible to select(2) or poll(2) a socket for the purposes of doing
an accept() by selecting it for read.

For certain protocols which require an explicit confirmation, such as ISO
or DATAKIT, accept() can be thought of as merely dequeuing the next con-
nection request and not implying confirmation. Confirmation can be
implied by a normal read or write on the new file descriptor, and rejec-

298

Chapter 34. TCP/IP Library Reference

tion can be implied by closing the new socket.

One can obtain user connection request data without confirming the con-
nection by issuing a recvmsg(2) call with an msg_iovlen of 0 and a non-
zero msg_controllen, or by issuing a getsockopt(2) request. Similarly,
one can provide user connection rejection information by issuing a
sendmsg(2) call with providing only the control information, or by call-
ing setsockopt(2).

RETURN VALUES
The call returns -1 on error. If it succeeds, it returns a non-negative
integer that is a descriptor for the accepted socket.

ERRORS
The accept() will fail if:

[EBADF] The descriptor is invalid.

[ENOTSOCK] The descriptor references a file, not a socket.

[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.

[EINVAL] The referenced socket is not listening for connections
(that is, listen(2) has not yet been called).

[EFAULT] The addr parameter is not in a writable part of the
user address space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections
are present to be accepted.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ECONNABORTED] A connection has been aborted.

SEE ALSO
bind(2), connect(2), listen(2), poll(2), select(2), poll(2), socket(2)

HISTORY
The accept() function appeared in 4.2BSD.

BSD February 15, 1999 BSD

bind
BIND(2) System Calls Manual BIND(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int

299

Chapter 34. TCP/IP Library Reference

bind(int s, const struct sockaddr *name, socklen_t namelen);

DESCRIPTION
bind() assigns a name to an unnamed socket. When a socket is created
with socket(2) it exists in a name space (address family) but has no name
assigned. bind() requests that name be assigned to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system
that must be deleted by the caller when it is no longer needed (using
unlink(2)).

The rules used in name binding vary between communication domains. Con-
sult the manual entries in section 4 for detailed information.

RETURN VALUES
If the bind is successful, a 0 value is returned. A return value of -1
indicates an error, which is further specified in the global errno.

ERRORS
The bind() call will fail if:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL] The specified address is not available from the local
machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.

[EINVAL] The family of the socket and that requested in
name->sa_family are not equivalent.

[EACCES] The requested address is protected, and the current
user has inadequate permission to access it.

[EFAULT] The name parameter is not in a valid part of the user
address space.

The following errors are specific to binding names in the UNIX domain.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} charac-
ters, or an entire path name exceeded {PATH_MAX} char-
acters.

[ENOENT] A prefix component of the path name does not exist.

[ELOOP] Too many symbolic links were encountered in translat-
ing the pathname.

[EIO] An I/O error occurred while making the directory entry
or allocating the inode.

[EROFS] The name would reside on a read-only file system.

[EISDIR] An empty pathname was specified.

300

Chapter 34. TCP/IP Library Reference

SEE ALSO
connect(2), getsockname(2), listen(2), socket(2)

HISTORY
The bind() function call appeared in 4.2BSD.

BSD February 15, 1999 BSD

connect
CONNECT(2) System Calls Manual CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
connect(int s, const struct sockaddr *name, socklen_t namelen);

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, this call
specifies the peer with which the socket is to be associated; this
address is that to which datagrams are to be sent, and the only address
from which datagrams are to be received. If the socket is of type
SOCK_STREAM, this call attempts to make a connection to another socket.
The other socket is specified by name, which is an address in the commu-
nications space of the socket. Each communications space interprets the
name parameter in its own way. Generally, stream sockets may success-
fully connect() only once; datagram sockets may use connect() multiple
times to change their association. Datagram sockets may dissolve the
association by connecting to an invalid address, such as a null address.

RETURN VALUES
If the connection or binding succeeds, 0 is returned. Otherwise a -1 is
returned, and a more specific error code is stored in errno.

ERRORS
The connect() call fails if:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a descriptor for a file, not a socket.

[EADDRNOTAVAIL] The specified address is not available on this
machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be
used with this socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establish-
ing a connection.

301

Chapter 34. TCP/IP Library Reference

[EINVAL] A TCP connection with a local broadcast, the all-ones
or a multicast address as the peer was attempted.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[EINTR] A connect was interrupted before it succeeded by the
delivery of a signal.

[ENETUNREACH] The network isn’t reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the pro-
cess address space.

[EINPROGRESS] The socket is non-blocking and the connection cannot
be completed immediately. It is possible to select(2)
or poll(2) for completion by selecting the socket for
writing, and also use getsockopt(2) with SO_ERROR to
check for error conditions.

[EALREADY] The socket is non-blocking and a previous connection
attempt has not yet been completed.

The following errors are specific to connecting names in the UNIX domain.
These errors may not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} charac-
ters, or an entire path name exceeded {PATH_MAX} char-
acters.

[ENOENT] The named socket does not exist.

[EACCES] Search permission is denied for a component of the
path prefix.

[EACCES] Write access to the named socket is denied.

[ELOOP] Too many symbolic links were encountered in translat-
ing the pathname.

SEE ALSO
accept(2), getsockname(2), getsockopt(2), poll(2), select(2), socket(2)

HISTORY
The connect() function call appeared in 4.2BSD.

BSD February 15, 1999 BSD

302

Chapter 34. TCP/IP Library Reference

getpeername
GETPEERNAME(2) System Calls Manual GETPEERNAME(2)

NAME
getpeername - get name of connected peer

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
getpeername(int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION
getpeername() returns the address information of the peer connected to
socket s. One common use occurs when a process inherits an open socket,
such as TCP servers forked from inetd(8). In this scenario,
getpeername() is used to determine the connecting client’s IP address.

getpeername() takes three parameters:

s Contains the file descriptor of the socket whose peer should be looked
up.

name Points to a sockaddr structure that will hold the address informa-
tion for the connected peer. Normal use requires one to use a structure
specific to the protocol family in use, such as sockaddr_in (IPv4) or
sockaddr_in6 (IPv6), cast to a (struct sockaddr *).

For greater portability, especially with the newer protocol families, the
new struct sockaddr_storage should be used. sockaddr_storage is large
enough to hold any of the other sockaddr_* variants. On return, it can
be cast to the correct sockaddr type, based the protocol family contained
in its ss_family field.

namelen Indicates the amount of space pointed to by name, in bytes.

If address information for the local end of the socket is required, the
getsockname(2) function should be used instead.

If name does not point to enough space to hold the entire socket address,
the result will be truncated to namelen bytes.

RETURN VALUES
If the call succeeds, a 0 is returned and namelen is set to the actual
size of the socket address returned in name. Otherwise, errno is set and
a value of -1 is returned.

ERRORS
On failure, errno is set to one of the following:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to
perform the operation.

303

Chapter 34. TCP/IP Library Reference

[EFAULT] The name parameter points to memory not in a valid
part of the process address space.

SEE ALSO
accept(2), bind(2), getsockname(2), getpeereid(2), socket(2)

HISTORY
The getpeername() function call appeared in 4.2BSD.

BSD July 17, 1999 BSD

getsockname
GETSOCKNAME(2) System Calls Manual GETSOCKNAME(2)

NAME
getsockname - get socket name

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
getsockname(int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION
getsockname() returns the locally bound address information for a speci-
fied socket.

Common uses of this function are as follows:

o When bind(2) is called with a port number of 0 (indicating the kernel
should pick an ephemeral port) getsockname() is used to retrieve the
kernel-assigned port number.

o When a process calls bind(2) on a wildcard IP address, getsockname()
is used to retrieve the local IP address for the connection.

o When a function wishes to know the address family of a socket,
getsockname() can be used.

getsockname() takes three parameters:

s, Contains the file desriptor for the socket to be looked up.

name points to a sockaddr structure which will hold the resulting address
information. Normal use requires one to use a structure specific to the
protocol family in use, such as sockaddr_in (IPv4) or sockaddr_in6
(IPv6), cast to a (struct sockaddr *).

For greater portability (such as newer protocol families) the new struc-
ture sockaddr_storage exists. sockaddr_storage is large enough to hold
any of the other sockaddr_* variants. On return, it should be cast to
the correct sockaddr type, according to the current protocol family.

namelen Indicates the amount of space pointed to by name, in bytes. Upon
return, namelen is set to the actual size of the returned address infor-

304

Chapter 34. TCP/IP Library Reference

mation.

If the address of the destination socket for a given socket connection is
needed, the getpeername(2) function should be used instead.

If name does not point to enough space to hold the entire socket address,
the result will be truncated to namelen bytes.

RETURN VALUES
On success, getsockname() returns a 0, and namelen is set to the actual
size of the socket address returned in name. Otherwise, errno is set,
and a value of -1 is returned.

ERRORS
If getsockname() fails, errno is set to one of the following:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to
perform the operation.

[EFAULT] The name parameter points to memory not in a valid
part of the process address space.

SEE ALSO
accept(2), bind(2), getpeername(2), getpeereid(2), socket(2)

BUGS
Names bound to sockets in the UNIX domain are inaccessible; getsockname
returns a zero length name.

HISTORY
The getsockname() function call appeared in 4.2BSD.

BSD July 17, 1999 BSD

getsockopt
GETSOCKOPT(2) System Calls Manual GETSOCKOPT(2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
getsockopt(int s, int level, int optname, void *optval,

socklen_t *optlen);

int
setsockopt(int s, int level, int optname, const void *optval,

socklen_t optlen);

305

Chapter 34. TCP/IP Library Reference

DESCRIPTION
getsockopt() and setsockopt() manipulate the options associated with a
socket. Options may exist at multiple protocol levels; they are always
present at the uppermost “socket” level.

When manipulating socket options the level at which the option resides
and the name of the option must be specified. To manipulate options at
the socket level, level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the appropriate proto-
col controlling the option is supplied. For example, to indicate that an
option is to be interpreted by the TCP protocol, level should be set to
the protocol number of TCP; see getprotoent(3).

The parameters optval and optlen are used to access option values for
setsockopt(). For getsockopt() they identify a buffer in which the value
for the requested option(s) are to be returned. For getsockopt(), optlen
is a value-result parameter, initially containing the size of the buffer
pointed to by optval, and modified on return to indicate the actual size
of the value returned. If no option value is to be supplied or returned,
optval may be NULL.

optname and any specified options are passed uninterpreted to the appro-
priate protocol module for interpretation. The include file
<sys/socket.h> contains definitions for socket level options, described
below. Options at other protocol levels vary in format and name; consult
the appropriate entries in section 4 of the manual.

Most socket-level options utilize an int parameter for optval. For
setsockopt(), the parameter should be non-zero to enable a boolean
option, or zero if the option is to be disabled. SO_LINGER uses a struct
linger parameter, defined in <sys/socket.h>, which specifies the desired
state of the option and the linger interval (see below). SO_SNDTIMEO and
SO_RCVTIMEO use a struct timeval parameter, defined in <sys/time.h>.

The following options are recognized at the socket level. Except as
noted, each may be examined with getsockopt() and set with setsockopt().

SO_DEBUG enables recording of debugging information
SO_REUSEADDR enables local address reuse
SO_REUSEPORT enables duplicate address and port bindings
SO_KEEPALIVE enables keep connections alive
SO_DONTROUTE enables routing bypass for outgoing messages
SO_LINGER linger on close if data present
SO_BROADCAST enables permission to transmit broadcast messages
SO_OOBINLINE enables reception of out-of-band data in band
SO_SNDBUF set buffer size for output
SO_RCVBUF set buffer size for input
SO_SNDLOWAT set minimum count for output
SO_RCVLOWAT set minimum count for input
SO_SNDTIMEO set timeout value for output
SO_RCVTIMEO set timeout value for input
SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules.
SO_REUSEADDR indicates that the rules used in validating addresses sup-
plied in a bind(2) call should allow reuse of local addresses.
SO_REUSEPORT allows completely duplicate bindings by multiple processes
if they all set SO_REUSEPORT before binding the port. This option per-
mits multiple instances of a program to each receive UDP/IP multicast or
broadcast datagrams destined for the bound port. SO_KEEPALIVE enables

306

Chapter 34. TCP/IP Library Reference

the periodic transmission of messages on a connected socket. Should the
connected party fail to respond to these messages, the connection is con-
sidered broken and processes using the socket are notified via a SIGPIPE
signal when attempting to send data. SO_DONTROUTE indicates that outgo-
ing messages should bypass the standard routing facilities. Instead,
messages are directed to the appropriate network interface according to
the network portion of the destination address.

SO_LINGER controls the action taken when unsent messages are queued on
socket and a close(2) is performed. If the socket promises reliable
delivery of data and SO_LINGER is set, the system will block the process
on the close(2) attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout period mea-
sured in seconds, termed the linger interval, is specified in the
setsockopt() call when SO_LINGER is requested). If SO_LINGER is disabled
and a close(2) is issued, the system will process the close in a manner
that allows the process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams
on the socket. Broadcast was a privileged operation in earlier versions
of the system. With protocols that support out-of-band data, the
SO_OOBINLINE option requests that out-of-band data be placed in the nor-
mal data input queue as received; it will then be accessible with recv(2)
or read(2) calls without the MSG_OOB flag. Some protocols always behave
as if this option is set. SO_SNDBUF and SO_RCVBUF are options to adjust
the normal buffer sizes allocated for output and input buffers, respec-
tively. The buffer size may be increased for high-volume connections, or
may be decreased to limit the possible backlog of incoming data. The
system places an absolute limit on these values.

SO_SNDLOWAT is an option to set the minimum count for output operations.
Most output operations process all of the data supplied by the call,
delivering data to the protocol for transmission and blocking as neces-
sary for flow control. Nonblocking output operations will process as
much data as permitted subject to flow control without blocking, but will
process no data if flow control does not allow the smaller of the low
water mark value or the entire request to be processed. A select(2) or
poll(2) operation testing the ability to write to a socket will return
true only if the low water mark amount could be processed. The default
value for SO_SNDLOWAT is set to a convenient size for network efficiency,
often 1024. SO_RCVLOWAT is an option to set the minimum count for input
operations. In general, receive calls will block until any (non-zero)
amount of data is received, then return with the smaller of the amount
available or the amount requested. The default value for SO_RCVLOWAT is
1. If SO_RCVLOWAT is set to a larger value, blocking receive calls nor-
mally wait until they have received the smaller of the low water mark
value or the requested amount. Receive calls may still return less than
the low water mark if an error occurs, a signal is caught, or the type of
data next in the receive queue is different than that returned.

SO_SNDTIMEO is an option to set a timeout value for output operations.
It accepts a struct timeval parameter with the number of seconds and
microseconds used to limit waits for output operations to complete. If a
send operation has blocked for this much time, it returns with a partial
count or with the error EWOULDBLOCK if no data was sent. In the current
implementation, this timer is restarted each time additional data are
delivered to the protocol, implying that the limit applies to output por-
tions ranging in size from the low water mark to the high water mark for
output. SO_RCVTIMEO is an option to set a timeout value for input opera-
tions. It accepts a struct timeval parameter with the number of seconds
and microseconds used to limit waits for input operations to complete.

307

Chapter 34. TCP/IP Library Reference

In the current implementation, this timer is restarted each time addi-
tional data are received by the protocol, and thus the limit is in effect
an inactivity timer. If a receive operation has been blocked for this
much time without receiving additional data, it returns with a short
count or with the error EWOULDBLOCK if no data were received.

Finally, SO_TYPE and SO_ERROR are options used only with getsockopt().
SO_TYPE returns the type of the socket, such as SOCK_STREAM; it is useful
for servers that inherit sockets on startup. SO_ERROR returns any pend-
ing error on the socket and clears the error status. It may be used to
check for asynchronous errors on connected datagram sockets or for other
asynchronous errors.

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid
part of the process address space. For getsockopt(),
this error may also be returned if optlen is not in a
valid part of the process address space.

SEE ALSO
connect(2), ioctl(2), poll(2), select(2), poll(2), socket(2),
getprotoent(3), protocols(5)

BUGS
Several of the socket options should be handled at lower levels of the
system.

HISTORY
The getsockopt() system call appeared in 4.2BSD.

BSD February 15, 1999 BSD

ioctl
IOCTL(2) System Calls Manual IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

int
ioctl(int d, unsigned long request, ...);

DESCRIPTION

308

Chapter 34. TCP/IP Library Reference

The ioctl() function manipulates the underlying device parameters of spe-
cial files. In particular, many operating characteristics of character
special files (e.g., terminals) may be controlled with ioctl() requests.

The argument d must be an open file descriptor. The third argument is
called arg and contains additional information needed by this device to
perform the requested function. arg is either an int or a pointer to a
device-specific data structure, depending upon the given request.

An ioctl request has encoded in it whether the argument is an “in”
parameter or “out” parameter, and the size of the third argument (arg)
in bytes. Macros and defines used in specifying an ioctl request are
located in the file <sys/ioctl.h>.

RETURN VALUES
If an error has occurred, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
ioctl() will fail if:

[EBADF] d is not a valid descriptor.

[ENOTTY] d is not associated with a character special device.

[ENOTTY] The specified request does not apply to the kind of
object that the descriptor d references.

[EINVAL] request or arg is not valid.

[EFAULT] arg points outside the process’s allocated address
space.

SEE ALSO
cdio(1), chio(1), mt(1), execve(2), fcntl(2), intro(4), tty(4)

HISTORY
An ioctl() function call appeared in Version 7 AT&T UNIX.

BSD December 11, 1993 BSD

poll
POLL(2) System Calls Manual POLL(2)

NAME
poll - synchronous I/O multiplexing

SYNOPSIS
#include <poll.h>

int
poll(struct pollfd *fds, int nfds, int timeout);

DESCRIPTION
poll() provides a mechanism for reporting I/O conditions across a set of
file descriptors.

309

Chapter 34. TCP/IP Library Reference

The arguments are as follows:

fds Points to an array of pollfd structures, which are defined as:

struct pollfd {
int fd;
short events;
short revents;

};

The fd member is an open file descriptor. The events and
revents members are bitmasks of conditions to monitor and condi-
tions found, respectively.

nfds The number of pollfd structures in the array.

timeout Maximum interval to wait for the poll to complete, in millisec-
onds. If this value is 0, then poll() will return immediately.
If this value is INFTIM (-1), poll() will block indefinitely
until a condition is found.

The calling process sets the events bitmask and poll() sets the revents
bitmask. Each call to poll() resets the revents bitmask for accuracy.
The condition flags in the bitmasks are defined as:

POLLIN Data is available on the file descriptor for reading.

POLLNORM Same as POLLIN.

POLLPRI Same as POLLIN.

POLLOUT Data can be written to the file descriptor without blocking.

POLLERR This flag is not used in this implementation and is provided
only for source code compatibility.

POLLHUP The file descriptor was valid before the polling process and
invalid after. Presumably, this means that the file descrip-
tor was closed sometime during the poll.

POLLNVAL The corresponding file descriptor is invalid.

POLLRDNORM Same as POLLIN.

POLLRDBAND Same as POLLIN.

POLLWRNORM Same as POLLOUT.

POLLWRBAND Same as POLLOUT.

POLLMSG This flag is not used in this implementation and is provided
only for source code compatibility.

All flags except POLLIN, POLLOUT, and their synonyms are for use only in
the revents member of the pollfd structure. An attempt to set any of
these flags in the events member will generate an error condition.

In addition to I/O multiplexing, poll() can be used to generate simple
timeouts. This functionality may be achieved by passing a null pointer
for fds.

310

Chapter 34. TCP/IP Library Reference

WARNINGS
The POLLHUP flag is only a close approximation and may not always be
accurate.

RETURN VALUES
Upon error, poll() returns a -1 and sets the global variable errno to
indicate the error. If the timeout interval was reached before any
events occurred, a 0 is returned. Otherwise, poll() returns the number
of file descriptors for which revents is non-zero.

ERRORS
poll() will fail if:

[EINVAL] nfds was either a negative number or greater than the number
of available file descriptors.

[EINVAL] An invalid flags was set in the events member of the pollfd
structure.

[EINVAL] The timeout passed to poll() was too large.

[EAGAIN] Resource allocation failed inside of poll(). Subsequent calls
to poll() may succeed.

[EINTR] poll() caught a signal during the polling process.

SEE ALSO
poll(2), select(2), sysconf(3)

HISTORY
A poll() system call appeared in AT&T System V UNIX.

BSD December 13, 1994 BSD

select
SELECT(2) System Calls Manual SELECT(2)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>

int
select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,

struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

311

Chapter 34. TCP/IP Library Reference

FD_ZERO(&fdset);

DESCRIPTION
select() examines the I/O descriptor sets whose addresses are passed in
readfds, writefds, and exceptfds to see if some of their descriptors are
ready for reading, are ready for writing, or have an exceptional condi-
tion pending, respectively. The first nfds descriptors are checked in
each set; i.e., the descriptors from 0 through nfds-1 in the descriptor
sets are examined. On return, select() replaces the given descriptor
sets with subsets consisting of those descriptors that are ready for the
requested operation. select() returns the total number of ready descrip-
tors in all the sets.

The descriptor sets are stored as bit fields in arrays of integers. The
following macros are provided for manipulating such descriptor sets:
FD_ZERO(&fdset) initializes a descriptor set fdset to the null set.
FD_SET(fd, &fdset) includes a particular descriptor fd in fdset.
FD_CLR(fd, &fdset) removes fd from fdset. FD_ISSET(fd, &fdset) is non-
zero if fd is a member of fdset, zero otherwise. The behavior of these
macros is undefined if a descriptor value is less than zero or greater
than or equal to FD_SETSIZE, which is normally at least equal to the max-
imum number of descriptors supported by the system.

If timeout is a non-null pointer, it specifies a maximum interval to wait
for the selection to complete. If timeout is a null pointer, the select
blocks indefinitely. To effect a poll, the timeout argument should be
non-null, pointing to a zero-valued timeval structure. timeout is not
changed by select(), and may be reused on subsequent calls; however, it
is good style to re-initialize it before each invocation of select().

Any of readfds, writefds, and exceptfds may be given as null pointers if
no descriptors are of interest.

RETURN VALUES
select() returns the number of ready descriptors that are contained in
the descriptor sets, or -1 is an error occurred. If the time limit
expires, select() returns 0. If select() returns with an error, includ-
ing one due to an interrupted call, the descriptor sets will be unmodi-
fied.

ERRORS
An error return from select() indicates:

[EFAULT] One or more of readfds, writefds, or exceptfds points
outside the process’s allocated address space.

[EBADF] One of the descriptor sets specified an invalid
descriptor.

[EINTR] A signal was delivered before the time limit expired
and before any of the selected events occurred.

[EINVAL] The specified time limit is invalid. One of its com-
ponents is negative or too large.

SEE ALSO
accept(2), connect(2), gettimeofday(2), poll(2), read(2), recv(2),
send(2), write(2), getdtablesize(3)

BUGS
Although the provision of getdtablesize(3) was intended to allow user

312

Chapter 34. TCP/IP Library Reference

programs to be written independent of the kernel limit on the number of
open files, the dimension of a sufficiently large bit field for select
remains a problem. The default bit size of fd_set is based on the symbol
FD_SETSIZE (currently 256), but that is somewhat smaller than the current
kernel limit to the number of open files. However, in order to accommo-
date programs which might potentially use a larger number of open files
with select, it is possible to increase this size within a program by
providing a larger definition of FD_SETSIZE before the inclusion of
<sys/types.h>. The kernel will cope, and the userland libraries provided
with the system are also ready for large numbers of file descriptors.

Alternatively, to be really safe, it is possible to allocate fd_set bit-
arrays dynamically. The idea is to permit a program to work properly
even if it is execve(2)’d with 4000 file descriptors pre-allocated. The
following illustrates the technique which is used by userland libraries:

fd_set *fdsr;
int max = fd;

fdsr = (fd_set *)calloc(howmany(max+1, NFDBITS),
sizeof(fd_mask));

if (fdsr == NULL) {
...
return (-1);

}
FD_SET(fd, fdsr);
n = select(max+1, fdsr, NULL, NULL, &tv);
...
free(fdsr);

Alternatively, it is possible to use the poll(2) interface. poll(2) is
more efficient when the size of select()’s fd_set bit-arrays are very
large, and for fixed numbers of file descriptors one need not size and
dynamically allocate a memory object.

select() should probably have been designed to return the time remaining
from the original timeout, if any, by modifying the time value in place.
Even though some systems stupidly act in this different way, it is
unlikely this semantic will ever be commonly implemented, as the change
causes massive source code compatibility problems. Furthermore, recent
new standards have dictated the current behaviour. In general, due to
the existence of those brain-damaged non-conforming systems, it is unwise
to assume that the timeout value will be unmodified by the select() call,
and the caller should reinitialize it on each invocation. Calculating
the delta is easily done by calling gettimeofday(2) before and after the
call to select(), and using timersub() (as described in getitimer(2)).

Internally to the kernel, select() works poorly if multiple processes
wait on the same file descriptor. Given that, it is rather surprising to
see that many daemons are written that way (i.e., httpd(8)).

HISTORY
The select() function call appeared in 4.2BSD.

BSD March 25, 1994 BSD

313

Chapter 34. TCP/IP Library Reference

send
SEND(2) System Calls Manual SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ssize_t
send(int s, const void *msg, size_t len, int flags);

ssize_t
sendto(int s, const void *msg, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);

ssize_t
sendmsg(int s, const struct msghdr *msg, int flags);

DESCRIPTION
send(), sendto(), and sendmsg() are used to transmit a message to another
socket. send() may be used only when the socket is in a connected state,
while sendto() and sendmsg() may be used at any time.

The address of the target is given by to with tolen specifying its size.
The length of the message is given by len. If the message is too long to
pass atomically through the underlying protocol, the error EMSGSIZE is
returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send(). Locally
detected errors are indicated by a return value of -1.

If no messages space is available at the socket to hold the message to be
transmitted, then send() normally blocks, unless the socket has been
placed in non-blocking I/O mode. The select(2) or poll(2) system calls
may be used to determine when it is possible to send more data.

The flags parameter may include one or more of the following:

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_DONTROUTE 0x4 /* bypass routing, use direct interface */

The flag MSG_OOB is used to send “out-of-band” data on sockets that
support this notion (e.g., SOCK_STREAM); the underlying protocol must
also support “out-of-band” data. MSG_DONTROUTE is usually used only by
diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUES
The call returns the number of characters sent, or -1 if an error
occurred.

ERRORS
send(), sendto(), and sendmsg() fail if:

[EBADF] An invalid descriptor was specified.

[ENOTSOCK] The argument s is not a socket.

314

Chapter 34. TCP/IP Library Reference

[EFAULT] An invalid user space address was specified for a
parameter.

[EMSGSIZE] The socket requires that message be sent atomically,
and the size of the message to be sent made this
impossible.

[EAGAIN] The socket is marked non-blocking and the requested
operation would block.

[ENOBUFS] The system was unable to allocate an internal buffer.
The operation may succeed when buffers become avail-
able.

[ENOBUFS] The output queue for a network interface was full.
This generally indicates that the interface has
stopped sending, but may be caused by transient con-
gestion.

[EACCES] The SO_BROADCAST option is not set on the socket, and
a broadcast address was given as the destination.

[EHOSTUNREACH] The destination address specified an unreachable host.

[EINVAL] The flags parameter is invalid.

[EHOSTDOWN] The destination address specified a host that is down.

[ENETDOWN] The destination address specified a network that is
down.

[ECONNREFUSED] The destination host rejected the message (or a previ-
ous one). This error can only be returned by con-
nected sockets.

[ENOPROTOOPT] There was a problem sending the message. This error
can only be returned by connected sockets.

[EDESTADDRREQ] The socket is not connected, and no destination
address was specified.

[EISCONN] The socket is already connected, and a destination
address was specified.

In addition, send() and sendto() may return the following error:

[EINVAL] len was larger than SSIZE_MAX.

Also, sendmsg() may return the following errors:

[EINVAL] The sum of the iov_len values in the msg_iov array
overflowed an ssize_t.

[EMSGSIZE] The msg_iovlen member of msg was less than 0 or larger
than IOV_MAX.

[EAFNOSUPPORT] Addresses in the specified address family cannot be
used with this socket.

SEE ALSO

315

Chapter 34. TCP/IP Library Reference

fcntl(2), getsockopt(2), poll(2), recv(2), select(2), poll(2), socket(2),
write(2)

HISTORY
The send() function call appeared in 4.2BSD.

BSD July 28, 1998 BSD

shutdown
SHUTDOWN(2) System Calls Manual SHUTDOWN(2)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
shutdown(int s, int how);

DESCRIPTION
The shutdown() call causes all or part of a full-duplex connection on the
socket associated with s to be shut down. If how is SHUT_RD, further
receives will be disallowed. If how is SHUT_WR, further sends will be
disallowed. If how is SHUT_RDWR, further sends and receives will be dis-
allowed.

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EINVAL] how is not SHUT_RD, SHUT_WR, or SHUT_RDWR.

[EBADF] s is not a valid descriptor.

[ENOTSOCK] s is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

HISTORY
The shutdown() function call appeared in 4.2BSD. The how arguments used
to be simply 0, 1, and 2, but now have named values as specified by
X/Open Portability Guide Issue 4 (“XPG4”).

BSD June 4, 1993 BSD

316

Chapter 34. TCP/IP Library Reference

socket
SOCKET(2) System Calls Manual SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which com-
munication will take place; this selects the protocol family which should
be used. These families are defined in the include file <sys/socket.h>.
The currently understood formats are

AF_UNIX (UNIX internal protocols),
AF_INET (ARPA Internet protocols),
AF_INET6 (ARPA IPv6 protocols),
AF_ISO (ISO protocols),
AF_NS (Xerox Network Systems protocols),
AF_IPX (Internetwork Packet Exchange), and
AF_IMPLINK (IMP host at IMP link layer).

The socket has the indicated type, which specifies the semantics of com-
munication. Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based
byte streams. An out-of-band data transmission mechanism may be sup-
ported. A SOCK_DGRAM socket supports datagrams (connectionless, unreli-
able messages of a fixed (typically small) maximum length). A
SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way connec-
tion-based data transmission path for datagrams of fixed maximum length;
a consumer may be required to read an entire packet with each read system
call. This facility is protocol specific, and presently implemented only
for PF_NS. SOCK_RAW sockets provide access to internal network protocols
and interfaces. The types SOCK_RAW, which is available only to the supe-
ruser, and SOCK_RDM, which is planned, but not yet implemented, are not
described here.

The protocol specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket
type within a given protocol family. However, it is possible that many
protocols may exist, in which case a particular protocol must be speci-
fied in this manner. The protocol number to use is particular to the
communication domain in which communication is to take place; see
protocols(5). A value of 0 for protocol will let the system select an
appropriate protocol for the requested socket type.

317

Chapter 34. TCP/IP Library Reference

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to
pipes. A stream socket must be in a connected state before any data may
be sent or received on it. A connection to another socket is created
with a connect(2) call. Once connected, data may be transferred using
read(2) and write(2) calls or some variant of the send(2) and recv(2)
calls. When a session has been completed a close(2) may be performed.
Out-of-band data may also be transmitted as described in send(2) and
received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer
protocol has buffer space cannot be successfully transmitted within a
reasonable length of time, then the connection is considered broken and
calls will indicate an error with -1 returns and with ETIMEDOUT as the
specific code in the global variable errno. The protocols optionally
keep sockets “warm” by forcing transmissions roughly every minute in
the absence of other activity. An error is then indicated if no response
can be elicited on an otherwise idle connection for a extended period
(e.g., 5 minutes). A SIGPIPE signal is raised if a process sends on a
broken stream; this causes naive processes, which do not handle the sig-
nal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sock-
ets. The only difference is that read(2) calls will return only the
amount of data requested, and any remaining in the arriving packet will
be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspon-
dents named in send(2) calls. Datagrams are generally received with
recvfrom(2), which returns the next datagram with its return address.

An fcntl(2) call can be used to specify a process group to receive a
SIGURG signal when the out-of-band data arrives. It may also enable non-
blocking I/O and asynchronous notification of I/O events via SIGIO.

The operation of sockets is controlled by socket level options. These
options are defined in the file <sys/socket.h>. setsockopt(2) and
getsockopt(2) are used to set and get options, respectively.

RETURN VALUES
A -1 is returned if an error occurs, otherwise the return value is a
descriptor referencing the socket.

ERRORS
The socket() call fails if:

[EPROTONOSUPPORT] The protocol type or the specified protocol is not
supported within this domain.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[EACCES] Permission to create a socket of the specified type
and/or protocol is denied.

[ENOBUFS] Insufficient buffer space is available. The socket
cannot be created until sufficient resources are
freed.

SEE ALSO

318

Chapter 34. TCP/IP Library Reference

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2),
listen(2), poll(2), read(2), recv(2), select(2), send(2), setsockopt(2),
shutdown(2), socketpair(2), write(2), getprotoent(3), netintro(4)

An Introductory 4.3 BSD Interprocess Communication Tutorial, reprinted in
UNIX Programmer’s Supplementary Documents Volume 1.

BSD Interprocess Communication Tutorial, reprinted in UNIX Programmer’s
Supplementary Documents Volume 1.

HISTORY
The socket() function call appeared in 4.2BSD.

BSD June 4, 1993 BSD

socketpair
SOCKETPAIR(2) System Calls Manual SOCKETPAIR(2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int
socketpair(int d, int type, int protocol, int *sv);

DESCRIPTION
The socketpair() call creates an unnamed pair of connected sockets in the
specified domain d, of the specified type, and using the optionally spec-
ified protocol. The descriptors used in referencing the new sockets are
returned in sv[0] and sv[1]. The two sockets are indistinguishable.

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this
machine.

[EPROTONOSUPPORT] The specified protocol is not supported on this
machine.

[EOPNOTSUPP] The specified protocol does not support creation of
socket pairs.

[EFAULT] The address sv does not specify a valid part of the
process address space.

[ENFILE] The system file table is full.

319

Chapter 34. TCP/IP Library Reference

SEE ALSO
pipe(2), read(2), write(2)

BUGS
This call is currently implemented only for the LOCAL domain. Many oper-
ating systems only accept a protocol of PF_UNSPEC, so that should be used
instead of PF_LOCAL for maximal portability.

STANDARDS
The socketpair() function conforms to X/Open Portability Guide Issue 4.2
(“XPG4.2”).

HISTORY
The socketpair() function call appeared in 4.2BSD.

BSD June 4, 1993 BSD

320

XIII. FreeBSD TCP/IP Stack port for
eCos

TCP/IP Networking for eCos now provides a complete TCP/IP networking stack, based on a recent snapshot
of the FreeBSD code, released by the KAME project. The networking support is fully featured and well tested
within the eCos environment.

Chapter 35. Networking Stack Features
Since this networking package is based on BSD code, it is very complete and robust. The eCos implementation
includes support for the following protocols:

• IPv4

• UDP

• TCP

• ICMP

• raw packet interface

• Multi-cast addressing

• IPv6 (including UDP, ICP, ICMP)

These additional features are also present in the package, but are not supported:

• Berkeley Packet Filter

• Uni-cast support

• Multi-cast routing

323

Chapter 35. Networking Stack Features

324

Chapter 36. Freebsd TCP/IP stack port
This document describes how to get started with the Freebsd TCP/IP network stack.

Targets
A number of ethernet devices may be supported. The default configuration supports two instances of the inter-
face by default, and you will need to write your own driver instantiation code, and supplemental startup and
initialization code, if you should add additional ones.

The target for your board will normally be supplied with an ethernet driver, in which case including the network
stack and generic ethernet driver package to your build will automatically enable usage of the ethernet device
driver. If your target is not supplied with an ethernet driver, you will need to use loopback (seethe Section
calledLoopback testsin Chapter 32).

Building the Network Stack
Using the Build->Packagesdialog, add the packages “Networking”, “Freebsd TCP/IP Stack” and
“Common Ethernet Support” to your configuration. Their package names are CYGPKG_NET,
CYGPKG_NET_FREEBSD_STACK and CYGPKG_NET_ETH_DRIVERS respectively.

A short-cut way to do this is by using the “net”templateif it is available for your platform.

The platform-specific ethernet device driver for your platform will be added as part of the target selection (in
theBuild->Templates“Hardware” item), along with the PCI I/O subsystem (if relevent) and the appropriate
serial device driver.

For example, the PowerPC MBX target selection adds the package PKG_NET_QUICC_ETH_DRIVERS, and
the Cirrus Logic EDB7xxx target selection adds the package CYGPKG_NET_EDB7XXX_ETH_DRIVERS.
After this, eCos and its tests can be built exactly as usual.

Note: By default, most of the network tests are not built. This is because some of them require manual
intervention, i.e. they are to be run “by hand”, and are not suitable for automated testing. To build the full
set of network tests, set the configuration option CYGPKG_NET_BUILD_TESTS “Build networking tests
(demo programs)” within “Networking support build options”.

325

Chapter 36. Freebsd TCP/IP stack port

326

Chapter 37. APIs

Standard networking
The APIs for the standard networking calls such assocket() , recv() and so on, are in header files relative to
the top-level include directory, within the standard subdirectories as conventionally found in/usr/include .
For example:

install/include/arpa/tftp.h
install/include/netinet/tcpip.h
install/include/sys/socket.h
install/include/sys/socketvar.h
install/include/sys/sockio.h

network.h at the top level defines various extensions, for example the API
init_all_network_interfaces(void) described above. We advise includingnetwork.h whether you use
these features or not.

In general, using the networking code may require definition of two symbols: _KERNEL and __ECOS. _KER-
NEL is not normally required; __ECOS is normally required. So add this to your compile lines for files which
use the network stack:

-D__ECOS

To expand a little, it’s like this because this is a port of a standard distribution external to eCos. One goal is
to perturb the sources as little as possible, so that upgrading and maintenance from the external distribution is
simplified. The __ECOS symbol marks out the eCos additions in making the port. The _KERNEL symbol is
traditional UNIX practice: it distinguishes a compilation which is to be linked into the kernel from one which
is part of an application. eCos applications are fully linked, so this distinction does not apply. _KERNEL can
however be used to control the visibility of the internals of the stack, so depending on what features your
application uses, it may or may not be necessary.

The include filenetwork.h undefines _KERNEL unconditionally, to provide an application-like compilation
environment. If you were writing code which, for example, enumerates the stack’s internal structures, that is
a kernel-like compilation environment, so you would need to define _KERNEL (in addition to __ECOS) and
avoid includingnetwork.h .

Enhanced Select()
The network stack supports an extension to the standard select semantics which allows all threads that are
waiting to be restarted even if the select conditions are not satisfied.

The standard select() API:

int
select (int nfd,

fd_set ∗in, fd_set ∗out, fd_set ∗ex,
struct timeval ∗tv);

327

Chapter 37. APIs

does not support the restart.

The additional API:

int
cyg_select_with_abort (int nfd,

fd_set ∗in, fd_set ∗out, fd_set ∗ex,
struct timeval ∗tv)

behaves exactly as select() with the additional feature that a call to

void cyg_select_abort (void)

will cause all threads waiting in anycyg_select_with_abort() call to cease waiting and continue execution.

328

XIV. OpenBSD TCP/IP Stack port for
eCos

TCP/IP Networking for eCos now provides a complete TCP/IP networking stack, which is derived from a
recent stable release of OpenBSD. The networking support is fully featured and well tested within the eCos
environment.

Chapter 38. Networking Stack Features

Introduction
Since this networking package is based on BSD code, it is very complete and robust. The eCos implementation
includes support for the following protocols:

• IPv4

• UDP

• TCP

• ICMP

• raw packet interface

Along with support for the above mentioned protocols, the OpenBSD stack also supports ethernet bridging.

The following additional features are also present in the package, but are not supported:

• Berkeley Packet Filter

• Multi-cast and uni-cast support, including multi-cast routing

• IPv6

331

Chapter 38. Networking Stack Features

332

Chapter 39. OpenBSD TCP/IP stack port
This document describes how to get started with the OpenBSD TCP/IP network stack.

Targets
A number of ethernet devices may be supported. The default configuration supports two instances of the inter-
face by default, and you will need to write your own driver instantiation code, and supplemental startup and
initialization code, if you should add additional ones.

The target for your board will normally be supplied with an ethernet driver, in which case including the network
stack and generic ethernet driver package to your build will automatically enable usage of the ethernet device
driver. If your target is not supplied with an ethernet driver, you will need to use loopback (seethe Section
calledLoopback testsin Chapter 32).

Building the Network Stack
Using the Build->Packages dialog, add the packages “Networking”, “OpenBSD TCP/IP Stack”
and “Common Ethernet Support” to your configuration. Their package names are CYGPKG_NET,
CYGPKG_NET_OPENBSD_STACK and CYGPKG_NET_ETH_DRIVERS respectively.

A short-cut way to do this is by using the “net”templateif it is available for your platform.

The platform-specific ethernet device driver for your platform will be added as part of the target selection (in
theBuild->Templates“Hardware” item), along with the PCI I/O subsystem (if relevent) and the appropriate
serial device driver.

For example, the PowerPC MBX target selection adds the package PKG_NET_QUICC_ETH_DRIVERS, and
the Cirrus Logic EDB7xxx target selection adds the package CYGPKG_NET_EDB7XXX_ETH_DRIVERS.
After this, eCos and its tests can be built exactly as usual.

Note: By default, most of the network tests are not built. This is because some of them require manual
intervention, i.e. they are to be run “by hand”, and are not suitable for automated testing. To build the full
set of network tests, set the configuration option CYGPKG_NET_BUILD_TESTS “Build networking tests
(demo programs)” within “Networking support build options”.

Inclusion of bridge code
The OpenBSD stack does not by default result in the inclusion of the bridge code. To include bridging
functionality the CDL option CYGPKG_NET_BRIDGE must be enable . It is also possible to enable more
than one concurrent bridge. The number of bridges active in a device is configured by the CDL option
CYGNUM_NET_BRIDGES, which has a default value of 1.

The default behavior of a bridge is to operate without the spanning tree protocol. When devices are operated in
this default mode it must be ensured the network topology is loop-free. Any loops will cause broadcast storms

333

Chapter 39. OpenBSD TCP/IP stack port

and general mayhem on the network. Including spanning tree code during the build process will allow the
bridge to communicate with other bridges. They can then detect such loops and by disabling selected interfaces
break the loop. To enable spanning tree enable the CDL option CYGPKG_NET_BRIDGE_STP_CODE.

334

Chapter 40. APIs

Standard networking
The APIs for the standard networking calls such assocket() , recv() and so on, are in header files relative to
the top-level include directory, within the standard subdirectories as conventionally found in/usr/include .
For example:

install/include/arpa/tftp.h
install/include/netinet/tcpip.h
install/include/sys/socket.h
install/include/sys/socketvar.h
install/include/sys/sockio.h

network.h at the top level defines various extensions, for example the API
init_all_network_interfaces(void) described above. We advise includingnetwork.h whether you use
these features or not.

In general, using the networking code may require definition of two symbols: _KERNEL and __ECOS. _KER-
NEL is not normally required; __ECOS is normally required. So add this to your compile lines for files which
use the network stack:

-D__ECOS

To expand a little, it’s like this because this is a port of a standard distribution external to Red Hat. One goal is
to perturb the sources as little as possible, so that upgrading and maintenance from the external distribution is
simplified. The __ECOS symbol marks out Red Hat’s additions in making the port. The _KERNEL symbol is
traditional UNIX practice: it distinguishes a compilation which is to be linked into the kernel from one which
is part of an application. eCos applications are fully linked, so this distinction does not apply. _KERNEL can
however be used to control the visibility of the internals of the stack, so depending on what features your
application uses, it may or may not be necessary.

The include filenetwork.h undefines _KERNEL unconditionally, to provide an application-like compilation
environment. If you were writing code which, for example, enumerates the stack’s internal structures, that is
a kernel-like compilation environment, so you would need to define _KERNEL (in addition to __ECOS) and
avoid includingnetwork.h .

Enhanced Select()
The network stack supports an extension to the standard select semantics which allows all threads that are
waiting to be restarted even if the select conditions are not satisfied.

The standard select() API:

int
select (int nfd,

fd_set ∗in, fd_set ∗out, fd_set ∗ex,
struct timeval ∗tv);

335

Chapter 40. APIs

does not support the restart.

The additional API:

int
cyg_select_with_abort (int nfd,

fd_set ∗in, fd_set ∗out, fd_set ∗ex,
struct timeval ∗tv)

behaves exactly as select() with the additional feature that a call to

void cyg_select_abort (void)

will cause all threads waiting in anycyg_select_with_abort() call to cease waiting and continue execution.

OpenBSD networking facilities
NAME

networking - introduction to networking facilities

SYNOPSIS
#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

DESCRIPTION
This section is a general introduction to the networking facilities
available in the system. The general introduction on this page is
broken up into three areas: protocol families (domains), protocols,
and network interfaces.

All network protocols are associated with a specific protocol family. A
protocol family provides basic services to the protocol implementation
to allow it to function within a specific network environment. These
services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. A protocol family may support multiple
methods of addressing, though the current protocol implementations do not.
A protocol family is normally comprised of a number of protocols, one per
socket type. It is not required that a protocol family support all
socket types. A protocol family may contain multiple protocols support-
ing the same socket abstraction.

A protocol supports one of the socket abstractions detailed in socket .
A specific protocol may be accessed either by creating a socket of the
appropriate type and protocol family, or by requesting the protocol ex-
plicitly when creating a socket. Protocols normally accept only one type
of address format, usually determined by the addressing structure inher-
ent in the design of the protocol family/network architecture. Certain
semantics of the basic socket abstractions are protocol specific. All
protocols are expected to support the basic model for their particular
socket type, but may, in addition, provide non-standard facilities or ex-
tensions to a mechanism. For example, a protocol supporting the
SOCK_STREAM abstraction may allow more than one byte of out-of-band data
to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces
comprise the lowest layer of the networking subsystem, interacting with
the actual transport hardware. An interface may support one or more pro-
tocol families and/or address formats.

336

Chapter 40. APIs

PROTOCOL
The system currently supports the Internet protocols. Raw socket interfaces
are provided to the IP protocol layer of the Internet.

ADDRESSING
Associated with each protocol family is an address format. All network
addresses adhere to a general structure, called a sockaddr, described be-
low. However, each protocol imposes a finer, more specific structure,
generally renaming the variant, which is discussed in the protocol family
manual page alluded to above.

struct sockaddr {
u_int8_t sa_len;
sa_family_t sa_family;
char sa_data[14];

};

The field sa_len contains the total length of the structure, which may
exceed 16 bytes. The following address values for sa_family are known to
the system (and additional formats are defined for possible future imple-
mentation):

#define AF_UNIX 1 /* local to host (pipes, portals) */
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF_NS 6 /* Xerox NS protocols */
#define AF_CCITT 10 /* CCITT protocols, X.25 etc */
#define AF_HYLINK 15 /* NSC Hyperchannel */
#define AF_APPLETALK 16 /* AppleTalk */
#define AF_ISO 18 /* ISO protocols */
#define AF_IPX 23 /* Novell Internet Protocol */
#define AF_INET6 24 /* IPv6 */
#define AF_NATM 27 /* native ATM access */

ROUTING
OpenBSD provides some packet routing facilities. The kernel maintains a
routing information database, which is used in selecting the appropriate
network interface when transmitting packets.

This facility is however, untested in eCos ports.

INTERFACES
Each network interface in a system corresponds to a path through which
messages may be sent and received. A network interface usually has a
hardware device associated with it, though certain interfaces such as the
loopback interface, lo, do not.

The following ioctl calls may be used to manipulate network interfaces
The ioctl is made on a socket (typically of type SOCK_DGRAM) in the desired
domain. Most of the requests supported in earlier releases take an ifreq
structure as its parameter. This structure has the form

struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;

337

Chapter 40. APIs

caddr_t ifru_data;
} ifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_metric ifr_ifru.ifru_metric /* metric */
#define ifr_media ifr_ifru.ifru_metric /* media options (overload) */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */
};

Calls which are now deprecated are:

SIOCSIFADDR Set interface address for protocol family. Following the
address assignment, the “initialization” routine for
the interface is called.

SIOCSIFDSTADDR Set point to point address for protocol family and inter-
face.

SIOCSIFBRDADDR Set broadcast address for protocol family and interface.

ioctl requests to obtain addresses and requests both to set and retrieve
other data are still fully supported and use the ifreq structure:

SIOCGIFADDR Get interface address for protocol family.

SIOCGIFDSTADDR Get point to point address for protocol family and inter-
face.

SIOCGIFBRDADDR Get broadcast address for protocol family and interface.

SIOCSIFFLAGS Set interface flags field. If the interface is marked
down, any processes currently routing packets through the
interface are notified; some interfaces may be reset so
that incoming packets are no longer received. When
marked up again, the interface is reinitialized.

SIOCGIFFLAGS Get interface flags.

SIOCSIFMEDIA Set interface media. See ifmedia(4) for possible values.

SIOCGIFMEDIA Get interface media. See ifmedia(4) for interpreting
this value.

SIOCSIFMETRIC Set interface routing metric. The metric is used only by
user-level routers.

SIOCGIFMETRIC Get interface metric.

There are two requests that make use of a new structure:

SIOCAIFADDR An interface may have more than one address associated
with it in some protocols. This request provides a means
to add additional addresses (or modify characteristics of
the primary address if the default address for the ad-
dress family is specified). Rather than making separate
calls to set destination or broadcast addresses, or net-
work masks (now an integral feature of multiple proto-
cols) a separate structure is used to specify all three
facets simultaneously (see below). One would use a

338

Chapter 40. APIs

slightly tailored version of this struct specific to each
family (replacing each sockaddr by one of the family-spe-
cific type). Where the sockaddr itself is larger than
the default size, one needs to modify the ioctl(2) iden-
tifier itself to include the total size, as described in
ioctl(2).

SIOCDIFADDR This request deletes the specified address from the list
associated with an interface. It also uses the
if_aliasreq structure to allow for the possibility of
protocols allowing multiple masks or destination address-
es, and also adopts the convention that specification of
the default address means to delete the first address for
the interface belonging to the address family in which
the original socket was opened.

SIOCGIFCONF Get interface configuration list. This request takes an
ifconf structure (see below) as a value-result parameter.
The ifc_len field should be initially set to the size of
the buffer pointed to by ifc_buf. On return it will con-
tain the length, in bytes, of the configuration list.
Alternately, if the ifc_len passed in is set to 0,
SIOCGIFCONF will set ifc_len to the size that ifc_buf
needs to be to fit the entire configuration list and not
fill in the other parameters. This is useful for deter-
mining the exact size that ifc_buf needs to be in ad-
vance. Note, however, that this is an extension that not
all operating systems support.

/*
* Structure used in SIOCAIFADDR request.
*/
struct ifaliasreq {

char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */
struct sockaddr ifra_addr;
struct sockaddr ifra_broadaddr;
struct sockaddr ifra_mask;

};

/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/
struct ifconf {

int ifc_len; /* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
};

SEE ALSO
bridge , spanning-tree

339

Chapter 40. APIs

Bridging
NAME

bridge - Ethernet bridge interface

SYNOPSIS
pseudo-device bridge

DESCRIPTION
The bridge device creates a logical link between two or more Ethernet
interfaces. This link between the interfaces selectively forwards
frames from each interface on the bridge to every other interface on
the bridge. A bridge can serve several services, including isolation
of traffic between sets of machines so that traffic local to one set of
machines is not available on the wire of another set of machines, and
it can act as a transparent filter for ip4 datagrams.

The bridges provided by this interface are learning bridges with filter-
ing. In general a bridge works like a hub, forwarding traffic from one
interface to another. It differs from a hub in that it will "learn" which
machines are on each of its attached segments by actively listening to
incoming traffic and examining the headers of each frame. A table is
built containing the MAC address and segment to which the MAC address is
attached. This allows a bridge to be more selective about what it
forwards, which can be used to reduce traffic on a set of segments and
also to provide an IP firewall without changing the topology of the
network.

The algorithm works as follows by default, but can be modified via ioctl.
When a frame comes in, the origin segment and the source address are
recorded. If the bridge has no knowledge about where the destination is
to be found, the bridge will forward the frame to all attached segments.
If the destination is known to be on a different segment from its origin,
the bridge will forward the packet only to the destination segment. If the
destination is on the same segment as the origin segment, the bridge will
drop the packet because the receiver has already had a chance to see the
frame.

IOCTLS
A bridge interface responds to all of the ioctl calls specific to oth-
er interfaces listed in netintro . The following ioctl calls are
specific to bridge devices. They are defined in <sys/sockio.h>.

SIOCBRDGIFS (struct ifbifconf) Retrieve member interface list from a
bridge. This request takes an ifbifconf structure (see
below) as a value-result parameter. The ifbic_len field
should be initially set to the size of the buffer point-
ed to by ifbic_buf. On return it will contain the
length, in bytes, of the configuration list. Alterna-
tively, if the ifbic_len passed in is set to 0,
SIOCBRDGIFS will set ifbic_len to the size that
ifbic_buf needs to be to fit the entire configuration
list, and will not fill in the other parameters. This
is useful for determining the exact size that ifbic_buf
needs to be in advance.

The argument structure is defined as follows:

struct ifbreq {
char ifbr_name[IFNAMSIZ]; /* brdg nam */
char ifbr_ifsname[IFNAMSIZ]; /* if name */

340

Chapter 40. APIs

u_int32_t ifbr_ifsflags; /* if flags */
u_int8_t ifbr_state; /* member stp state */
u_int8_t ifbr_priority; /* member stp priority */
u_int8_t ifbr_portno; /* member port number */
u_int32_t ifbr_path_cost; /* member stp path cost */

};
/* SIOCBRDGIFFLGS, SIOCBRDGIFFLGS */
#define IFBIF_LEARNING 0x0001 /* ifs can learn */
#define IFBIF_DISCOVER 0x0002 /* ifs sends packets w/unknown dest */
#define IFBIF_BLOCKNONIP 0x0004 /* ifs blocks non-IP/ARP in/out */
#define IFBIF_STP 0x0008 /* ifs participates in spanning tree */
#define IFBIF_SPAN 0x0100 /* ifs is a span port (ro) */
#define IFBIF_RO_MASK 0xff00 /* read only bits */

struct ifbifconf {
char ifbic_name[IFNAMSIZ]; /* brdg name */
u_int32_t ifbic_len; /* buf size */
union {

caddr_t ifbicu_buf; /* buffer */
struct ifbreq *ifbicu_req;

} ifbic_ifbicu;
#define ifbic_buf ifbic_ifbicu.ifbicu_buf
#define ifbic_req ifbic_ifbicu.ifbicu_req
};

SIOCBRDGADD (struct ifbreq) Add the interface named in ifbr_ifsname
to the bridge named in ifbr_name.

SIOCBRDGDEL (struct ifbreq) Delete the interface named in
ifbr_ifsname from the bridge named in ifbr_name.

SIOCBRDGADDS (struct ifbreq) Add the interface named in ifbr_ifsname
as a span port to the bridge named in ifbr_name.

SIOCBRDGDELS (struct ifbreq) Delete the interface named in
ifbr_ifsname from the list of span ports of the bridge
named in ifbr_name.

SIOCBRDGSIFFLGS (struct ifbreq) Set the bridge member interface flags
for the interface named in ifbr_ifsname attached to the
bridge ifbr_name. If the flag IFBIF_LEARNING is set on
an interface, source addresses from frames received on
the interface are recorded in the address cache. If the
flag IFBIF_DISCOVER is set, the interface will receive
packets destined for unknown destinations, otherwise a
frame that has a destination not found in the address
cache is not forwarded to this interface. The default
for newly added interfaces has both flags set. If the
flag IFBIF_BLOCKNONIP is set, packets that are one of
ip(4), ip6(4), arp(4), or Reverse ARP, will not be
bridged from and to the interface.

SIOCBRDGGIFFLGS Retrieve the bridge member interface flags for the in-
terface named in ifbr_ifsname attached to the bridge
ifbr_name.

SIOCBRDGRTS (struct ifbaconf) Retrieve the address cache of the
bridge named in ifbac_name. This request takes an
ifbaconf structure (see below) as a value result parame-
ter. The ifbac_len field should be initially set to the
size of the buffer pointed to by ifbac_buf. On return,

341

Chapter 40. APIs

it will contain the length, in bytes, of the configura-
tion list. Alternatively, if the ifbac_len passed in is
set to 0, SIOCBRDGRTS will set it to the size that
ifbac_buf needs to be to fit the entire configuration
list and not fill in the other parameters. As with
SIOCBRDGIFS, this is useful for determining the exact
size that ifbac_buf needs to be in advance.

The argument structure is defined as follows:

struct ifbareq {
char ifba_name[IFNAMSIZ]; /* brdg nam */
char ifba_ifsname[IFNAMSIZ];/* dest ifs */
u_int8_t ifba_age; /* addr age */
u_int8_t ifba_flags; /* addr flag */
struct ether_addr ifba_dst; /* dst addr */

};

#define IFBAF_TYPEMASK 0x03 /* addr type mask */
#define IFBAF_DYNAMIC 0x00 /* dynamic addr */
#define IFBAF_STATIC 0x01 /* static address */

struct ifbaconf {
char ifbac_name[IFNAMSIZ]; /* brdg name */
u_int32_t ifbac_len; /* buf size */
union {

caddr_t ifbacu_buf; /* buf */
struct ifbareq *ifbacu_req;

} ifbac_ifbacu;
#define ifbac_buf ifbac_ifbacu.ifbacu_buf
#define ifbac_req ifbac_ifbacu.ifbacu_req
};

Address cache entries with the type set to IFBAF_DYNAMIC
in ifba_flags are entries learned by the bridge. En-
tries with the type set to IFBAF_STATIC are manually
added entries.

SIOCBRDGSADDR (struct ifbareq) Add an entry, manually, to the address
cache for the bridge named in ifba_name. The address
and its associated interface and flags are set in the
ifba_dst, ifba_ifsname, and ifba_flags fields, respec-
tively.

SIOCBRDGDADDR (struct ifbareq) Delete an entry from the address cache
of the bridge named in ifba_name. Entries are deleted
strictly based on the address field ifba_dst.

SIOCBRDGSCACHE (struct ifbcachereq) Set the maximum address cache size
for the bridge named in ifbc_name to ifbc_size entries.

The argument structure is as follows:

struct ifbcachereq {
char ifbc_name[IFNAMSIZ]; /* bridge */
u_int32_t ifbc_size; /* size */

};

SIOCBRDGGCACHE (struct ifbcachereq) Retrieve the maximum size of the
address cache for the bridge ifbc_name.

SIOCBRDGSTO (struct ifbcachetoreq) Set the time, in seconds, that

342

Chapter 40. APIs

addresses which have not been seen on the network
(transmitted a packet) remain in the cache. If the time
is set to zero, no aging is performed on the address
cache. The argument structure is as follows:

struct ifbcachetoreq {
char ifbct_name[IFNAMSIZ]; /* bridge */
u_int32_t ifbct_time; /* time */

};

SIOCBRDGGTO (struct ifbcachetoreq) Retrieve the address cache expi-
ration time (see above).

SIOCBRDGFLUSH (struct ifbreq) Flush addresses from the cache.
ifbr_name contains the name of the bridge device, and
ifbr_ifsflags should be set to IFBF_FLUSHALL to flush
all addresses from the cache or IFBF_FLUSHDYN to flush
only the dynamically learned addresses from the cache.

SIOCBRDGARL (struct ifbrlreq) Add an Ethernet address filtering rule
to the bridge on a specific interface. ifbr_name con-
tains the name of the bridge device, and ifbr_ifsname
contains the name of the bridge member interface. The
ifbr_action field is one of BRL_ACTION_PASS or
BRL_ACTION_BLOCK, to pass or block matching frames re-
spectively. The ifbr_flags specifies whether the rule
should match on input, output, or both be using the
flags BRL_FLAG_IN and BRL_FLAG_OUT. It also specifies
whether either (or both) of the source and destination
addresses should be matched by using the
BRL_FLAG_SRCVALID and BRL_FLAG_DSTVALID flags. The
ifbr_src field is the source address that triggers the
rule (only considered if ifbr_flags has the
BRL_FLAG_SRCVALID bit set). The ifbr_src field is the
destination address that triggers the rule (only consid-
ered if ifbr_flags has the BRL_FLAG_DSTVALID bit set).

The argument structure is as follows:

struct ifbrlreq {
char ifbr_name[IFNAMSIZ];
char ifbr_ifsname[IFNAMSIZ];
u_int8_t ifbr_action;
u_int8_t ifbr_flags;
struct ether_addr ifbr_src;
struct ether_addr ifbr_dst;
char ifbr_tagname[PF_TAG_NAME_SIZE];

};
#define BRL_ACTION_BLOCK 0x01
#define BRL_ACTION_PASS 0x02
#define BRL_FLAG_IN 0x08
#define BRL_FLAG_OUT 0x04

SIOCBRDGFRL (struct ifbrlreq) Remove all filtering rules from a
bridge interface member. ifbr_name contains the name of
the bridge device, and ifbr_ifsname contains the name of
the bridge member interface.

SIOCBRDGGRL (struct ifbrlconf) Retrieve all of the rules from the
bridge, ifbrl_name, for the member interface,
ifbrl_ifsname. This request takes an ifbrlconf struc-

343

Chapter 40. APIs

ture (see below) as a value result parameter. The
ifbrl_len field should be initially set to the size of
the buffer pointed to by ifbrl_buf. On return, it will
contain the length, in bytes, of the configuration list.
Alternatively, if the ifbrl_len passed in is set to 0,
SIOCBRDGGRL will set it to the size that ifbrl_buf needs
to be to fit the entire configuration list and not fill
in the other parameters. As with SIOCBRDGIFS, this is
useful for determining the exact size that ifbrl_buf
needs to be in advance.

The argument structure is defined as follows:

struct ifbrlconf {
char ifbrl_name[IFNAMSIZ]; /* brdg nam */
char ifbrl_ifsname[IFNAMSIZ];/* ifs name */
u_int32_t ifbr_len; /* buf len */
union {

caddr_t ifbrlu_buf;
struct ifbrlreq *ifbrlu_req;

} ifrl_ifbrlu;
#define ifbrl_buf ifbrl_ifbrlu.ifbrlu_buf
#define ifbrl_req ifbrl_ifbrlu.ifbrlu_req
};

SIOCBRDGARL (struct ifbrlreq) Add a filtering rule to the bridge
named in ifbr_name on the interface named in
ifbr_ifsname. The argument structure is as follows:

struct ifbrlreq {
char ifbr_name[IFNAMSIZ]; /* bridge */
char ifbr_ifsname[IFNAMSIZ]; /* ifs */
u_int8_t ifbr_action; /* handling */
u_int8_t ifbr_flags; /* flags */
struct ether_addr ifbr_src; /* src mac */
struct ether_addr ifbr_dst; /* dst mac */

};
#define BRL_ACTION_BLOCK 0x01
#define BRL_ACTION_PASS 0x02
#define BRL_FLAG_IN 0x08
#define BRL_FLAG_OUT 0x04
#define BRL_FLAG_SRCVALID 0x02
#define BRL_FLAG_DSTVALID 0x01

Rules are applied in the order in which they were added
to the bridge, and the first matching rule’s action pa-
rameter determines the fate of the packet. The
ifbr_action parameter specifies whether a frame matching
the rule is to be blocked or passed.

If the BRL_FLAG_IN bit is set in ifbr_flags, then the
rule applies to frames received by the interface. If
the BRL_FLAG_OUT bit is set, then the rule applies to
frame transmitted by the interface. At least one of
BRL_FLAG_IN or BRL_FLAG_OUT must be set.

The source Ethernet address in ifbr_src is checked if
the BRL_FLAG_SRCVALID bit is set in ifbr_flags. The
destination address in ifbr_dst is checked if the
BRL_FLAG_DSTVALID bit is set. If neither bit is set,
the rule matches all frames.

344

Chapter 40. APIs

SIOCBRDGFRL (struct ifbrlreq) Flush rules from the bridge ifbr_name
on the interface ifbr_ifsname.

SIOCBRDGGRL (struct ifbrlconf) Retrieve an array of rules from the
bridge for a particular interface. This request takes
an ifbrlconf structure (see below) as a value-result pa-
rameter. The ifbrl_len field should be initially set to
the size of the buffer pointed to by ifbrl_buf. On re-
turn it will contain the length, in bytes, of the rule
list. Alternatively, if the ifbrl_len passed in is set
to 0, SIOCBRDGGRL will set ifbrl_len to the size that
ifbrl_buf needs to be to fit the entire configuration
list, and will not fill in the other parameters. This
is useful for determining the exact size that ifbrl_buf
needs to be in advance.

The argument structure is as follows:

struct ifbrlconf {
char ifbrl_name[IFNAMSIZ]; /* bridge */
char ifbrl_ifsname[IFNAMSIZ];/* member */
u_int32_t ifbrl_len; /* buflen */
union {

caddr_t ifbrlu_buf;
struct ifbrlreq *ifbrlu_req;

} ifbrl_ifbrlu;
#define ifbrl_buf ifbrl_ifbrlu.ifbrlu_buf
#define ifbrl_req ifbrl_ifbrlu.ifbrlu_req
};

ERRORS
If the ioctl call fails, errno is set to one of the following values:

[ENOENT] For an add request, this means that the named interface is
not configured into the system. For a delete operation, it
means that the named interface is not a member of the
bridge. For an address cache deletion, the address was not
found in the table.

[ENOMEM] Memory could not be allocated for an interface or cache en-
try to be added to the bridge.

[EEXIST] The named interface is already a member of the bridge.

[EBUSY] The named interface is already a member of another bridge.

[EINVAL] The named interface is not an Ethernet interface or an in-
valid ioctl was performed on the bridge.

[ENETDOWN] Address cache operation (flush, add, delete) on a bridge
that is in the down state.

[ESRCH] No such member interface in the bridge.

SEE ALSO
netintro , spanning-tree

AUTHORS
The bridge kernel interface was written by Jason L. Wright
<jason@thought.net> as part of an undergraduate independent study at

345

Chapter 40. APIs

the University of North Carolina at Greensboro.

Spanning Tree Protocol
NAME

stp - Spanning Tree Protocol

SYNOPSIS

DESCRIPTION
Spanning Tree (STP) is a layer 2 protocol designed to run on bridges. The
main purpose of STP is to ensure that there are no loop situations when
redundant paths are provisioned in the network. STP detects and disables
creation of network loops by blocking certain ports on some of the bridges
in the network. The process of selection of blocking ports (on occurance
of redundant paths) is governed by the following three parameters :

- Relative priority of each bridge. A higher value means lower priority.
- Relative priority of each port within a bridge. A higher value means

lower priority.
- Path cost (based on physical media type) associated with each port.

A given port/interface participates in STP if the flag IFBIF_STP is
set for the interface. A possible time for setting this flag is at the
time when the interface in context is added to bridge.

IOCTLS
The STP code is invoked for all ioctl calls specified in bridge section.
The following ioctl calls are specific to STP functionality. They are
defined in <sys/sockio.h>.

SIOCBRDGGPRI (struct ifbrparam) Get the configured priority of this
bridge. The priority value could vary from 0 to 65535.
0 being the highest priority and 65535 the lowest. The
configured value is returned in field ifbrp_prio.

SIOCBRDGSPRI (struct ifbrparam) Set priority of this bridge to the
value specified in field ifbrp_prio.

SIOCBRDGGHT (struct ifbrparam) Get the configured frequency of
transmission of hello packets from non-blocking
interfaces on this bridge. The configured frequency is
returned in field ifbrp_hellotime.

SIOCBRDGSHT (struct ifbrparam) Set the frequency of transmission
of hello packets to the value specified in field
ifbrp_hellotime. The specified value should be greater
than 0, else EINVAL is returned.

SIOCBRDGGFD (struct ifbrparam) Get the forwarding delay time
associated with ports/interfaces on this bridge. The
forwarding delay time is the time taken by a port
to transit from one state to other (for eg. from
LEARNING state to FORWARDING state). The configured
value if returned in field ifbrp_fwddelay.

SIOCBRDGSFD (struct ifbrparam) Set the forwarding delay for ports

346

Chapter 40. APIs

attached to this bridge to a value specified in
field ifbrp_fwddelay. The specified value should be
greater than 0, else EINVAL is returned.

SIOCBRDGGMA (struct ifbrparam) Get aging timeout values of
spanning data. The timeout value is returned in field
ifbrp_maxage.

SIOCBRDGSMA (struct ifbrparam) Set the aging timeout value of
BPDUs to the value specified in ifbrp_maxage. The
specified value should be greater than 0, else
EINVAL is returned.

SIOCBRDGSIFPRIO (struct ifbreq) Set the priority of specified
interface to the value given in field ifbr_priority.

SIOCBRDGSIFCOST (struct ifbreq) Set the cost associated with the
given interface to the value specified in field
ifbr_path_cost.

ERRORS
Same as the ones specified for bridge .

SEE ALSO
netintro , bridge

347

Chapter 40. APIs

348

XV. DNS for eCos and RedBoot
eCos and RedBoot can both use the DNS package to perform network name lookups.

Chapter 41. DNS

DNS API
The DNS client uses the normal BSD API for performing lookups:gethostbyname(), gethostbyaddr() ,
getaddrinfo() , getnameinfo() .

There are a few restrictions:

• If the DNS server returns multiple authoritive records for a host name togethostbyname , the hostent will
only contain a record for the first entry. If multiple records are desired, usegetaddrinfo , which will return
multiple results.

• The code has been made thread safe. ie multiple threads may callgethostbyname() without causing prob-
lems to the hostent structure returned. What is not safe is one thread using bothgethostbyname() and
gethostbyaddr() . A call to one will destroy the results from the previous call to the other function.
getaddrinfo() and getnameinfo() are thread safe and so these are the preferred interfaces. They are
also address family independent so making it easier to port code to IPv6.

• The DNS client will only return IPv4 addresses to RedBoot. At the moment this is not really a limitation,
since RedBoot only supports IPv4 and not IPv6.

To initialise the DNS client the following function must be called:

#include <network.h >

int cyg_dns_res_start(char * dns_server)

Where dns_server is the address of the DNS server. The address must be in numeric form and can be either an
IPv4 or an IPv6 address.

There also exists a deprecated function to start the DNS client:

int cyg_dns_res_init(struct in_addr *dns_server)

where dns_server is the address of the DNS server the client should query. The address should be in network
order and can only be an IPv4 address.

On error both this function returns -1, otherwise 0 for success. If lookups are attemped before this function
has been called, they will fail and return NULL, unless numeric host addresses are passed. In this cause, the
address will be converted and returned without the need for a lookup.

A default, hard coded, server may be specified in the CDL optionCYGDAT_NS_DNS_DEFAULT_SERVER. The use
of this is controlled byCYGPKG_NS_DNS_DEFAULT. If this is enabled,init_all_network_interfaces() will
initialize the resolver with the hard coded address. The DHCP client or user code my override this address by
calling cyg_dns_res_init again.

The DNS client understands the concepts of the target being in a domain. By default no domain will be used.
Host name lookups should be for fully qualified names. The domain name can be set and retrieved using the
functions:

int getdomainname (char * name, size_t len);
int setdomainname (const char * name, size_t len);

351

Chapter 41. DNS

Alternatively, a hard coded domain name can be set using CDL. The booleanCYGPKG_NS_DNS_DOMAINNAME

enables this and the domain name is taken fromCYGPKG_NS_DNS_DOMAINNAME_NAME.

Once set, the DNS client will use some simple heuristics when deciding how to use the domainname. If the
name given to the client ends with a "." it is assumed to be a FQDN and the domain name will not be used. If
the name contains a "." somewhere within it, first a lookup will be performed without the domainname. If that
fails the domainname will be appended and looked up. If the name does not contain a ".", the domainname is
appended and used for the first query. If that fails, the unadorned name is lookup.

The getaddrinfo will return both IPv4 and IPv6 addresses for a given host name, when IPv6 is enabled
in the eCos configuration. The CDL optionCYGOPT_NS_DNS_FIRST_FAMILYcontrols the order IPv6 and IPv4
addresses are returned in the linked list ofaddrinfo structures. If the valueAF_INET is used, the IPv4 addresses
will be first. If the valueAF_INET6 , which is the default, is used, IPv6 address will be first. This ordering will
control how clients attempt to connect to servers, ie using IPv6 or IPv4 first.

DNS Client Testing
The DNS client has a test program, dns1.c, which tests many of the features of the DNS client and the functions
gethostbyname(), gethostbyaddr() , getaddrinfo() , getnameinfo() .

In order for this test to work, a DNS server must be configured with a number of names and addresses. The
following is an example forward address resolution database for bind v9, which explains the requirements.

$TTL 680400
@ IN SOA lunn.org. andrew.lunn.lunn.org (
2003041801 ; serial
10800 ; refresh
1800 ; retry
3600000 ; expire
259200) ; mimimum
IN NS londo.lunn.org.

hostnamev4 IN A 192.168.88.1
cnamev4 IN CNAME hostnamev4
hostnamev6 IN AAAA fec0::88:4:3:2:1
cnamev6 IN CNAME hostnamev6
hostnamev46 IN A 192.168.88.2
hostnamev46 IN AAAA fec0::88:4:3:2:2
cnamev46 IN CNAME hostnamev46

The actual names and addresses do not matter, since they are configurable in the test. What is important is the
relationship between the names and the addresses and there family. ie hostnamev4 should map to one IPv4
address. hostnamev46 should map to both an IPv4 and an IPv6 address. cnamev4 should be a CNAME record
for hostname4. Reverse lookup information is also needed by the test.

The information placed into the DNS server is also need in the test case. A structure is defined to hold this
information:

struct test_info_s {
char * dns_server_v4;
char * dns_server_v6;
char * domain_name;
char * hostname_v4;
char * cname_v4;
char * ip_addr_v4;
char * hostname_v6;

352

Chapter 41. DNS

char * cname_v6;
char * ip_addr_v6;
char * hostname_v46;
char * cname_v46;
char * ip_addr_v46_v4;
char * ip_addr_v46_v6;

};

The test program may hold a number of such structures for different DNS server. The test will use each structure
in turn to perform the tests. If IPv6 is not enabled in the eCos configuration, the entries which use IPv6 may
be assigned to NULL.

353

Chapter 41. DNS

354

XVI. IPSEC for eCos
The FreeBSD network stack which is part of eCos can be configured to use IPSEC to provide more secure
communications between Internet hosts. IPSEC can be used with both IPv4 and IPv6.

Chapter 42. Installation and Configuration
Due to the restrictions imposed by various countries on the exportation and importation of cryptographic
software, it has been decided to distribute the crypto parts of FreeBSD IPSEC separately from the rest of eCos.
Before IPSEC can be enabled the eCos package bsd_crypto must be installed. This package can be found on
the eCosCentric server at ftp.ecoscentric.com:/pub/contrib (ftp://ftp.ecoscentric.com:/pub/contrib). Once the
package has been downloaded it must be installed using theecosadmin.tcl script.

When the bsd_crypto package has been installed, the building of IPSEC will automatically be enabled when
the FreeBSD stack is used. It can be disabled using the configuration optionCYGPKG_NET_IPSEC. There are no
other configuration options for IPSEC as a whole.

In order to use IPSEC, connections must be configured. This can be performed usingsetsockopt() calls. A
more convenient way is the use thelibipsec library from the KAME distribution. eCos contains a snapshot
of this library, which is documented else where. The aim is to also port the racoon daemon to eCos in the near
future.

It should be noted that the FreeBSD stack in eCos is quite old. IPSEC and IPv6 have continued to develop. It
is quite possible there could be interoperabilty problems when using the IPSEC implementation in eCos with
more modern implementations.

It should also be noted that IPSEC, libipsec etc are currently work in progress items.

357

Chapter 42. Installation and Configuration

358

Chapter 43. libipsec Reference

ipsec_set_policy
IPSEC_SET_POLICY(3) System Library Functions Manual IPSEC_SET_POLICY(3)

NAME
ipsec_set_policy, ipsec_get_policylen, ipsec_dump_policy - manipulate
IPsec policy specification structure from readable string

LIBRARY
IPsec Policy Control Library (libipsec, -lipsec)

SYNOPSIS
#include <netinet6/ipsec.h>

char *
ipsec_set_policy(char *policy, int len);

int
ipsec_get_policylen(char *buf);

char *
ipsec_dump_policy(char *buf, char *delim);

DESCRIPTION
ipsec_set_policy() generates IPsec policy specification structure, namely
struct sadb_x_policy and/or struct sadb_x_ipsecrequest from human-read-
able policy specification. policy specification must be given as C
string policy and length len of policy. ipsec_set_policy() will return
the buffer of IPsec policy specification structure. The buffer is dynam-
ically allocated, and must be freed by the caller by calling free(3).

You may want the length of the generated buffer such when calling
setsockopt(2). ipsec_get_policylen() will return the length.

ipsec_dump_policy() converts IPsec policy structure into readable form.
Therefore, ipsec_dump_policy() can be regarded as inverse conversion of
ipsec_set_policy(). buf points to a IPsec policy structure, struct
sadb_x_policy. delim is a delimiter string, which is usually a blank
character. If you set delim to NULL, single whitespace is assumed.
ipsec_dump_policy() returns pointer to dynamically allocated string. It
is caller’s responsibility to reclaim the region, by using free(3).

policy is formatted as either of the following:

direction discard
direction must be in or out. direction specifies which direc-
tion the policy needs to be applied. With discard policy, pack-
ets will be dropped if they match the policy.

direction entrust
entrust means to consult to SPD defined by setkey(8).

direction bypass

359

Chapter 43. libipsec Reference

bypass means to be bypassed the IPsec processing. (packet will
be transmitted in clear). This is for privileged socket.

direction ipsec request ...
ipsec means that the matching packets are subject to IPsec pro-
cessing. ipsec can be followed by one or more request string,
which is formatted as below:

protocol / mode / src - dst [/level]
protocol is either ah, esp or ipcomp.

mode is either transport or tunnel.

src and dst specifies IPsec endpoint. src always means
“sending node” and dst always means “receiving
node”. Therefore, when direction is in, dst is this
node and src is the other node (peer). If mode is
transport, Both src and dst can be omited.

level must be set to one of the following: default,
use, require or unique. default means that the kernel
should consult the system default policy defined by
sysctl(8), such as net.inet.ipsec.esp_trans_deflev.
See ipsec(4) regarding the system default. use means
that a relevant SA can be used when available, since
the kernel may perform IPsec operation against packets
when possible. In this case, packets can be transmit-
ted in clear (when SA is not available), or encrypted
(when SA is available). require means that a relevant
SA is required, since the kernel must perform IPsec
operation against packets. unique is the same as
require, but adds the restriction that the SA for out-
bound traffic is used only for this policy. You may
need the identifier in order to relate the policy and
the SA when you define the SA by manual keying. You
can put the decimal number as the identifier after
unique like unique: number. number must be between 1
and 32767 . If the request string is kept unambiguous,
level and slash prior to level can be omitted. How-
ever, it is encouraged to specify them explicitly to
avoid unintended behaviors. If level is omitted, it
will be interpreted as default.

Note that there is a bit difference of specification from setkey(8). In
specification by setkey(8), both entrust and bypass are not used. Refer
to setkey(8) for detail.

Here are several examples (long lines are wrapped for readability):

in discard
out ipsec esp/transport//require
in ipsec ah/transport//require
out ipsec esp/tunnel/10.1.1.2-10.1.1.1/use
in ipsec ipcomp/transport//use

esp/transport//use

RETURN VALUES
ipsec_set_policy() returns a pointer to the allocated buffer of policy
specification if successful; otherwise a NULL pointer is returned.
ipsec_get_policylen() returns with positive value (meaning the buffer
size) on success, and negative value on errors. ipsec_dump_policy()

360

Chapter 43. libipsec Reference

returns a pointer to dynamically allocated region on success, and NULL on
errors.

SEE ALSO
ipsec_strerror(3), ipsec(4), setkey(8)

HISTORY
The functions first appeared in WIDE/KAME IPv6 protocol stack kit.

KAME May 5, 1998 KAME

ipsec_strerror
IPSEC_STRERROR(3) System Library Functions Manual IPSEC_STRERROR(3)

NAME
ipsec_strerror - error message for IPsec policy manipulation library

SYNOPSIS
#include <netinet6/ipsec.h>

const char *
ipsec_strerror();

DESCRIPTION
netinet6/ipsec.h declares

extern int ipsec_errcode;

which is used to pass an error code from IPsec policy manipulation
library to an user program. ipsec_strerror() can be used to obtain the
error message string for the error code.

The array pointed to is not to be modified by the program. Since
ipsec_strerror() uses strerror(3) as underlying function, calling
strerror(3) after ipsec_strerror() would make the return value from
ipsec_strerror() invalid, or overwritten.

RETURN VALUES
ipsec_strerror() always return a pointer to C string. The C string must
not be overwritten by user programs.

SEE ALSO
ipsec_set_policy(3)

HISTORY
ipsec_strerror() first appeared in WIDE/KAME IPv6 protocol stack kit.

BUGS
ipsec_strerror() will return its result which may be overwritten by sub-
sequent calls.

ipsec_errcode is not thread safe.

KAME May 6, 1998 KAME

361

Chapter 43. libipsec Reference

362

XVII. eCos PPP User Guide
This package provides support for PPP (Point-to-Point Protocol) in the eCos FreeBSD TCP/IP networking
stack.

Chapter 44. Features
The eCos PPP implementation provides the following features:

• PPP line protocol including VJ compression.

• LCP, IPCP and CCP control protocols.

• PAP and CHAP authentication.

• CHAT subset connection scripting.

• Modem control line support.

365

Chapter 44. Features

366

Chapter 45. Using PPP
Before going into detail, let’s look at a simple example of how the eCos PPP package is used. Consider the
following example:

static void ppp_up(void)
{

cyg_ppp_options_t options;
cyg_ppp_handle_t ppp_handle;

// Bring up the TCP/IP network
init_all_network_interfaces();

// Initialize the options
cyg_ppp_options_init(&options);

// Start up PPP
ppp_handle = cyg_ppp_up("/dev/ser0", &options);

// Wait for it to get running
if(cyg_ppp_wait_up(ppp_handle) == 0)
{

// Make use of PPP
use_ppp();

// Bring PPP link down
cyg_ppp_down(ppp_handle);

// Wait for connection to go down.
cyg_ppp_wait_down(ppp_handle);

}
}

This is a simple example of how to bring up a simple PPP connection to another computer over a directly
connected serial line. The other end is assumed to already be running PPP on the line and waiting for a
connection.

The first thing this code does is to callinit_all_network_interfaces() to bring up the TCP/IP stack
and initialize any other network interfaces. It then callscyg_ppp_options_init() to initialize the PPP op-
tions structure to the defaults. As it happens, the default options are exactly what we want for this example,
so we don’t need to make any further changes. We go straight on to bring the PPP interface up by call-
ing cyg_ppp_up() . The arguments to this function give the name of the serial device to use, in this case
"/dev/ser0" , and a pointer to the options.

When cyg_ppp_up() returns, it passes back a handle to the PPP connection which is to be used in other
calls. The PPP link will not necessarily have been fully initialized at this time. There is a certain amount of
negotiation that goes on between the ends of a PPP link before it is ready to pass packets. An application can
wait until the link is ready by callingcyg_ppp_wait_up() , which returns zero if the link is up and running, or
-1 if it has gone down or failed to come up.

After a successful return fromcyg_ppp_wait_up() , the application may make use of the PPP connection.
This is represented here by the call touse_ppp() but it may, of course, be accessed by any thread. While the
connection is up the application may use the standard socket calls to make or accept network connections and
transfer data in the normal way.

367

Chapter 45. Using PPP

Once the application has finished with the PPP link, it can bring it down by callingcyg_ppp_down() . As with
bringing the connection up, this call is asynchronous, it simply informs the PPP subsystem to start bringing the
link down. The application can wait for the link to go down fully by callingcyg_ppp_wait_down() .

That example showed how to use PPP to connect to a local peer. PPP is more often used to connect via a
modem to a remote server, such as an ISP. The following example shows how this works:

static char *isp_script[] =
{

"ABORT" , "BUSY" ,
"ABORT" , "NO CARRIER" ,
"ABORT" , "ERROR" ,
"" , "ATZ" ,
"OK" , "AT S7=45 S0=0 L1 V1 X4 &C1 E1 Q0" ,
"OK" , "ATD" CYGPKG_PPP_DEFAULT_DIALUP_NUMBER ,
"ogin:--ogin:" , CYGPKG_PPP_AUTH_DEFAULT_USER ,
"assword:" , CYGPKG_PPP_AUTH_DEFAULT_PASSWD ,
"otocol:" , "ppp" ,
"HELLO" , "\\c" ,
0

};

static void ppp_up(void)
{

cyg_ppp_options_t options;
cyg_ppp_handle_t ppp_handle;

// Bring up the TCP/IP network
init_all_network_interfaces();

// Initialize the options
cyg_ppp_options_init(&options);

options.script = isp_script;
options.modem = 1;

// Start up PPP
ppp_handle = cyg_ppp_up("/dev/ser0", &options);

// Wait for it to get running
if(cyg_ppp_wait_up(ppp_handle) == 0)
{

// Make use of PPP
use_ppp();

// Bring PPP link down
cyg_ppp_down(ppp_handle);

// Wait for connection to go down.
cyg_ppp_wait_down(ppp_handle);

}
}

The majority of this code is exactly the same as the previous example. The main difference is in the setting
of a couple of options before callingcyg_ppp_up() . Thescript option is set to point to a CHAT script to
manage the setup of the connection. Themodemoption is set to cause the PPP system to make use of the
modem control lines.

368

Chapter 45. Using PPP

During the PPP bring-up a call will be made tocyg_ppp_chat() to run the CHAT script (seeChapter 48).
In the example this script sets up various modem options and then dials a number supplied as part of the PPP
package configuration (seeChapter 47). When the connection has been established, the script log on to the
server, using a name and password also supplied by the configuration, and then starts PPP on the remote end.
If this script succeeds the PPP connection will be brought up and will then function as expected.

Themodemoption causes the PPP system to make use of the modem control lines. In particular it waits for
Carrier Detect to be asserted, and will bring the link down if it is lost. Seecyg_ppp_options_init()for more
details.

369

Chapter 45. Using PPP

370

Chapter 46. PPP Interface

cyg_ppp_options_init()

Name
cyg_ppp_options_init — Initialize PPP link options

Synopsis

#include <cyg/ppp/ppp.h >

cyg_int32 cyg_ppp_options_init (cyg_ppp_options_t *options);

Description
This function initializes the PPP options, pointed to by theoptions parameter, to the default state. Once the
defaults have been initialized, application code may adjust them by assigning new values to the the fields of
the cyg_ppp_options_t structure.

This function returns zero if the options were initialized successfully. It returns -1 if theoptions argument
is NULL, or the options could not be initialized.

The option fields, their functions and default values are as follows:

debug

If set to 1 this enables the reporting of debug messages from the PPP system. These will be generated
usingdiag_printf() and will appear on the standard debug channel. Note thatdiag_printf() disables
interrupts during output: this may cause the PPP link device to overrun and miss characters. It is quite
possible for this option to cause errors and even make the PPP link fail completely. Consequently, this
option should be used with care.

Default value: 0

kdebugflag

This five bit field enables low level debugging messages from the PPP device layer in the TCP/IP stack.
As with thedebug option, this may result in missed characters and cause errors. The bits of the field
have the following meanings:

Bit BSD Name Description

0x01 SC_DEBUG Enable debug messages

371

cyg_ppp_options_init()

Bit BSD Name Description

0x02 SC_LOG_INPKT Log contents of good packets
received

0x04 SC_LOG_OUTPKT Log contents of packets sent

0x08 SC_LOG_RAWIN Log all characters received

0x10 SC_LOG_FLUSH Log all characters flushed

Default value: 0

default_route

If set to 1 this option causes the PPP subsystem to install a default route in the TCP/IP stack’s routing
tables using the peer as the gateway. This entry will be removed when the PPP link is broken. If there is
already an existing working network connection, such as an ethernet device, then there may already be a
default route established. If this is the case, then this option will have no effect.

Default value: 1

modem

If this option is set to 1, then the modem lines will be used during the connection. Specifically, the PPP
subsystem will wait until thecarrier detect signal is asserted before bringing up the PPP link, and will
take the PPP link down if this signal is de-asserted.

Default value: 0

flowctl

This option is used to specify the mechanism used to control data flow across the serial line. It can take
one of the following values:

CYG_PPP_FLOWCTL_DEFAULT

The flow control mechanism is not changed and is left at whatever value was set before bringing PPP
up. This allows a non-standard flow control mechanism to be used, or for it to be chosen and set by
some other means.

CYG_PPP_FLOWCTL_NONE

Flow control is turned off. It is not recommended that this option be used unless the baud rate is set
low or the two communicating machines are particularly fast.

CYG_PPP_FLOWCTL_HARDWARE

Use hardware flow control via the RTS/CTS lines. This is the most effective flow control mechanism
and should always be used if available. Availability of this mechanism depends on whether the serial
device hardware has the ability to control these lines, whether they have been connected to the socket
pins and whether the device driver has the necessary support.

CYG_PPP_FLOWCTL_SOFTWARE

Use software flow control by embedding XON/XOFF characters in the data stream. This is somewhat
less effective that hardware flow control since it is subject to the propagation time of the serial cable

372

cyg_ppp_options_init()

and the latency of the communicating devices. Since it does not rely on any hardware support, this
flow control mechanism is always available.

Default value: CYG_PPP_FLOWCTL_HARDWARE

refuse_pap

If this option is set to 1, then the PPP subsystem will not agree to authenticate itself to the peer with PAP.
When dialling in to a remote server it is normal to authenticate the client. There are three ways this can
be done, using a straightforward login mechanism via the CHAT script, with the Password Authentication
Protocol (PAP), or with the Challenge Handshake Authentication Protocol (CHAP). For PAP to work the
user andpasswd options must be set to the expected values. If they are not, then this option should be
set to force CHAP authentication.

Default value: 0

refuse_chap

If this option is set to 1, then the PPP subsystem will not agree to authenticate itself to the peer with
CHAP. CHAP authentication will only work if thepasswd option has been set to the required CHAP
secret for the destination server. Otherwise this option should be disabled.

If both refuse_pap andrefuse_chap are set, then either no authentication will be carried out, or
it is the responsibility of thechat script to do it. If the peer does not require any authentication, then the
setting of these options is irrelevant.

Default value: 0

baud

This option is set to the baud rate at which the serial connection should be run. The default value is
the rate at which modems conventionally operate. This field is an instance of the cyg_serial_baud_rate_t
enum defined in theserialio.h header and may only take one of the baud rate constants defined in there.

Default value:CYGNUM_SERIAL_BAUD_115200

idle_time_limit

This is the number of seconds that the PPP connection may be idle before it is shut down automatically.

Default value: 60

maxconnect

This causes the connection to terminate when it has been up for this number of seconds. The default value
of zero means that the connection will stay up indefinitely, until either end explicitly brings it down, or
the link is lost.

Default value: 0

373

cyg_ppp_options_init()

our_address

This is the IP address, in network byte order, to be attached to the local end of the PPP connection. The
default value ofINADDR_ANYcauses the local address to be obtained from the peer.

Default value:INADDR_ANY

his_address

This is the IP address, in network byte order, to be attached to the remote end of the PPP connection. The
default value ofINADDR_ANYcauses the remote address to be obtained from the peer.

Default value:INADDR_ANY

script

This is a pointer to a CHAT script suitable for passing tocyg_ppp_chat() . SeeChapter 48for details of
the format and contents of this script.

Default value:NULL

user

This array contains the user name to be used for PAP authentication. This field is not used for CHAP
authentication. By default the value of this option is set from theCYGPKG_PPP_AUTH_DEFAULT_USERcon-
figuration option.

Default value:CYGPKG_PPP_AUTH_DEFAULT_USER

passwd

This array contains the password to be used for PAP authentication, or the secret to be used during CHAP
authentication. By default the value of this option is set from theCYGPKG_PPP_AUTH_DEFAULT_PASSWD

configuration option.

Default value:CYGPKG_PPP_AUTH_DEFAULT_PASSWD

374

cyg_ppp_up()

Name
cyg_ppp_up — Bring PPP connection up

Synopsis

#include <cyg/ppp/ppp.h >

cyg_ppp_handle_t cyg_ppp_up (char *devnam , const cyg_ppp_options_t *options);

Description
This function starts up a PPP connection. Thedevnam argument is the name of the device to be used for the
connection, typically"/dev/ser0" or "/dev/ser1" . Theoptions argument should point to an initialized
cyg_ppp_options_t object.

The return value will either be zero, indicating a failure, or a cyg_ppp_handle_t object that may be used as an
argument to other PPP functions.

Note: Although the PPP API is designed to permit several simultaneous connections to co-exist, at present
only one PPP connection is actually implemented. Any attempt to create a second connection while there
is already one open will fail.

375

cyg_ppp_up()

376

cyg_ppp_down()

Name
cyg_ppp_down — Bring PPP connection down

Synopsis

#include <cyg/ppp/ppp.h >

cyg_int32 cyg_ppp_down (cyg_ppp_handle_t handle);

Description
This function brings the PPP connection down. Thehandle argument is the result of a successful call to
cyg_ppp_up() . This function only signals to the PPP subsystem that the link should be brought down. The
link will be terminated asynchronously. If the application needs to wait for the link to terminate, then it should
call cyg_ppp_wait_down() after callingcyg_ppp_down() .

The function returns zero if it was able to start the termination of the PPP connection successfully. It will return
-1 if the connection is not running, or if it could not otherwise start the termination.

377

cyg_ppp_down()

378

cyg_ppp_wait_up()

Name
cyg_ppp_wait_up — Wait for PPP connection to come up

Synopsis

#include <cyg/ppp/ppp.h >

cyg_int32 cyg_ppp_wait_up (cyg_ppp_handle_t handle);

Description
This function waits until the PPP connection is running and then returns. This is needed because the actual
bring up of the connection happens mostly after the call tocyg_ppp_up() returns, and may take some time to
complete, especially if dialling a remote server.

The result of this call will be zero when the connection is running, or -1 if the connection failed to start for
some reason. If the connection is already running when this call is made it will return immediately with a zero
result. If the connection is not in the process of coming up, or has failed, or has terminated, then a result of -1
will be returned immediately. Thus this function may also be used to test that the connection is still running at
any point.

379

cyg_ppp_wait_up()

380

cyg_ppp_wait_down()

Name
cyg_ppp_wait_down — Wait for PPP connection to terminate

Synopsis

#include <cyg/ppp/ppp.h >

void cyg_ppp_wait_down (cyg_ppp_handle_t handle);

Description
This function waits for the PPP connection to terminate. The link may be terminated with a call to
cyg_ppp_down() , by the remote end, or by the telephone line being dropped or lost.

This function has no return value. If the PPP connection is not running, or has terminated, it will return.
Applications should usecyg_ppp_wait_up() to test the link state.

381

cyg_ppp_wait_down()

382

cyg_ppp_chat()

Name
cyg_ppp_chat — Execute chat script

Synopsis

#include <cyg/ppp/ppp.h >

cyg_int32 cyg_ppp_chat (const char *devname , const char *script[]);

Description
This function implements a subset of the automated conversational scripting as defined by thechat program.
The first argument is the name of the serial device to be used, typically"/dev/ser0" or "/dev/ser1" . The
script argument is a pointer to a zero terminated array of strings that comprise the chat script. SeeChapter
45 for an example script, andChapter 48for full detail of the script used.

The return value of this function will be zero if the chat script fails for any reason, such as an ABORT or a
timeout. If the end of the script is reached, then the return value will be non-zero.

Under normal use this function is called from the PPP subsystem if the cyg_ppp_options_tscript field is set
to a non-NULL value. This function should only be used directly if the application needs to undertake special
processing between running the chat script, and bringing up the PPP connections.

383

cyg_ppp_chat()

384

Chapter 47. Installing and Configuring PPP

Including PPP in a Configuration
PPP is contained entirely within a single eCos package. So to include PPP in a configuration all you need to
do is add that package.

In the GUI configuration tool use theBuild->Packagesmenu item, find the "PPP Support" package in the
left-hand pane and use theAdd button to add it to the list of packages in use in the right-hand pane.

In the command-line toolecosconfig, you can use the following command during the configuration phase to
add the PPP package:

$ ecosconfig add ppp

In addition to the PPP package you will also need to have the"Network" package and the"Serial Device

Drivers" package in the configuration. The dependencies and requirements of the networking package are
such that it is strongly recommended that you start with thenet template.

See the eCos User Guide for full details on how to configure and build eCos.

Configuring PPP
The PPP package contains a number of configuration options that may be changed to affect its behaviour.

CYGNUM_PPP_PPPD_THREAD_PRIORITY

The PPP system contains two threads, One is used for receiving data from the link and processing con-
trol packets. The other is used to transmit data asynchronously to the link when it cannot be completed
synchronously. The receive thread runs at the priority given here, and the transmit thread runs at the next
lower priority. The exact priority needed here depends on the importance of the PPP subsystem relative
to the rest of the system. The default is to put it in the middle of the priority range to provide reasonable
response without impacting genuine high priority threads.

Default value:CYGNUM_KERNEL_SCHED_PRIORITIES/2

CYGPKG_PPP_DEBUG_WARN_ONLY

The runtimedebug option enables logging of high level debug messages. Too many of these can interfere
with the PPP device and may result in missed messages. This is because these messages are emitted via the
diag_printf() mechanism, which disables interrupts while it prints. By default, therefore, we only report
errors and warnings, and not all events. Setting this option to zero will enable the logging of all events.

Default value:1

CYGPKG_PPP_AUTH_DEFAULT_USER

This option gives the default value for the user name used to initialize theuser field in the PPP options.

Default value:"eCos"

385

Chapter 47. Installing and Configuring PPP

CYGPKG_PPP_AUTH_DEFAULT_PASSWD

This option gives the default value for the password used to initialize thepasswd field in the PPP options.

Default value:"secret"

CYGPKG_PPP_DEFAULT_DIALUP_NUMBER

This option provides a default dialup number for use inchat scripts. This value is not used anywhere
in the PPP package, but is provided to complete the information needed, alongside the user name and
password, for accessing a typical dialup server.

Default value:"5551234"

CYGPKG_PPP_PAP

This component enables the inclusion of PAP authentication support.

Default value: 1

CYGPKG_PPP_CHAP

This component enables the inclusion of CHAT authentication support.

Default value: 1

CYGPKG_PPP_COMPRESSION

This component provides control over PPP compression features. WARNING: at present there are prob-
lems with this option, and and in any case the compression code needs to allocate large amounts of
memory. Hence this option is currently disabled and should remain so.

Default value: 0

PPP_BSDCOMP

This option enables inclusion of BSD compression into the PPP protocol.

Default value: 0

PPP_DEFLATE

This option enables inclusion of ZLIB compression into the PPP protocol.

Default value: 0

CYGPKG_PPP_CHAT

This component enables the inclusion of a simple scripting system to bring up PPP connections. It imple-
ments a subset of thechat scripting language.

Default value: 1

386

Chapter 47. Installing and Configuring PPP

CYGNUM_PPP_CHAT_ABORTS_MAX

This option defines the maximum number ofABORTstrings that the CHAT system will store.

Default value: 10

CYGNUM_PPP_CHAT_ABORTS_SIZE

This option defines the maximum size of eachABORTstrings that thechat system will store.

Default value: 20

CYGNUM_PPP_CHAT_STRING_LENGTH

This option defines the maximum size of any expect or reply strings that thechat system will be given.

Default value: 256

CYGPKG_PPP_TEST_DEVICE

This option defines the serial device to be used for PPP test programs.

Default value:"/dev/ser0"

CYGPKG_PPP_TESTS_AUTOMATE

This option enables automated testing features in certain test programs. These programs will interact with
a test server at the remote end of the serial link to run a variety of tests in different conditions. Without
this option most tests default to running a single test instance and are suitable for being run by hand for
debugging purposes.

Default value: 0

CYGDAT_PPP_TEST_BAUD_RATES

This option supplies a list of baud rates at which certain tests will run if the
CYGPKG_PPP_TESTS_AUTOMATEoption is set.

Default value:"CYGNUM_SERIAL_BAUD_19200,CYGNUM_SERIAL_BAUD_38400,CYGNUM_SERIAL_BAUD_57600,CYGNUM_SERIAL_BAUD_115200"

387

Chapter 47. Installing and Configuring PPP

388

Chapter 48. CHAT Scripts
The automated conversational scripting supported by the eCos PPP package is a subset of the scripting language
provided by thechat command found on most UNIX and Linux systems.

Unlike thechat command, the eCoscyg_ppp_chat() function takes as a parameter a zero-terminated array of
pointers to strings. In most programs this will be defined by means of an initializer for a static array, although
there is nothing to stop the application constructing it at runtime. A simple script would be defined like this:

static char *chat_script[] =
{

"ABORT" , "BUSY" ,
"ABORT" , "NO CARRIER" ,
"" , "ATD5551234" ,
"ogin:--ogin:" , "ppp" ,
"ssword:" , "hithere" ,
0

};

The following sections have been abstracted from the public domain documentation for thechat command.

Chat Script
A script consists of one or more "expect-send" pairs of strings, separated by spaces, with an optional
"subexpect- subsend" string pair, separated by a dash as in the following example:

"ogin:--ogin:" , "ppp" ,
"ssword:" , "hello2u2" ,
0

This script fragment indicates that thecyg_ppp_chat() function should expect the string "ogin:". If it fails to
receive a login prompt within the time interval allotted, it is to send a carriage return to the remote and then
expect the string "ogin:" again. If the first "ogin:" is received then the carriage return is not generated.

Once it received the login prompt thecyg_ppp_chat() function will send the string "ppp" and then expect the
prompt "ssword:". When it receives the prompt for the password, it will send the password "hello2u2".

A carriage return is normally sent following the reply string. It is not expected in the "expect" string unless it
is specifically requested by using the "\r" character sequence.

The expect sequence should contain only what is needed to identify the string. It should not contain variable
information. It is generally not acceptable to look for time strings, network identification strings, or other
variable pieces of data as an expect string.

To help correct for characters which may be corrupted during the initial sequence, look for the string "ogin:"
rather than "login:". It is possible that the leading "l" character may be received in error and you may never find
the string even though it was sent by the system. For this reason, scripts look for "ogin:" rather than "login:"
and "ssword:" rather than "password:".

A very simple script might look like this:

"ogin:" , "ppp" ,
"ssword:" , " hello2u2" ,
0

389

Chapter 48. CHAT Scripts

In other words, expect "....ogin:", send "ppp", expect "...ssword:", send "hello2u2".

In actual practice, simple scripts are rare. At the very least, you should include sub-expect sequences should
the original string not be received. For example, consider the following script:

"ogin:--ogin:" , "ppp" ,
"ssword:" , "hello2u2",
0

This would be a better script than the simple one used earlier. This would look for the same "login:" prompt,
however, if one was not received, a single return sequence is sent and then it will look for "login:" again. Should
line noise obscure the first login prompt then sending the empty line will usually generate a login prompt again.

ABORT Strings
Many modems will report the status of the call as a string. These strings may be CONNECTED or NO CAR-
RIER or BUSY. It is often desirable to terminate the script should the modem fail to connect to the remote.
The difficulty is that a script would not know exactly which modem string it may receive. On one attempt, it
may receive BUSY while the next time it may receive NO CARRIER.

These "abort" strings may be specified in the script using the ABORT sequence. It is written in the script as in
the following example:

"ABORT" , "BUSY" ,
"ABORT" , "NO CARRIER" ,
"" , "ATZ" ,
"OK" , "ATDT5551212" ,
"CONNECT" , ...

This sequence will expect nothing; and then send the string ATZ. The expected response to this is the string
OK. When it receives OK, it sends the string ATDT5551212 to dial the telephone. The expected string is
CONNECT. If the string CONNECT is received the remainder of the script is executed. However, should
the modem find a busy telephone, it will send the string BUSY. This will cause the string to match the abort
character sequence. The script will then fail because it found a match to the abort string. If it received the string
NO CARRIER, it will abort for the same reason. Either string may be received. Either string will terminate the
chat script.

TIMEOUT
The initial timeout value is 45 seconds. To change the timeout value for the next expect string, the following
example may be used:

"" , "ATZ" ,
"OK" , "ATDT5551212" ,
"CONNECT" , "\\c" ,
"TIMEOUT" , "10" ,
"ogin:--ogin:" , "ppp" ,
"TIMEOUT" , "5" ,
"assword:" , "hello2u2" ,
0

This will change the timeout to 10 seconds when it expects the login: prompt. The timeout is then changed to
5 seconds when it looks for the password prompt.

390

Chapter 48. CHAT Scripts

The timeout, once changed, remains in effect until it is changed again.

Sending EOT
The special reply string of EOT indicates that the chat program should send an EOT character to the remote.
This is normally the End-of-file character sequence. A return character is not sent following the EOT. The EOT
sequence may be embedded into the send string using the sequence "\x04" (i.e. a Control-D character).

Escape Sequences
Most standardchat escape sequences can be replaced with standard C string escapes such as ’\r’, ’\n’, ’\t’ etc.
Additional escape sequences may be embedded in the expect or reply strings by introducing them withtwo
backslashes.

\\c

Suppresses the newline at the end of the reply string. This is the only method to send a string without a
trailing return character. It must be at the end of the send string. For example, the sequence "hello\\c" will
simply send the characters h, e, l, l, o. (not valid in expect strings.)

391

Chapter 48. CHAT Scripts

392

Chapter 49. PPP Enabled Device Drivers
For PPP to function fully over a serial device, its driver must implement certain features. At present not all
eCos serial drivers implement these features. A driver indicates that it supports a certain feature by including
an"implements" line in its CDL for the following interfaces:

CYGINT_IO_SERIAL_FLOW_CONTROL_HW

This interface indicates that the driver implements hardware flow control using the RTS and CTS lines.
When data is being transferred over high speed data lines, it is essential that flow control be used to
prevent buffer overrun.

The PPP subsystem functions best with hardware flow control. If this is not available, then it can be
configured to use software flow control. Since software flow control is implemented by the device inde-
pendent part of the serial device infrastructure, it is available for all serial devices. However, this will have
an effect on the performance and reliability of the PPP link.

CYGINT_IO_SERIAL_LINE_STATUS_HW

This interface indicates that the driver implements a callback interface for indicating the status of various
RS232 control lines. Of particular interest here is the ability to detect changes in the Carrier Detect (CD)
line. Not all drivers that implement this interface can indicate CD status.

This functionality is only needed if it is important that the link be dropped immediately a telephone
connection fails. Without it, a connection will only be dropped after it times out. This may be acceptable
in many situations.

At the time of writing, the serial device drivers for the following platforms implement some or all of the
required functionality:

• All drivers that use the generic 16x5x driver implement all functions:

• ARM CerfPDA

• ARM IQ80321

• ARM PID

• ARM IOP310

• i386 PC

• MIPS Atlas

• MIPS Ref4955

• SH3 SE77x9

• The following drivers implement flow control but either do not support line status callbacks, or do not report
CD changes:

• SH4 SCIF

• A&M AdderI

393

Chapter 49. PPP Enabled Device Drivers

• A&M AdderII

• All other drivers can support software flow control only.

394

Chapter 50. Testing

Test Programs
There are a number of test programs supplied with the PPP subsystem. By default all of these tests use the
device configured byCYGPKG_PPP_TEST_DEVICEas the PPP link device.

ppp_up

This test just brings up the PPP link onCYGPKG_PPP_TEST_DEVICEand waits until the remote end brings
it back down. No modem lines are used and the program expects a PPP connection to be waiting on the
other end of the line. Typically the remote end will test the link usingping or access the HTTP system
monitor if it is present.

If CYGPKG_PPP_TESTS_AUTOMATEis set, then this test attempts to bring PPP up at each of the baud rates
specified inCYGDAT_PPP_TEST_BAUD_RATES. If it is not set then it will just bring the connection up at
115200 baud.

ppp_updown

This test brings the PPP link up onCYGPKG_PPP_TEST_DEVICEand attempts toping the remote end of
the link. Once the pings have finished, the link is then brought down.

If CYGPKG_PPP_TESTS_AUTOMATEis set, then this test attempts to bring PPP up at each of the baud rates
specified inCYGDAT_PPP_TEST_BAUD_RATES. If it is not set then it will just bring the connection up at
115200 baud.

chat

This test does not bring the PPP link up but simply executes a chat script. It expects a server at the remote
end of the link to supply the correct responses.

This program expects thetest_server.shscript to be running on the remote end and attempts several
different tests, expecting a variety of different responses for each.

ppp_auth

This test attempts to bring up the PPP link under a variety of different authentication conditions. This
includes checking that both PAP and CHAP authentication work, and that the connection is rejected when
the incorrect authentication protcol or secrets are used.

This test expects thetest_server.shscript to be running on the remote end. For this test to work the
/etc/ppp/pap-secrets file on the remote end should contain the following two lines:

eCos * secret *
eCosPAP * secretPAP *

The /etc/ppp/chap-secrets file should contain:

eCos * secret *

395

Chapter 50. Testing

eCosCHAP * secretCHAP *

isp

This test expects the serial test device to be connected to a Hayes compatible modem. The test dials
the telephone number given inCYGPKG_PPP_DEFAULT_DIALUP_NUMBERand attempts to log on to
an ISP using the user name and password supplied inCYGPKG_PPP_AUTH_DEFAULT_USERand
CYGPKG_PPP_AUTH_DEFAULT_PASSWD. Once the PPP connection has been made, the program then
attempts to ping a number of well known addresses.

Since this test is designed to interact with an ISP, it does not run within the automated testing system.

tcp_echo

This is a version of the standard networktcp_echotest that brings up the PPP connection before waiting
for the tcp_sink andtcp_sourceprograms to connect. It is expected that at least one of these programs
will connect via the PPP link. However, if another network interface is present, such as an ethernet device,
then one may connect via that interface.

While this test is supported by thetest_server.shscript, it runs for such a long time that it should not
normally be used during automated testing.

nc_test_slave

This is a version of the standard networknc_test_slavetest that brings up the PPP connection before
waiting for thenc_test_masterprogram to connect. It is expected that the master will connect via the
PPP link.

While this test is supported by thetest_server.shscript, it runs for such a long time that it should not
normally be used during automated testing.

Test Script
The PPP package additionally contains a shell script (test_server.sh) that may be used to operate the remote
end of a PPP test link.

The script may be invoked with the following arguments:

--dev= <devname>

This mandatory option gives the name of the device to be used for the PPP link. Typically"/dev/ttyS0"

or "/dev/ttyS1" .

--myip= <ipaddress >

This mandatory option gives the IP address to be attached to this end of the PPP link.

--hisip= <ipaddress >

This mandatory option gives the IP address to be attached to the remote (test target) end of the PPP link.

396

Chapter 50. Testing

--baud= <baud_rate >

This option gives the baud rate at which the PPP link is to be run. If absent then the link will run at the
value set for--redboot-baud .

--redboot

If this option is present then the script will look for a"RedBoot >" prompt between test runs. This is
necessary if the serial device being used for testing is also used by RedBoot.

--redboot-baud= <baud_rate >

This option gives the baud rate at which the search for the RedBoot prompt will be made. If absent then
the link will run at 38400 baud.

--debug

If this option is present, then the script will print out some additional debug messages while it runs.

This script operates as follows: If the--redboot option is set it sets the device baud rate to the RedBoot baud
rate and waits until a"RedBoot >" prompt is encountered. It then sets the baud rate to the value given by the
--baud option and reads lines from the device until a recognizable test announce string is read. It then executes
an appropriate set of commands to satisfy the test. This usually means bringing up the PPP link by running
pppd and maybe executing various commands. It then either terminates the link itself, or waits for the target to
terminate it. It then goes back to looking for another test announce string. If a string of the form"BAUD:XXX"

is received then the baud rate is changed depending on theXXXvalue. If a"FINISH" string is received it returns
to waiting for a"RedBoot>" prompt. The script repeats this process until it is terminated with a signal.

397

Chapter 50. Testing

398

XVIII. Ethernet Device Drivers

Chapter 51. Generic Ethernet Device Driver

Generic Ethernet API
This section provides a simple description of how to write a low-level, hardware dependent ethernet driver.

There is a high-level driver (which is only code — with no state of its own) that is part of the stack. There will
be one or more low-level drivers tied to the actual network hardware. Each of these drivers contains one or
more driver instances. The intent is that the low-level drivers know nothing of the details of the stack that will
be using them. Thus, the same driver can be used by the eCos supported TCP/IP stack, RedBoot, or any other,
with no changes.

A driver instance is contained within a struct eth_drv_sc:

struct eth_hwr_funs {
// Initialize hardware (including startup)
void (*start)(struct eth_drv_sc *sc,

unsigned char *enaddr,
int flags);

// Shut down hardware
void (*stop)(struct eth_drv_sc *sc);
// Device control (ioctl pass-thru)
int (*control)(struct eth_drv_sc *sc,

unsigned long key,
void *data,
int data_length);

// Query - can a packet be sent?
int (*can_send)(struct eth_drv_sc *sc);
// Send a packet of data
void (*send)(struct eth_drv_sc *sc,

struct eth_drv_sg *sg_list,
int sg_len,
int total_len,
unsigned long key);

// Receive [unload] a packet of data
void (*recv)(struct eth_drv_sc *sc,

struct eth_drv_sg *sg_list,
int sg_len);

// Deliver data to/from device from/to stack memory space
// (moves lots of memcpy()s out of DSRs into thread)
void (*deliver)(struct eth_drv_sc *sc);
// Poll for interrupts/device service
void (*poll)(struct eth_drv_sc *sc);
// Get interrupt information from hardware driver
int (*int_vector)(struct eth_drv_sc *sc);
// Logical driver interface
struct eth_drv_funs *eth_drv, *eth_drv_old;

};

struct eth_drv_sc {
struct eth_hwr_funs *funs;
void *driver_private;
const char *dev_name;
int state;
struct arpcom sc_arpcom; /* ethernet common */

};

401

Chapter 51. Generic Ethernet Device Driver

Note: If you have two instances of the same hardware, you only need one struct eth_hwr_funs shared
between them.

There is another structure which is used to communicate with the rest of the stack:

struct eth_drv_funs {
// Logical driver - initialization
void (*init)(struct eth_drv_sc *sc,

unsigned char *enaddr);
// Logical driver - incoming packet notifier
void (*recv)(struct eth_drv_sc *sc,

int total_len);
// Logical driver - outgoing packet notifier
void (*tx_done)(struct eth_drv_sc *sc,

CYG_ADDRESS key,
int status);

};

Your driver doesnot create an instance of this structure. It is provided for driver code to use in the eth_drv
member of the function record. Its usage is described below inthe Section calledUpper Layer Functions

One more function completes the API with which your driver communicates with the rest of the stack:

extern void eth_drv_dsr(cyg_vector_t vector,
cyg_ucount32 count,
cyg_addrword_t data);

This function is designed so that it can be registered as the DSR for your interrupt handler. It will awaken the
“Network Delivery Thread” to call your deliver routine. Seethe Section calledDeliver function.

You create an instance of struct eth_drv_sc using theETH_DRV_SC() macro which sets up the structure, in-
cluding the prototypes for the functions, etc. By doing things this way, if the internal design of the ethernet
drivers changes (e.g. we need to add a new low-level implementation function), existing drivers will no longer
compile until updated. This is much better than to have all of the definitions in the low-level drivers themselves
and have them be (quietly) broken if the interfaces change.

The “magic” which gets the drivers started (and indeed, linked) is similar to what is used for the I/O subsystem.
This is done using theNETDEVTAB_ENTRY()macro, which defines an initialization function and the basic data
structures for the low-level driver.

typedef struct cyg_netdevtab_entry {
const char *name;
bool (*init)(struct cyg_netdevtab_entry *tab);
void *device_instance;
unsigned long status;

} cyg_netdevtab_entry_t;

Thedevice_instance entry here would point to the struct eth_drv_sc entry previously defined. This allows
the network driver setup to work with any class of driver, not just ethernet drivers. In the future, there will
surely be serial PPP drivers, etc. These will use theNETDEVTAB_ENTRY()setup to create the basic driver, but
they will most likely be built on top of other high-level device driver layers.

To instantiate itself, and connect it to the system, a hardware driver will have a template (boilerplate) which
looks something like this:

#include <cyg/infra/cyg_type.h >

#include <cyg/hal/hal_arch.h >

402

Chapter 51. Generic Ethernet Device Driver

#include <cyg/infra/diag.h >

#include <cyg/hal/drv_api.h >

#include <cyg/io/eth/netdev.h >

#include <cyg/io/eth/eth_drv.h >

ETH_DRV_SC(DRV_sc,
0, // No driver specific data needed
"eth0", // Name for this interface
HRDWR_start,
HRDWR_stop,
HRDWR_control,
HRDWR_can_send
HRDWR_send,
HRDWR_recv,
HRDWR_deliver,
HRDWR_poll,
HRDWR_int_vector

);

NETDEVTAB_ENTRY(DRV_netdev,
" DRV",
DRV_HRDWR_init,
&DRV_sc);

This, along with the referenced functions, completely define the driver.

Note: If one needed the same low-level driver to handle multiple similar hardware interfaces, you would
need multiple invocations of the ETH_DRV_SC()/NETDEVTAB_ENTRY()macros. You would add a pointer to
some instance specific data, e.g. containing base addresses, interrupt numbers, etc, where the

0, // No driver specific data

is currently.

Review of the functions
Now a brief review of the functions. This discussion will use generic names for the functions — your driver
should use hardware-specific names to maintain uniqueness against any other drivers.

Init function

static bool DRV_HDWR_init(struct cyg_netdevtab_entry *tab)

This function is called as part of system initialization. Its primary function is to decide if the hardware (as
indicated via tab->device_instance) is working and if the interface needs to be made available in the system.
If this is the case, this function needs to finish with a call to the ethernet driver function:

struct eth_drv_sc *sc = (struct eth_drv_sc *)tab->device_instance;
....initialization code....
// Initialize upper level driver
(sc- >funs- >eth_drv- >init)(sc, unsigned char *enaddr);

403

Chapter 51. Generic Ethernet Device Driver

whereenaddr is a pointer to the ethernet station address for this unit, to inform the stack of this device’s
readiness and availability.

Note: The ethernet station address (ESA) is supposed to be a world-unique, 48 bit address for this partic-
ular ethernet interface. Typically it is provided by the board/hardware manufacturer in ROM.

In many packages it is possible for the ESA to be set from RedBoot, (perhaps from ’fconfig’ data), hard-
coded from CDL, or from an EPROM. A driver should choose a run-time specified ESA (e.g. from RedBoot)
preferentially, otherwise (in order) it should use a CDL specified ESA if one has been set, otherwise an
EPROM set ESA, or otherwise fail. See the cl/cs8900a ethernet driver for an example.

Start function

static void
HRDWR_start(struct eth_drv_sc *sc, unsigned char *enaddr, int flags)

This function is called, perhaps much later than system initialization time, when the system (an application)
is ready for the interface to become active. The purpose of this function is to set up the hardware interface to
start accepting packets from the network and be able to send packets out. The receiver hardware should not be
enabled prior to this call.

Note: This function will be called whenever the up/down state of the logical interface changes, e.g. when
the IP address changes, or when promiscuous mode is selected by means of an ioctl() call in the appli-
cation. This may occur more than once, so this function needs to be prepared for that case.

Note: In future, the flags field (currently unused) may be used to tell the function how to start up, e.g.
whether interrupts will be used, alternate means of selecting promiscuous mode etc.

Stop function

static void HRDWR_stop(struct eth_drv_sc *sc)

This function is the inverse of “start.” It should shut down the hardware, disable the receiver, and keep it from
interacting with the physical network.

Control function

static int
HRDWR_control(

struct eth_drv_sc *sc, unsigned long key,
void *data, int len)

404

Chapter 51. Generic Ethernet Device Driver

This function is used to perform low-level “control” operations on the interface. These operations would typ-
ically be initiated viaioctl() calls in the BSD stack, and would be anything that might require the hardware
setup to change (i.e. cannot be performed totally by the platform-independent layers).

The key parameter selects the operation, and thedata and len params point describe, as required, some
data for the operation in question.

Available Operations:

ETH_DRV_SET_MAC_ADDRESS

This operation sets the ethernet station address (ESA or MAC) for the device. Normally this address is
kept in non-volatile memory and is unique in the world. This function must at least set the interface to use
the new address. It may also update the NVM as appropriate.

ETH_DRV_GET_IF_STATS_UD
ETH_DRV_GET_IF_STATS

These acquire a set of statistical counters from the interface, and write the information into the memory
pointed to bydata . The “UD” variant explicitly instructs the driver to acquire up-to-date values. This is
a separate option because doing so may take some time, depending on the hardware.

The definition of the data structure is incyg/io/eth/eth_drv_stats.h .

This call is typically made by SNMP, seeChapter 53.

ETH_DRV_SET_MC_LIST

This entry instructs the device to set up multicast packet filtering to receive only packets addressed to the
multicast ESAs in the list pointed to bydata .

The format of the data is a 32-bit count of the ESAs in the list, followed by packed bytes which are the
ESAs themselves, thus:

#define ETH_DRV_MAX_MC 8
struct eth_drv_mc_list {

int len;
unsigned char addrs[ETH_DRV_MAX_MC][ETHER_ADDR_LEN];

};

ETH_DRV_SET_MC_ALL

This entry instructs the device to receive all multicast packets, and delete any explicit filtering which had
been set up.

This function should return zero if the specified operation was completed successfully. It should return non-
zero if the operation could not be performed, for any reason.

Can-send function

static int HRDWR_can_send(struct eth_drv_sc *sc)

405

Chapter 51. Generic Ethernet Device Driver

This function is called to determine if it is possible to start the transmission of a packet on the interface.
Some interfaces will allow multiple packets to be "queued" and this function allows for the highest possible
utilization of that mode.

Return the number of packets which could be accepted at this time, zero implies that the interface is satu-
rated/busy.

Send function

struct eth_drv_sg {
CYG_ADDRESS buf;
CYG_ADDRWORD len;

};

static void
HRDWR_send(

struct eth_drv_sc *sc,
struct eth_drv_sg *sg_list, int sg_len,

int total_len, unsigned long key)

This function is used to send a packet of data to the network. It is the responsibility of this function to somehow
hand the data over to the hardware interface. This will most likely require copying, but just the address/length
values could be used by smart hardware.

Note: All data in/out of the driver is specified via a “scatter-gather” list. This is just an array of address/length
pairs which describe sections of data to move (in the order given by the array), as in the struct eth_drv_sg
defined above and pointed to by sg_list .

Once the data has been successfully sent by the interface (or if an error occurs), the driver should call
(sc->funs->eth_drv->tx_done)() (seethe Section calledCallback Tx-Done function) using the specified
key . Only then will the upper layers release the resources for that packet and start another transmission.

Note: In future, this function may be extended so that the data need not be copied by having the function
return a “disposition” code (done, send pending, etc). At this point, you should move the data to some
“safe” location before returning.

Deliver function

static void
HRDWR_deliver(struct eth_drv_sc *sc)

This function is called from the “Network Delivery Thread” in order to let the device driver do the time-
consuming work associated with receiving a packet — usually copying the entire packet from the hardware or
a special memory location into the network stack’s memory.

After handling any outstanding incoming packets or pending transmission status, it can unmask the device’s
interrupts, and free any relevant resources so it can process further packets.

It will be called when the interrupt handler for the network device has called

406

Chapter 51. Generic Ethernet Device Driver

eth_drv_dsr(vector, count, (cyg_addrword_t)sc);

to alert the system that “something requires attention.” Thiseth_drv_dsr() call must occur from within the
interrupt handler’s DSR (not the ISR) or actuallybe the DSR, whenever it is determined that the device needs
attention from the foreground. The third parameter (data in the prototype ofeth_drv_dsr() mustbe a valid
struct eth_drv_sc pointersc .

The reason for this slightly convoluted train of events is to keep the DSR (and ISR) execution time as short as
possible, so that other activities of higher priority than network servicing are not denied the CPU by network
traffic.

To deliver a newly-received packet into the network stack, the deliver routine must call

(sc->funs->eth_drv->recv)(sc, len);

which will in turn call the receive function, which we talk about next. See alsothe Section calledCallback
Receive functionbelow.

Receive function

static void
HRDWR_recv(

struct eth_drv_sc *sc,
struct eth_drv_sg *sg_list, int sg_len)

This function is a call back, only invoked after the upper-level function

(sc->funs->eth_drv->recv)(struct eth_drv_sc *sc, int total_len)

has been called itself from your deliver function when it knows that a packet of data is available on the interface.
The (sc->funs->eth_drv->recv)() function then arranges network buffers and structures for the data and
then callsHRDWR_recv() to actually move the data from the interface.

A scatter-gather list (struct eth_drv_sg) is used once more, just like in the send case.

Poll function

static void
HRDWR_poll(struct eth_drv_sc *sc)

This function is used when in a non-interrupt driven system, e.g. when interrupts are completely disabled. This
allows the driver time to check whether anything needs doing either for transmission, or to check if anything
has been received, or if any other processing needs doing.

It is perfectly correct and acceptable for the poll function to look like this:

static void
HRDWR_poll(struct eth_drv_sc *sc)
{

my_interrupt_ISR (sc);
HRDWR_deliver(struct eth_drv_sc *sc);

}

407

Chapter 51. Generic Ethernet Device Driver

provided that both the ISR and the deliver functions are idempotent and harmless if called when there is no
attention needed by the hardware. Some devices might not need a call to the ISR here if the deliver function
contains all the “intelligence.”

Interrupt-vector function

static int
HRDWR_int_vector(struct eth_drv_sc *sc)

This function returns the interrupt vector number used for receive interrupts. This is so that the common GDB
stubs can detect when to check for incoming “CTRL-C” packets (used to asynchronously halt the application)
when debugging over ethernet. The GDB stubs need to know which interrupt the ethernet device uses so that
they can mask or unmask that interrupt as required.

Upper Layer Functions
Upper layer functions are called by drivers to deliver received packets or transmission completion status back
up into the network stack.

These functions are defined by the hardware independent upper layers of the networking driver support. They
are present to hide the interfaces to the actual networking stack so that the hardware drivers may be used by
different network stack implementations without change.

These functions require a pointer to a struct eth_drv_sc which describes the interface at a logical level. It
is assumed that the low level hardware driver will keep track of this pointer so it may be passed “up” as
appropriate.

Callback Init function

void (sc->funs->eth_drv->init)(
struct eth_drv_sc *sc, unsigned char *enaddr)

This function establishes the device at initialization time. It should be called once per device instance only,
from the initialization function, if all is well (seethe Section calledInit function). The hardware should be
totally initialized (not “started”) when this function is called.

Callback Tx-Done function

void (sc->funs->eth_drv->tx_done)(
struct eth_drv_sc *sc,
unsigned long key, int status)

This function is called when a packet completes transmission on the interface. Thekey value must be one
of the keys provided toHRDWR_send() above. The valuestatus should be non-zero (details currently unde-
fined) to indicate that an error occurred during the transmission, and zero if all was well.

It should be called from the deliver function (seethe Section calledDeliver function) or poll function (seethe
Section calledPoll function).

408

Chapter 51. Generic Ethernet Device Driver

Callback Receive function

void (sc->funs->eth_drv->recv)(struct eth_drv_sc *sc, int len)

This function is called to indicate that a packet of lengthlen has arrived at the interface. The callback
HRDWR_recv() function described above will be used to actually unload the data from the interface into buffers
used by the device independent layers.

It should be called from the deliver function (seethe Section calledDeliver function) or poll function (seethe
Section calledPoll function).

Calling graph for Transmission and Reception
It may be worth clarifying further the flow of control in the transmit and receive cases, where the hardware
driver does use interrupts and so DSRs to tell the “foreground” when something asynchronous has occurred.

Transmission

1. Some foreground task such as the application, SNMP “daemon”, DHCP management thread or whatever,
calls into network stack to send a packet, or the stack decides to send a packet in response to incoming
traffic such as a “ping” or ARP request.

2. The driver calls theHRDWR_can_send() function in the hardware driver.

3. HRDWR_can_send() returns the number of available "slots" in which it can store a pending transmit packet.
If it cannot send at this time, the packet is queued outside the hardware driver for later; in this case, the
hardware is already busy transmitting, so expect an interrupt as described below for completion of the
packet currently outgoing.

4. If it can send right now,HRDWR_send() is called.HRDWR_send() copies the data into special hardware
buffers, or instructs the hardware to “send that.” It also remembers the key that is associated with this tx
request.

5. These calls return . . . time passes . . .

6. Asynchronously, the hardware makes an interrupt to say “transmit is done.” The ISR quietens the interrupt
source in the hardware and requests that the associated DSR be run.

7. The DSR calls (oris) theeth_drv_dsr() function in the generic driver.

8. eth_drv_dsr() in the generic driver awakens the “Network Delivery Thread” which calls the deliver
functionHRDWR_deliver() in the driver.

9. The deliver function realizes that a transmit request has completed, and calls the callback tx-done function
(sc->funs->eth_drv->tx_done)() with the same key that it remembered for this tx.

10.The callback tx-done function uses the key to find the resources associated with this transmit request; thus
the stack knows that the transmit has completed and its resources can be freed.

11.The callback tx-done function also enquires whetherHRDWR_can_send() now says “yes, we can send”
and if so, dequeues a further transmit request which may have been queued as described above. If so,
thenHRDWR_send() copies the data into the hardware buffers, or instructs the hardware to "send that" and
remembers the new key, as above. These calls then all return to the “Network Delivery Thread” which
then sleeps, awaiting the next asynchronous event.

409

Chapter 51. Generic Ethernet Device Driver

12.All done . . .

Receive

1. Asynchronously, the hardware makes an interrupt to say “there is ready data in a receive buffer.” The ISR
quietens the interrupt source in the hardware and requests that the associated DSR be run.

2. The DSR calls (oris) theeth_drv_dsr() function in the generic driver.

3. eth_drv_dsr() in the generic driver awakens the “Network Delivery Thread” which calls the deliver
functionHRDWR_deliver() in the driver.

4. The deliver function realizes that there is data ready and calls the callback receive function
(sc->funs->eth_drv->recv)() to tell it how many bytes to prepare for.

5. The callback receive function allocates memory within the stack (eg. MBUFs in BSD/Unix style stacks)
and prepares a set of scatter-gather buffers that can accommodate the packet.

6. It then calls back into the hardware driver routineHRDWR_recv().HRDWR_recv() must copy the data from
the hardware’s buffers into the scatter-gather buffers provided, and return.

7. The network stack now has the data in-hand, and does with it what it will. This might include recursive
calls to transmit a response packet. When this all is done, these calls return, and the “Network Delivery
Thread” sleeps once more, awaiting the next asynchronous event.

410

XIX. Ethernet PHY Device Support

Chapter 52. Ethernet PHY Device Support

Ethernet PHY Device API
Modern ethernet subsystems are often separated into two pieces, the media access controller (sometimes known
as a MAC) and the physical device or line interface (often refered to as a PHY). In this case, the MAC handles
generating and parsing physical frames and the PHY handles how this data is actually moved to/from the wire.
The MAC and PHY communicate via a special protocol, known as MII. This MII protocol can handle control
over the PHY which allows for selection of such transmission criteria as line speed, duplex mode, etc.

In most cases, etnernet drivers only need to bother with the PHY during system initialization. Since the details
of the PHY are separate from the MAC, there are different drivers for each. The drivers for the PHY are
described by a set of exported functions which are commonly used by by the MAC. The primary use of these
functions currently is to initialize the PHY and determine the status of the line connection.

The connection between the MAC and the PHY differs from MAC to MAC, so the actual routines to manipulate
this data channel are a property of the MAC instance. Furthermore, there are many PHY devices each with
their own internal operations. A complete MAC/PHY driver setup will be comprised of the MAC MII access
functions and the PHY internal driver.

A driver instance is contained within a eth_phy_access_t:

#define PHY_BIT_LEVEL_ACCESS_TYPE 0
#define PHY_REG_LEVEL_ACCESS_TYPE 1

typedef struct {
int ops_type; // 0 => bit level, 1 => register level
bool init_done;
void (*init)(void);
void (*reset)(void);
union {

struct {
void (*set_data)(int);
int (*get_data)(void);
void (*set_clock)(int);
void (*set_dir)(int);

} bit_level_ops;
struct {

void (*put_reg)(int reg, int unit, unsigned short data);
bool (*get_reg)(int reg, int unit, unsigned short *data);

} reg_level_ops;
} ops;
int phy_addr;
struct _eth_phy_dev_entry *dev; // Chip access functions

} eth_phy_access_t;

struct _eth_phy_dev_entry {
char *name;
unsigned long id;
bool (*stat)(eth_phy_access_t *f, int *stat);

};

The dev element points to the PHY speficic support functions. Currently, the only function which must be
defined isstat() .

The MAC-MII-PHY interface is a narrow connection, with commands and status moving between the MAC
and PHY using a bit-serial protocol. Some MAC devices contain the intelligence to run this protocol, exposing

413

Chapter 52. Ethernet PHY Device Support

a mechanism to access PHY registers one at a time. Other MAC devices may only provide access to the MII
data lines (or even still, this may be considered completely separate from the MAC). In these cases, the PHY
support layer must handle the serial protocol. The choice between the access methods is in theops_type field.
If it has the valuePHY_BIT_LEVEL_ACCESS_TYPE, then the PHY device layer will run the protocol, using the
access functionsset_data() , get_data() , set_clock() , set_dir() are used to control the MII signals and
run the protocol. Ifops_type has the valuePHY_REG_LEVEL_ACCESS_TYPE, then the routinesput_reg() , and
get_reg() are used to access the PHY registers.

Two additional functions may be defined. These areinit() , and reset() . The purpose of these functions
is for gross-level management of the MII interface. Theinit() function will be called once, at system ini-
tialization time. It should do whatever operations are necessary to prepare the MII channel. In the case of
PHY_BIT_LEVEL_ACCESS_TYPEdevices,init() should prepare the signals for use, i.e. set up the appropriate
parallel port registers, etc. Thereset() function may be called by a driver to cause the PHY device to be reset
to a known state. Not all drivers will require this and this function may not even be possible, so it’s use and
behaviour is somewhat target specific.

Currently, the only function required of device specific drivers isstat() . This routine should query appropriate
registers in the PHY and return a status bitmap indicating the state of the physical connection. In the case where
the PHY can auto-negotiate a line speed and condition, this information may be useful to the MAC to indicate
what spped it should provide data, etc. The status bitmask contains these bits:

#define ETH_PHY_STAT_LINK 0x0001 // Link up/down
#define ETH_PHY_STAT_100MB 0x0002 // Connection is 100Mb/10Mb
#define ETH_PHY_STAT_FDX 0x0004 // Connection is full/half duplex

Note: the usage here is that if the bit is set, then the condition exists. For example, if theETH_PHY_STAT_LINK

is set, then a physical link has been established.

414

XX. SNMP

Chapter 53. SNMP for eCos

Version
This is a port of UCD-SNMP-4.1.2

Originally this document said: See http://ucd-snmp.ucdavis.edu/ for details. And send them a postcard.

The project has since been renamed “net-snmp” and re-homed at http://net-snmp.sourceforge.net/ (http://net-
snmp.sourceforge.net/) where various new releases (of the original, noteCosports) are available.

The original source base from which we worked to create theeCosport is available from various archive
sites such as ftp://ftp.freesnmp.com/mirrors/net-snmp/ (ftp://ftp.freesnmp.com/mirrors/net-snmp/) or

ftp://sunsite.cnlab-switch.ch/mirror/ucd-snmp/ (ftp://sunsite.cnlab-switch.ch/mirror/ucd-snmp/) generally
with this filename and details:

ucd-snmp-4.1.2.tar.gz. Nov 2 2000 1164k (ftp://ftp.freesnmp.com/mirrors/net-snmp/ucd-snmp-4.1.2.tar.gz)

SNMP packages in the eCos source repository
The SNMP/eCos package consists of two eCos packages; the SNMP library and the SNMP agent.

The sources are arranged this way partly for consistency with the original release from UCD, and so as to
accommodate possible future use of the SNMP library without having an agent present. That could be used to
build an eCos-based SNMP client application.

The library contains support code for talking SNMP over the net - the SNMP protocol itself - and a MIB file
parser (ASN-1) which is not used in the agent case.

The agent contains the application specific handler files to get information about the system into the SNMP
world, together with the SNMP agent thread (snmpd in UNIX terms).

MIBs supported
The standard set in MIB-II, together with the Ether-Like MIB, are supported by default. The MIB files used to
compile the handlers in the agent and to “drive” the testing (snmpwalk et al underLINUX) are those acquired
from that same UCD distribution.

These are the supported MIBs; all are below mib2 == 1.3.6.1.2.1:

system { mib2 1 }
interfaces { mib2 2 }

[address-translation “at” { mib2 3 } is deprecated]
ip { mib2 4 }
icmp { mib2 5 }
tcp { mib2 6 }
udp { mib2 7 }

[exterior gateway protocol “egp” { mib2 8 } not supported]
[cmot { mib2 9 } is “historic”, just a placeholder]

dot3 { mib2 10 7 } == { transmission 7 } “EtherLike MIB”
snmp { mib2 11 }

417

Chapter 53. SNMP for eCos

On inclusion of SNMPv3 support packages, the following MIBs are added to the default set of MIBs enumer-
ated above :

snmpEngine { snmpFrameworkMIBObjects 1 } SNMP-FRAMEWORK-MIB, as described in
RFC-2571 for support of SNMPv3
framework.

usmStats { usmMIBObjects 1 } SNMP-USER-BASED-SM-MIB, as
usmUser { usmMIBObjects 2 } specified in RFC-2574 for support

of user based security model in
SNMPv3 management domains.

Changes to eCos sources
Small changes have been made in three areas:

1. Various hardware-specific ethernet drivers.

2. The generic ethernet device driver.

3. The OpenBSD TCP/IP networking package.

These changes were made in order to export information about the driver and the network that the SNMP agent
must report. The changes were trivial in the case of the network stack, since it was already SNMP-friendly.
The generic ethernet device driver was re-organized to have an extensive header file and to add a couple of
APIs to extract statistics that the hardware-specific device drivers keep within themselves.

There may be a performance hit for recording that data; disabling a config option named something like
CYGDBG_DEVS_ETH_xxxx_xxxx_KEEP_STATISTICSdepending on the specific device driver will prevent that.

Not all platform ethernet device drivers export complete SNMP statistical information; if the exported infor-
mation is missing, SNMP will report zero values for such data (in the dot3 MIB).

The interface chipset has an ID which is an OID; not all the latest greatest devices are listed in the abailable
database, so new chipsets may need to be added to the client MIB, if not defined in those from UCD.

Starting the SNMP Agent
A routine to instantiate and start the SNMP agent thread in the default configuration is provided in
PACKAGES/net/snmp/agent/VERSION/src/snmptask.c

It starts the snmpd thread at priorityCYGPKG_NET_THREAD_PRIORITY+1by default, ie. one step less impor-
tant than the TCP/IP stack service thread. It also statically creates and uses a very large stack of around 100
KiloBytes. To use that convenience function, this code fragment may be copied (in plain C).

#ifdef CYGPKG_SNMPAGENT
{

extern void cyg_net_snmp_init(void);
cyg_net_snmp_init();

}
#endif

In case you need to perform initialization, for example setting up SNMPv3 security features, when the snmp
agent starts and every time it restarts, you can register a callback function by simply writing the global variable:

418

Chapter 53. SNMP for eCos

externC void (* snmpd_reinit_function)(void);

with a suitable function pointer.

The entry point to the SNMP agent is

externC void snmpd(void (* initfunc)(void));

so you can of course easily start it in a thread of your choice at another priority instead if required, after
performing whatever other initialization your SNMP MIBs need. A larger than default stacksize is required.
The initfunc parameter is the callback function mentioned above — a NULL parameter there is safe and
obviously means no callback is registered.

Note that if you callsnmpd(); yourself and donot call cyg_net_snmp_init(); then that routine, global
variable, and the default large stack will not be used. This is the recommended way control such features from
your application; create and start the thread yourself at the appropriate moment.

Other APIs from thesnmpd module are available, specifically:

void SnmpdShutDown(int a);

which causes thesnmpd to restart itself — including the callback to your init function — as soon as possible.

The parametera is ignored. It is there because insnmpd’s “natural environment” this routine is aUNIX signal
handler.

The helper functions in the network stack for managingDHCPleases will callSnmpdShutDown() when neces-
sary, for example if network interfaces go down and/or come up again.

Configuring eCos
To use the SNMP agent, the SNMP library and agent packages must be included in your configuration. To
incorporate the stack into your configuration select the SNMP library and SNMP agent packages in the eCos
Configuration Tool, or at the command line type:

$ ecosconfig add snmplib snmpagent

After adding the networking, common ethernet device drivers, snmp library and snmp agent packages, there is
no configuration required. However there are a number of configuration options that can be set such as some
details for the System MIB, and disabling SNMPv3 support (see below).

Starting the SNMP agent is not integrated into network tests other thansnmpping below, nor is it started
automatically in normal eCos startup - it is up to the application to start the agent when it is ready, at least after
the network interfaces are both ‘up’.

Version usage (v1, v2 or v3)
The default build supports all three versions of the SNMP protocol, but without any dispatcher functionality
(rfc 2571, section 3.1.1.2). This has the following implications :

1. There is no community authentication for v1 and v2c.

2. Security provided by v3 can be bypassed by using v1/v2c protocol.

To provide the dispatcher with rfc 2571 type functionality, it is required to set up security models and access
profiles. This can be provided in the normal Unix style by writing the required configurations insnmpd.conf

419

Chapter 53. SNMP for eCos

file. Application code may setup profiles insnmpd.conf and optionally set the environment variable
SNMPCONFPATHto point to the file if it is not in the usual location. The whole concept works in the usual way
as with the standard UCD-SNMP distribution.

Traps
The support of thetrapsink command in thesnmpd.conffile is not tested and there may be problems for it
working as expected. Moreover, in systems that do not have filesystem support, there is no way to configure a
trap-session in the conventional way.

For reasons mentioned above, applications need to initialize their own trap sessions and pass it the details of
trap-sink. The following is a small sample for initializing a v1 trap session :

typedef struct trap {
unsigned char ip [4];
unsigned int port;
unsigned char community [256];

}

trap trapsink;
unsinged char sink [16];

...

...

if (trapsink.ip != 0) {
sprintf (sink, "%d.%d.%d.%d",

trapsink[0], trapsink[1], trapsink[2], trapsink[3]);
if (create_trap_session (sink,

trapsink.port,
(char *)trapsink.community,
SNMP_VERSION_1,
SNMP_MSG_TRAP) == 0) {
log_error ("Creation of trap session failed \n");

}
}

snmpd.conf file
Using snmpd.conf requires the inclusion of one of the file-system packages (eg. CYGPKG_RAMFS) and
CYGPKG_FILEIO. With these two packages included, the SNMP sub-system will read the snmpd.conf file
from the location specified inSNMPCONFPATH, or the standard builtin locations, and use these profiles. Only
the profiles specified in theACCESS-CONTROLsection ofsnmpd.conffile have been tested and shown to work.
Other profiles which have been implemented inUCD-SNMP-4.1.2 ’s snmpd.conf may not work because the
sole purpose of adding support for the snmpd.conf file has been to set upACCESS-CONTROLmodels.

At startup, the SNMP module tries to look for filesnmp.conf . If this file is not available, the module suc-
cessively looks for filessnmpd.conf , snmp.local.conf andsnmpd.local.conf at the locations pointed to
by SNMPCONFPATHenvironment variable. In caseSNMPCONFPATHis not defined, the search sequence is car-
ried out in default directories. The default directories are :/usr/share/snmp , /usr/local/share/snmp and
$(HOME)/.snmp . The configurations read from these files are used to control both, SNMP applications and the
SNMP agent; in the usual UNIX fashion.

The inclusion of snmpd.conf support is enabled by default when suitable filesystems and FILEIO packages are
active.

420

Chapter 53. SNMP for eCos

Test cases
Currently only one test program is provided which uses SNMP.

"snmpping" in the SNMP agent package runs the ping test from the TCPIP package, with the snmpd running
also. This allows you to interrogate it using host tools of your choice. It supports MIBs as documented above,
so eg.snmpwalk <hostname > public dot3 under Linux/UNIX should have the desired effect.

For serious testing, you should increase the length of time the test runs by setting
CYGNUM_SNMPAGENT_TESTS_ITERATIONS to something big (e.g., 999999). Build the test (make -C
net/snmp/agent/current tests) and run it on the target.

Then start several jobs, some for pinging the board (to make the stats change) and some for interrogating the
snmpd. Set $IP to whatever IP address the board has:

in a root shell, for flood ping
while(1)
date
ping -f -c 3001 $IP
sleep 5
ping -c 32 -s 2345 $IP
end

have more than one of these going at once
setenv MIBS all
while (1)
snmpwalk -OS $IP public
date
end

Leave to run for a couple of days or so to test stability.

The test program can also test snmpd.conf support. It tries to build a minimal snmpd.conf file on a RAM filesys-
tem and passes it to the snmp sub-system. With this profile on target, the following snmp[cmd] (cmd=walk,
get, set) should work :

snmp[cmd] -v1 $IP crux $OID
snmp[cmd] -v2 $IP crux $OID
snmp[cmd] -v3 $IP -u root -L noAuthNoPriv $OID
snmp[cmd] -v3 $IP -u root -L authNoPriv -A MD5 -a md5passwd $OID

The following commands would however fail since they violate the access model :

snmp[cmd] $IP public $OID
snmp[cmd] -v1 $IP public $OID
snmp[cmd] -v2c $IP public $OID
snmp[cmd] -v3 $IP -u no_user -L noAuthNoPriv $OID
snmp[cmd] -v3 $IP -u root -L authNoPriv -A MD5 -a badpasswd $OID

SNMP clients and package use
SNMP clients may use these packages, but this usage is currently untested: the reason why this port to eCos
exists is to acquire the SNMP agent. The fact that that the SNMP API (for clients) exists is a side-effect. See
the standard man page SNMP_API(3) for details. There are further caveats below about client-side use of the
SNMP library.

All of the SNMP header files are installed beneath .../include/ucd-snmp in the install tree. The SNMP code
itself assumes that directory is on its include path, so we recommend that client code does the same. Further,

421

Chapter 53. SNMP for eCos

like the TCP/IP stack, compiling SNMP code requires definition of _KERNEL and __ECOS, and additionally
IN_UCD_SNMP_SOURCE.

Therefore, add all of these to your compile lines if you wish to include SNMP header files:

-D_KERNEL
-D__ECOS
-DIN_UCD_SNMP_SOURCE=1
-I$(PREFIX)/include/ucd-snmp

Unimplemented features
Currently, the filesystem and persistent storage areas are left undone, to be implemented by the application.

The SNMP library package is intended to support client and agent code alike. It therefore contains lots of
assumptions about the presence of persistent storage ie. a filesystem. Currently, by default, eCos has no such
thing, so those areas have been simply commented out and made to return empty lists or say “no data here.”

Specifically the following files have omitted/unimplemented code :

PACKAGES/net/snmp/lib/VERSION/src/parse.c

contains code to enumerate MIB files discovered in the system MIB directories (“/usr/share/snmp/mibs ”),
and read them all in, building data structures that are used by client programs to interrogate an agent. This is
not required in an agent, so the routine which enumerates the directories returns an empty list.

PACKAGES/net/snmp/lib/VERSION/src/read_config.c contains two systems:

The first tries to read the configuration file as described in thesnmpd.conf filesection and the second system
contains code to record persistent data as files in a directory (typically/var/ucd-snmp) thus preserving the
state permanently.

The first part is partially implemented to support multiple profiles and enables dispatcher functionality as
discussed inthe Section calledVersion usage (v1, v2 or v3). The second part is not supported at all in the
default implementation. As required, a cleaner interface to permit application code to manage persistent data
will be developed in consultation with customers.

MIB Compiler
In the directory/snmp/agent/VERSION/utils/mib2c , there are the following files:

README-eCos notes about running with a nonstandard
perl path.

README.mib2c the README from UCD; full instructions on
using mib2c

mib2c the perl program
mib2c.conf a configuration file altered to include the

eCos/UCD
mib2c.conf-ORIG copyright and better #include paths; and

the ORIGinal.
mib2c.storage.conf other config files, not modified.
mib2c.vartypes.conf

mib2c is provided BUT it requires the SNMP perl package SNMP-3.1.0, and that in turn requires perl
nsPerl5.005_03 (part of Red Hat Linux from 6.0, April 1999).

422

Chapter 53. SNMP for eCos

These are available from the CPAN (“the Comprehensive Perl Archive Network”) as usual;
http://www.cpan.org/ and links from there. Specifically:

• PERL itself: http://people.netscape.com/kristian/nsPerl/

• http://people.netscape.com/richm/nsPerl/nsPerl5.005_03-11-i686-linux.tar.gz

• SNMP.pl http://www.cpan.org/modules/01modules.index.html

• http://cpan.valueclick.com/modules/by-category/05_Networking_Devices_IPC/SNMP/

• http://www.cpan.org/authors/id/G/GS/GSM/SNMP.tar.gz

(note that the .tar.gz files are not browsable)

For documentation on the files produced, see the documentation available at http://ucd-snmp.ucdavis.edu/ in
general, and fileAGENT.txt in particular.

It is likely that the output of mib2c will be further customized depending on eCos customer needs; it’s easy to
do this by editing the mib2c.conf file to add or remove whatever you need with the resulting C sources.

The UCD autoconf-style configuration does not apply to eCos. So if you add a completely new MIB to the
agent, and support it using mib2c so that the my_new_mib.c file contains a init_my_new_mib() routine to
register the MIB handler, you will also need to edit a couple of control files; these claim to be auto-generated,
but in the eCos release, they’re not, don’t worry.

PACKAGES/net/snmp/agent/VERSION/include/mib_module_includes.h

contains a number of lines like

#include “mibgroup/mibII/interfaces.h”

so add your new MIB thus:

#include “mibgroup/mibII/my_new_mib.h”

PACKAGES/net/snmp/agent/VERSION/include/mib_module_inits.h

contains a number of lines like

init_interfaces();
init_dot3();

and so on; add your new MIB as follows:

init_my_new_mib();

and this should work correctly.

snmpd.conf
SNMPD.CONF(5) SNMPD.CONF(5)

NAME
share/snmp/snmpd.conf - configuration file for the ucd-
snmp SNMP agent.

DESCRIPTION

423

Chapter 53. SNMP for eCos

snmpd.conf is the configuration file which defines how the
ucd-smnp SNMP agent operates. These files may contain any
of the directives found in the DIRECTIVES section below.
This file is not required for the agent to operate and
report mib entries.

PLEASE READ FIRST
First, make sure you have read the snmp_config(5) manual
page that describes how the ucd-snmp configuration files
operate, where they are located and how they all work
together.

EXTENSIBLE-MIB
The ucd-snmp SNMP agent reports much of its information
through queries to the 1.3.6.1.4.1.2021 section of the mib
tree. Every mib in this section has the following table
entries in it.

.1 -- index
This is the table’s index numbers for each of the
DIRECTIVES listed below.

.2 -- name
The name of the given table entry. This should be
unique, but is not required to be.

.100 -- errorFlag
This is a flag returning either the integer value 1
or 0 if an error is detected for this table entry.

.101 -- errorMsg
This is a DISPLAY-STRING describing any error trig-
gering the errorFlag above.

.102 -- errorFix
If this entry is SNMPset to the integer value of 1
AND the errorFlag defined above is indeed a 1, a
program or script will get executed with the table
entry name from above as the argument. The program
to be executed is configured in the config.h file
at compile time.

Directives
proc NAME

proc NAME MAX

proc NAME MAX MIN

Checks to see if the NAME’d processes are running
on the agent’s machine. An error flag (1) and a
description message are then passed to the
1.3.6.1.4.1.2021.2.100 and 1.3.6.1.4.1.2021.2.101
mib tables (respectively) if the NAME’d program is
not found in the process table as reported by
"/bin/ps -e".

If MAX and MIN are not specified, MAX is assumed to
be infinity and MIN is assumed to be 1.

If MAX is specified but MIN is not specified, MIN

424

Chapter 53. SNMP for eCos

is assumed to be 0.

procfix NAME PROG ARGS
This registers a command that knows how to fix
errors with the given process NAME. When
1.3.6.1.4.1.2021.2.102 for a given NAMEd program is
set to the integer value of 1, this command will be
called. It defaults to a compiled value set using
the PROCFIXCMD definition in the config.h file.

exec NAME PROG ARGS

exec MIBNUM NAME PROG ARGS

If MIBNUM is not specified, the agent executes the
named PROG with arguments of ARGS and returns the
exit status and the first line of the STDOUT output
of the PROG program to queries of the
1.3.6.1.4.1.2021.8.100 and 1.3.6.1.4.1.2021.8.101
mib tables (respectively). All STDOUT output
beyond the first line is silently truncated.

If MIBNUM is specified, it acts as above but
returns the exit status to MIBNUM.100.0 and the
entire STDOUT output to the table MIBNUM.101 in a
mib table. In this case, the MIBNUM.101 mib con-
tains the entire STDOUT output, one mib table entry
per line of output (ie, the first line is output as
MIBNUM.101.1, the second at MIBNUM.101.2, etc...).

Note: The MIBNUM must be specified in dotted-inte-
ger notation and can not be specified as
".iso.org.dod.internet..." (should instead
be

Note: The agent caches the exit status and STDOUT
of the executed program for 30 seconds after
the initial query. This is to increase
speed and maintain consistency of informa-
tion for consecutive table queries. The
cache can be flushed by a snmp-set request
of integer(1) to 1.3.6.1.4.1.2021.100.VER-
CLEARCACHE.

execfix NAME PROG ARGS
This registers a command that knows how to fix
errors with the given exec or sh NAME. When
1.3.6.1.4.1.2021.8.102 for a given NAMEd entry is
set to the integer value of 1, this command will be
called. It defaults to a compiled value set using
the EXECFIXCMD definition in the config.h file.

disk PATH

disk PATH [MINSPACE | MINPERCENT%]

Checks the named disks mounted at PATH for avail-
able disk space. If the disk space is less than
MINSPACE (kB) if specified or less than MINPERCENT
(%) if a % sign is specified, or DEFDISKMINI-
MUMSPACE (kB) if not specified, the associated

425

Chapter 53. SNMP for eCos

entry in the 1.3.6.1.4.1.2021.9.100 mib table will
be set to (1) and a descriptive error message will
be returned to queries of 1.3.6.1.4.1.2021.9.101.

load MAX1

load MAX1 MAX5

load MAX1 MAX5 MAX15

Checks the load average of the machine and returns
an error flag (1), and an text-string error message
to queries of 1.3.6.1.4.1.2021.10.100 and
1.3.6.1.4.1.2021.10.101 (respectively) when the
1-minute, 5-minute, or 15-minute averages exceed
the associated maximum values. If any of the MAX1,
MAX5, or MAX15 values are unspecified, they default
to a value of DEFMAXLOADAVE.

file FILE [MAXSIZE]
Monitors file sizes and makes sure they don’t grow
beyond a certain size. MAXSIZE defaults to infi-
nite if not specified, and only monitors the size
without reporting errors about it.

Errors
Any errors in obtaining the above information are reported
via the 1.3.6.1.4.1.2021.101.100 flag and the
1.3.6.1.4.1.2021.101.101 text-string description.

SMUX SUB-AGENTS
To enable and SMUX based sub-agent, such as gated, use the
smuxpeer configuration entry

smuxpeer OID PASS
For gated a sensible entry might be

.1.3.6.1.4.1.4.1.3 secret

ACCESS CONTROL
snmpd supports the View-Based Access Control Model (vacm)
as defined in RFC 2275. To this end, it recognizes the
following keywords in the configuration file: com2sec,
group, access, and view as well as some easier-to-use
wrapper directives: rocommunity, rwcommunity, rouser,
rwuser.

rocommunity COMMUNITY [SOURCE] [OID]

rwcommunity COMMUNITY [SOURCE] [OID]
These create read-only and read-write communities
that can be used to access the agent. They are a
quick method of using the following com2sec, group,
access, and view directive lines. They are not as
efficient either, as groups aren’t created so the
tables are possibly larger. In other words: don’t
use these if you have complex situations to set up.

The format of the SOURCE is token is described in
the com2sec directive section below. The OID token
restricts access for that community to everything

426

Chapter 53. SNMP for eCos

below that given OID.

rouser USER [noauth|auth|priv] [OID]

rwuser USER [noauth|auth|priv] [OID]
Creates a SNMPv3 USM user in the VACM access
configuration tables. Again, its more efficient
(and powerful) to use the combined com2sec, group,
access, and view directives instead.

The minimum level of authentication and privacy the
user must use is specified by the first token
(which defaults to "auth"). The OID parameter
restricts access for that user to everything below
the given OID.

com2sec NAME SOURCE COMMUNITY
This directive specifies the mapping from a
source/community pair to a security name. SOURCE
can be a hostname, a subnet, or the word "default".
A subnet can be specified as IP/MASK or IP/BITS.
The first source/community combination that matches
the incoming packet is selected.

group NAME MODEL SECURITY
This directive defines the mapping from security-
model/securityname to group. MODEL is one of v1,
v2c, or usm.

access NAME CONTEXT MODEL LEVEL PREFX READ WRITE NOTIFY
The access directive maps from group/security
model/security level to a view. MODEL is one of
any, v1, v2c, or usm. LEVEL is one of noauth,
auth, or priv. PREFX specifies how CONTEXT should
be matched against the context of the incoming pdu,
either exact or prefix. READ, WRITE and NOTIFY
specifies the view to be used for the corresponding
access. For v1 or v2c access, LEVEL will be
noauth, and CONTEXT will be empty.

view NAME TYPE SUBTREE [MASK]
The defines the named view. TYPE is either included
or excluded. MASK is a list of hex octets, sepa-
rated by ’.’ or ’:’. The MASK defaults to "ff" if
not specified.

The reason for the mask is, that it allows you to
control access to one row in a table, in a rela-
tively simple way. As an example, as an ISP you
might consider giving each customer access to his
or her own interface:

view cust1 included interfaces.ifTable.ifEntry.ifIndex.1 ff.a0
view cust2 included interfaces.ifTable.ifEntry.ifIndex.2 ff.a0

(interfaces.ifTable.ifEntry.ifIndex.1 == .1.3.6.1.2.1.2.2.1.1.1,
ff.a0 == 11111111.10100000. which nicely covers up and including
the row index, but lets the user vary the field of the row)

VACM Examples:
sec.name source community

427

Chapter 53. SNMP for eCos

com2sec local localhost private
com2sec mynet 10.10.10.0/24 public
com2sec public default public

sec.model sec.name
group mygroup v1 mynet
group mygroup v2c mynet
group mygroup usm mynet
group local v1 local
group local v2c local
group local usm local
group public v1 public
group public v2c public
group public usm public

incl/excl subtree mask
view all included .1 80
view system included system fe
view mib2 included .iso.org.dod.internet.mgmt.mib-2 fc

context sec.model sec.level prefix read write notify
access mygroup "" any noauth exact mib2 none none
access public "" any noauth exact system none none
access local "" any noauth exact all all all

Default VACM model
The default configuration of the agent, as shipped, is functionally
equivalent to the following entries:
com2sec public default public
group public v1 public
group public v2c public
group public usm public
view all included .1
access public "" any noauth exact all none none

SNMPv3 CONFIGURATION
engineID STRING

The snmpd agent needs to be configured with an
engineID to be able to respond to SNMPv3 messages.
With this configuration file line, the engineID
will be configured from STRING. The default value
of the engineID is configured with the first IP
address found for the hostname of the machine.

createUser username (MD5|SHA) authpassphrase [DES] [priv-
passphrase]

This directive should be placed into the "/var/ucd-
snmp"/snmpd.conf file instead of the other normal
locations. The reason is that the information is
read from the file and then the line is removed
(eliminating the storage of the master password for
that user) and replaced with the key that is
derived from it. This key is a localized key, so
that if it is stolen it can not be used to access
other agents. If the password is stolen, however,
it can be.

MD5 and SHA are the authentication types to use,
but you must have built the package with openssl
installed in order to use SHA. The only privacy
protocol currently supported is DES. If the pri-

428

Chapter 53. SNMP for eCos

vacy passphrase is not specified, it is assumed to
be the same as the authentication passphrase. Note
that the users created will be useless unless they
are also added to the VACM access control tables
described above.

Warning: the minimum pass phrase length is 8 char-
acters.

SNMPv3 users can be created at runtime using the
snmpusm command.

SETTING SYSTEM INFORMATION
syslocation STRING

syscontact STRING

Sets the system location and the system contact for
the agent. This information is reported by the
’system’ table in the mibII tree.

authtrapenable NUMBER
Setting authtrapenable to 1 enables generation of
authentication failure traps. The default value is
2 (disable).

trapcommunity STRING
This defines the default community string to be
used when sending traps. Note that this command
must be used prior to any of the following three
commands that are intended use this community
string.

trapsink HOST [COMMUNITY [PORT]]

trap2sink HOST [COMMUNITY [PORT]]

informsink HOST [COMMUNITY [PORT]]
These commands define the hosts to receive traps
(and/or inform notifications). The daemon sends a
Cold Start trap when it starts up. If enabled, it
also sends traps on authentication failures. Mul-
tiple trapsink, trap2sink and informsink lines may
be specified to specify multiple destinations. Use
trap2sink to send SNMPv2 traps and informsink to
send inform notifications. If COMMUNITY is not
specified, the string from a preceding trapcommu-
nity directive will be used. If PORT is not speci-
fied, the well known SNMP trap port (162) will be
used.

PASS-THROUGH CONTROL
pass MIBOID EXEC

Passes entire control of MIBOID to the EXEC pro-
gram. The EXEC program is called in one of the
following three ways:

EXEC -g MIBOID

EXEC -n MIBOID

429

Chapter 53. SNMP for eCos

These call lines match to SNMP get and get-
next requests. It is expected that the EXEC
program will take the arguments passed to it
and return the appropriate response through
it’s stdout.

The first line of stdout should be the mib
OID of the returning value. The second line
should be the TYPE of value returned, where
TYPE is one of the text strings: string,
integer, unsigned, objectid, timeticks,
ipaddress, counter, or gauge. The third
line of stdout should be the VALUE corre-
sponding with the returned TYPE.

For instance, if a script was to return the
value integer value "42" when a request for
.1.3.6.1.4.100 was requested, the script
should return the following 3 lines:

.1.3.6.1.4.100
integer
42

To indicate that the script is unable to
comply with the request due to an end-of-mib
condition or an invalid request, simple exit
and return no output to stdout at all. A
snmp error will be generated corresponding
to the SNMP NO-SUCH-NAME response.

EXEC -s MIBOID TYPE VALUE

For SNMP set requests, the above call method
is used. The TYPE passed to the EXEC pro-
gram is one of the text strings: integer,
counter, gauge, timeticks, ipaddress, objid,
or string, indicating the type of value
passed in the next argument.

Return nothing to stdout, and the set will
assumed to have been successful. Otherwise,
return one of the following error strings to
signal an error: not-writable, or wrong-type
and the appropriate error response will be
generated instead.

Note: By default, the only community
allowed to write (ie snmpset) to
your script will be the "private"
community,or community #2 if defined
differently by the "community" token
discussed above. Which communities
are allowed write access are con-
trolled by the RWRITE definition in
the snmplib/snmp_impl.h source file.

EXAMPLE
See the EXAMPLE.CONF file in the top level source direc-
tory for a more detailed example of how the above informa-
tion is used in real examples.

430

Chapter 53. SNMP for eCos

RE-READING snmpd.conf and snmpd.local.conf
The ucd-snmp agent can be forced to re-read its configura-
tion files. It can be told to do so by one of two ways:

1. An snmpset of integer(1) to
1.3.6.1.4.1.2021.100.VERUPDATECONFIG.

2. A "kill -HUP" signal sent to the snmpd agent pro-
cess.

FILES
share/snmp/snmpd.conf

SEE ALSO
snmp_config(5), snmpd(1), EXAMPLE.conf, read_config(3).

27 Jan 2000 SNMPD.CONF(5)

431

Chapter 53. SNMP for eCos

432

XXI. Embedded HTTP Server

Chapter 54. Embedded HTTP Server

Intrduction
The eCosHTTPD package provides a simple HTTP server for use with applications in eCos. This server is
specifically aimed at the remote control and monitoring requirements of embedded applications. For this reason
the emphasis is on dynamically generated content, simple forms handling and a basic CGI interface. It isnot
intended to be a general purpose server for delivering arbitrary web content. For these purposes a port of the
GoAhead web server is available from www.goahead.com.

This server is also capable of serving content using IPv6 when the eCos configuration contains IPv6.

Server Organization
The server consists of one or more threads running in parallel to any application threads and which serve web
pages to clients. Apart from defining content, the application does not need to do anything to start the HTTP
server.

The HTTP server is, by default, started by a static constructor. This simply creates an initial thread and
sets it running. Since this is called before the scheduler is started, nothing will happen until the application
calls cyg_scheduler_start() . The server thread can also be started explicitly by the application, see the
CYGNUM_HTTPD_SERVER_AUTO_STARToption for details.

When the thread gets to run it first optionally delays for some period of time. This is to allow the application
to perform any initialization free of any interference from the HTTP server. When the thread does finally run it
creates a socket, binds it to the HTTP server port, and puts it into listen mode. It will then create any additional
HTTPD server threads that have been configured before becoming a server thread itself.

Each HTTPD server thread simply waits for a connection to be made to the server port. When the connection
is made it reads the HTTP request and extracts the filename being accessed. If the request also contains form
data, this is also preserved. The filename is then looked up in a table.

Each table entry contains a filename pattern string, a pointer to a handler function, and a user defined argument
for the function. Table entries are defined using the same link-time table building mechanism used to generate
device tables. This is all handled by theCYG_HTTPD_TABLE_ENTRY()macro which has the following format:

#include <cyg/httpd/httpd.h >

CYG_HTTPD_TABLE_ENTRY(__name, __pattern, __handler, __arg)

The__name argument is a variable name for the table entry since C does not allow us to define anonymous
data structures. This name should be chosen so that it is unique and does not pollute the name space. The
__pattern argument is the match pattern. The__handler argument is a pointer to the handler function
and__arg the user defined value.

The link-time table building means that several different pieces of code can define server table entries, and
so long as the patterns do not clash they can be totally oblivious of each other. However, note also that this
mechanism does not guarantee the order in which entries appear, this depends on the order of object files in
the link, which could vary from one build to the next. So any tricky pattern matching that relies on this may
not always work.

A request filename matches an entry in the table if either it exactly matches the pattern string, or if
the pattern ends in an asterisk, and it matches everything up to that point. So for example the pattern

435

Chapter 54. Embedded HTTP Server

"/monitor/threads.html" will only match that exact filename, but the pattern "/monitor/thread-*" will
match "/monitor/thread-0040.html", "/monitor/thread-0100.html" and any other filename starting with
"/monitor/thread-".

When a pattern is matched, the hander function is called. It has the following prototype:

cyg_bool cyg_httpd_handler(FILE *client,
char *filename,
char *formdata,
void *arg);

Theclient argument is the TCP connection to the client: anything output through this stream will be returned
to the browser. Thefilename argument is the filename from the HTTP request and theformdata argument
is any form response data, or NULL if none was sent. Thearg argument is the user defined value from the
table entry.

The handler is entirely responsible for generating the response to the client, both HTTP header and content.
If the handler decides that it does not want to generate a response it can returnfalse , in which case the table
scan is resumed for another match. If no match is found, or no handler returns true, then a default response
page is generated indicating that the requested page cannot be found.

Finally, the server thread closes the connection to the client and loops back to accept a new connection.

Server Configuration
The HTTP server has a number of configuration options:

CYGNUM_HTTPD_SERVER_PORT

This option defines the TCP port that the server will listen on. It defaults to the standard HTTP port number 80.
It may be changed to a different number if, for example, another HTTP server is using the main HTTP port.

CYGDAT_HTTPD_SERVER_ID

This is the string that is reported to the client in the "Server:" field of the HTTP header.

CYGNUM_HTTPD_THREAD_COUNT

The HTTP server can be configured to use more than one thread to service HTTP requests. If you expect to
serve complex pages with many images or other components that are fetched separately, or if any pages may
take a long time to send, then it may be useful to increase the number of server threads. For most uses, however,
the connection queuing in the TCP/IP stack and the speed with which each page is generated, means that a
single thread is usually adequate.

CYGNUM_HTTPD_THREAD_PRIORITY

The HTTP server threads can be run at any priority. The exact priority depends on the importance of the server
relative to the rest of the system. The default is to put them in the middle of the priority range to provide
reasonable response without impacting genuine high priority threads.

436

Chapter 54. Embedded HTTP Server

CYGNUM_HTTPD_THREAD_STACK_SIZE

This is the amount of stack to be allocated for each of the HTTPD threads. The actual stack
size allocated will be this value plus the values ofCYGNUM_HAL_STACK_SIZE_MINIMUMand
CYGNUM_HTTPD_SERVER_BUFFER_SIZE.

CYGNUM_HTTPD_SERVER_BUFFER_SIZE

This defines the size of the buffer used to receive the first line of each HTTP request. If you expect to use
particularly long URLs or have very complex forms, this should be increased.

CYGNUM_HTTPD_SERVER_AUTO_START

This option causes the HTTP Daemon to be started automatically during system initialization. If this option is
not set then the application must start the daemon explicitly by callingcyg_httpd_startup() . This option is
set by default.

CYGNUM_HTTPD_SERVER_DELAY

This defines the number of system clock ticks that the HTTP server will wait before initializing itself and
spawning any extra server threads. This is to give the application a chance to initialize properly without any
interference from the HTTPD.

Support Functions and Macros
The emphasis of this server is on dynamically generated content, rather than fetching it from a filesystem. To
do this the handler functions make calls tofprintf() andfputs() . Such handler functions would end up a
mass of print calls, with the actual structure of the HTML page hidden in the format strings and arguments,
making maintenance and debugging very difficult. Such an approach would also result in the definition of
many, often only slightly different, format strings, leading to unnecessary bloat.

In an effort to expose the structure of the HTML in the structure of the C code, and to maximize the sharing
of string constants, thecyg/httpd/httpd.h header file defines a set of helper functions and macros. Most
of these are wrappers for predefined print calls on theclient stream passed to the hander function. For
examples of their use, see the System Monitor example.

Note: All arguments to macros are pointers to strings, unless otherwise stated. In general, wherever a
function or macro has an attr or __attr parameter, then the contents of this string will be inserted into
the tag being defined as HTML attributes. If it is a NULL or empty string it will be ignored.

HTTP Support
void cyg_http_start(FILE *client, char *content_type, int content_length);
void cyg_http_finish(FILE *client);
#define html_begin(__client)
#define html_end(__client)

437

Chapter 54. Embedded HTTP Server

The function cyg_http_start() generates a simple HTTP response header containing the value
of CYGDAT_HTTPD_SERVER_IDin the "Server" field, and the values ofcontent_type and
content_length in the "Content-type" and "Content-length" field respectively. The function
cyg_http_finish() just adds an extra newline to the end of the output and then flushes it to force the data
out to the client.

The macrohtml_begin() generates an HTTP header with a "text/html" content type followed by an opening
"<html>" tag.html_end() generates a closing "</html>" tag and callscyg_http_finish() .

General HTML Support
void cyg_html_tag_begin(FILE *client, char *tag, char *attr);
void cyg_html_tag_end(FILE *client, char *tag);
#define html_tag_begin(__client, __tag, __attr)
#define html_tag_end(__client, __tag)
#define html_head(__client, __title, __meta)
#define html_body_begin(__client, __attr)
#define html_body_end(__client)
#define html_heading(__client, __level, __heading)
#define html_para_begin(__client, __attr)
#define html_url(__client, __text, __link)
#define html_image(__client, __source, __alt, __attr)

The function cyg_html_tag_begin() generates an opening tag with the given name. The function
cyg_html_tag_end() generates a closing tag with the given name. The macroshtml_tag_begin() and
html_tag_end are just wrappers for these functions.

The macrohtml_head() generates an HTML header section with__title as the title. The__meta argu-
ment defines any meta tags that will be inserted into the header.html_body_begin() andhtml_body_end

generate HTML body begin and end tags.

html_heading() generates a complete HTML header where__level is a numerical level, between 1 and 6,
and__heading is the heading text.html_para_begin() generates a paragraph break.

html_url() inserts a URL where__text is the displayed text and__link is the URL of the linked page.
html_image() inserts an image tag where__source is the URL of the image to be included and__alt is
the alternative text for when the image is not displayed.

Table Support
#define html_table_begin(__client, __attr)
#define html_table_end(__client)
#define html_table_header(__client, __content, __attr)
#define html_table_row_begin(__client, __attr)
#define html_table_row_end(__client)
#define html_table_data_begin(__client, __attr)
#define html_table_data_end(__client)

html_table_begin() starts a table andhtml_table_end() end it.html_table_header() generates a simple
table column header containg the string__content .

html_table_row_begin() and html_table_row_end() begin and end a table row, and similarly
html_table_data_begin() andhtml_table_data_end() begin and end a table entry.

438

Chapter 54. Embedded HTTP Server

Forms Support
#define html_form_begin(__client, __url, __attr)
#define html_form_end(__client)
#define html_form_input(__client, __type, __name, __value, __attr)
#define html_form_input_radio(__client, __name, __value, __checked)
#define html_form_input_checkbox(__client, __name, __value, __checked)
#define html_form_input_hidden(__client, __name, __value)
#define html_form_select_begin(__client, __name, __attr)
#define html_form_option(__client, __value, __label, __selected)
#define html_form_select_end(__client)
void cyg_formdata_parse(char *data, char *list[], int size);
char *cyg_formlist_find(char *list[], char *name);

html_form_begin() begins a form, the__url argument is the value for theaction attribute.
html_form_end() ends the form.

html_form_input() defines a general form input element with the given type, name and value.
html_form_input_radio creates a radio button with the given name and value; the__checked argument
is a boolean expression that is used to determine whether thechecked attribute is added to the tag. Similarly
html_form_input_checkbox() defines a checkbox element.html_form_input_hidden() defines a hidden
form element with the given name and value.

html_form_select_begin() begins a multiple choice menu with the given name.html_form_select_end()

end it.html_form_option() defines a menu entry with the given value and label; the__selected argument
is a boolean expression controlling whether theselected attribute is added to the tag.

cyg_formdata_parse() converts a form response string into anNULL-terminated array of "name=value" en-
tries. Thedata argument is the string as passed to the handler function; note that this string is not copied
and will be updated in place to form the list entries.list is a pointer to an array of character pointers, and
is size elements long.cyg_formlist_find() searches a list generated bycyg_formdata_parse() and re-
turns a pointer to the value part of the string whose name part matchesname; if there is no match it will return
NULL.

Predefined Handlers
cyg_bool cyg_httpd_send_html(FILE *client, char *filename, char *request, void *arg);

typedef struct
{

char *content_type;
cyg_uint32 content_length;
cyg_uint8 *data;

} cyg_httpd_data;
#define CYG_HTTPD_DATA(__name, __type, __length, __data)

cyg_bool cyg_httpd_send_data(FILE *client, char *filename, char *request, void *arg);

The HTTP server defines a couple of predefined handers to make it easier to deliver simple, static content.

cyg_httpd_send_html() takes aNULL-terminated string as the argument and sends it to the client with an
HTTP header indicating that it is HTML. The following is an example of its use:

char cyg_html_message[] = " <head ><title >Welcome</title ></head >\n"
" <body ><h2>Welcome to my Web Page</h2 ></body >\n"

CYG_HTTPD_TABLE_ENTRY(cyg_html_message_entry,

439

Chapter 54. Embedded HTTP Server

"/message.html",
cyg_httpd_send_html,
cyg_html_message);

cyg_httpd_send_data() Sends arbitrary data to the client. The argument is a pointer to a cyg_httpd_data
structure that defines the content type and length of the data, and a pointer to the data itself. The
CYG_HTTPD_DATA()macro automates the definition of the structure. Here is a typical example of its use:

static cyg_uint8 ecos_logo_gif[] = {
...

};

CYG_HTTPD_DATA(cyg_monitor_ecos_logo_data,
"image/gif",
sizeof(ecos_logo_gif),
ecos_logo_gif);

CYG_HTTPD_TABLE_ENTRY(cyg_monitor_ecos_logo,
"/monitor/ecos.gif",
cyg_httpd_send_data,
&cyg_monitor_ecos_logo_data);

System Monitor
Included in the HTTPD package is a simple System Monitor that is intended to act as a test and an example of
how to produce servers. It is also hoped that it might be of some use in and of itself.

The System Monitor is intended to work in the background of any application. Adding the network stack and
the HTTPD package to any configuration will enable the monitor by default. It may be disabled by disabling
theCYGPKG_HTTPD_MONITORoption.

The monitor is intended to be simple and self-explanatory in use. It consists of four main pages. The thread
monitor page presents a table of all current threads showing such things as id, state, priority, name and stack
dimensions. Clicking on the thread ID will link to a thread edit page where the thread’s state and priority
may be manipulated. The interrupt monitor just shows a table of the current interrupts and indicates which
are active. The memory monitor shows a 256 byte page of memory, with controls to change the base address
and display element size. Note: Accessing invalid memory locations can cause memory exceptions and the
program to crash. The network monitor page shows information extracted from the active network interfaces
and protocols. Finally, if kernel instrumentation is enabled, the instrumentation page provides some controls
over the instrumentation mechanism, and displays the instrumentation buffer.

440

XXII. FTP Client for eCos TCP/IP
Stack

The ftpclient package provides an FTP (File Transfer Protocol) client for use with the TCP/IP stack in eCos. It
supports both IPv4 and IPv6 and will use the DNS client, when its is part of the eCos configuration.

Chapter 55. FTP Client Features

FTP Client API
This package implements an FTP client. The API is in include fileinstall/include/ftpclient.h and it
can be used thus:

#include <network.h >

#include <ftpclient.h >

It looks like this:

ftp_get
int ftp_get(char ∗ hostname,

char ∗ username,
char ∗ passwd,
char ∗ filename,
char ∗ buf,
unsigned buf_size,
ftp_printf_t ftp_printf);

Use the FTP protocol to retrieve a file from a server. Only binary mode is supported. The filename can include
a directory name. Only use unix style ‘/’ file separators, not ‘\’. The file is placed intobuf . buf has maximum
sizebuf_size . If the file is bigger than this, the transfer fails and FTP_TOOBIG is returned. Other error
codes listed in the header can also be returned. If the transfer is successful the number of bytes received is
returned.

ftp_put
int ftp_put(char ∗ hostname,

char ∗ username,
char ∗ passwd,
char ∗ filename,
char ∗ buf,
unsigned buf_size,
ftp_printf_t ftp_printf);

Use the FTP protocol to send a file to a server. Only binary mode is supported. The filename can include a
directory name. Only use unix style ‘/’ file separators, not ‘\’. The contents ofbuf are placed into the file
on the server. If an error occurs one of the codes listed will be returned. If the transfer is successful zero is
returned.

ftpclient_printf
void ftpclient_printf(unsigned error, const char *fmt, ...);

ftp_get() and ftp_put take a pointer to a function to use for printing out diagnostic and error messages.
This is a sample implementation which can be used if you don’t want to implement the function yourself.

443

Chapter 55. FTP Client Features

error will be true when the message to print is an error message. Otherwise the message is diagnostic, eg.
the commands sent and received from the server.

444

XXIII. Simple Network Time Protocol
Client

The SNTP package provides implementation of a client for RFC 2030, the Simple Network Time Protocol
(SNTP). The client listens for broadcasts or IPv6 multicasts from an NTP server and uses the information
received to set the system clock. It can also be configured to send SNTP time requests to specific NTP servers
using SNTP’s unicast mode.

Chapter 56. The SNTP Client

Starting the SNTP client
The sntp client is implemented as a thread which listens for NTP broadcasts and IPv6 multicasts, and optionally
sends SNTP unicast requests to specific NTP servers. This thread may be automatically started by the system
if it receives a list of (S)NTP servers from the DHCP server and unicast mode is enabled. Otherwise it must
be started by the user application. The header filecyg/sntp/sntp.h declares the function to be called. The
thread is then started by calling the function:

void cyg_sntp_start(void);

It is safe to call this function multiple times. Once started, the thread will run forever.

What it does
The SNTP client listens for NTP IPv4 broadcasts from any NTP servers, or IPv6 multicasts using the address
fe0x:0X::101, where X can be 2 (Link Local), 5 (Site-Local) or 0xe (Global). Such packets contain a timestamp
indicating the current time. The packet also contains information about where the server is in the hierarchy of
time servers. A server at the root of the time server tree normally has an atomic clock. Such a server is said to
be at stratum 0. A time server which is synchronised to a stratum 0 server is said to be at stratum 1 etc. The
client will accept any NTP packets from servers using version 3 or 4 of the protocol. When receiving packets
from multiple servers, it will use the packets from the server with the lowest stratum. However, if there are no
packets from this server for 10 minutes and another server is sending packets, the client will change servers.

If SNTP unicast mode is enabled via the CYGPKG_NET_SNTP_UNICAST option, the SNTP client can
additionally be configured with a list of specific NTP servers to query. The general algorithm is as follows: if
the system clock has not yet been set via an NTP time update, then the client will send out NTP requests every
30 seconds to all configured NTP servers. Once an NTP time update has been received, the client will send out
additional NTP requests every 30 minutes in order to update the system clock. These requests are resent every
30 seconds until a response is received.

The system clock in eCos is accurate to 1 second. The SNTP client will change the system clock when the time
difference with the received timestamp is greater than 2 seconds. The change is made as a step.

Configuring the unicast list of NTP servers
If SNTP unicast mode is enabled via the CYGPKG_NET_SNTP_UNICAST option, the SNTP client can be
configured with a list of NTP servers to contact for time updates.

By default, this list is configured with NTP server information received from DHCP.
The number of NTP servers that are extracted from DHCP can be configured with the
CYGOPT_NET_SNTP_UNICAST_MAXDHCP option. This option can also be used to disable DHCP usage
entirely.

The list of NTP servers can be manually configured with the following API function. Note that manual con-
figuration will override any servers that were automatically configured by DHCP. But later reconfigurations by
DHCP will override manual configurations. Hence it is not recommended to manually configure servers when
CYGOPT_NET_SNTP_UNICAST is enabled.

447

Chapter 56. The SNTP Client

#include <cyg/sntp/sntp.h >

void cyg_sntp_set_servers(struct sockaddr *server_list, cyg_uint32 num_servers);

This function takes an array of sockaddr structures specifying the IP address and UDP port of each NTP server
to query. Currently, both IPv4 and IPv6 sockaddr structures are supported. The num_servers argument specifies
how many sockaddr’s are contained in the array. The server_list array must be maintained by the caller. Once
the array is registered with this function, it must not be modified by the caller until it is replaced or unregistered
by another call to this function.

Calling this function with a server_list of NULL and a num_servers value of 0 unregisters any previously
configured server_list array.

Finally, note that if this function is called with a non-empty server list, it will implicitly start the SNTP client
if it has not already been started (i.e. it will call cyg_sntp_start()).

Warning: timestamp wrap around
The timestamp in the NTP packet is a 32bit integer which represents the number of seconds after 00:00
01/01/1900. This 32bit number will wrap around at 06:28:16 Feb 7 2036. At this point in time, the eCos
time will jump back to around 00:00:00 Jan 1 1900 when the next NTP packet is received.

YOU HAVE BEEN WARNED!

The SNTP test program
The SNTP package contains a simple test program. Testing an SNTP client is not easy, so the test program
should be considered as more a proof of concept. It shows that an NTP packet has been received, and is accurate
to within a few days.

The test program starts the network interfaces using the standard call. It then starts the SNTP thread. A loop
is then entered printing the current system time every second for two minutes. When the client receives an
NTP packet the time will jump from 1970 to hopefully the present day. Once the two minutes have expired,
two simple tests are made. If the time is still less than 5 minutes since 00:00:00 01/01/1970 the test fails. This
indicates no NTP messages have been received. Check that the server is actually sending packet, using the
correct port (123), correct IPv6 multicast address, and at a sufficiently frequent rate that the target has a chance
to receive a message within the 2 minute interval. If all this is correct, assume the target is broken.

The second test is that the current system time is compared with the build time as reported by the CPP macro
__DATE__. If the build date is in the future relative to the system time, the test fails. If the build date is more
than 90 days in the past relative to the system time the test also fails. If such failures are seen, use walk-clock
time to verify the time printed during the test. If this seems correct check the build date for the test. This is
printed at startup. If all else fails check that the computer used to build the test has the correct time.

If SNTP unicast mode is enabled, the above tests are run twice. The first time, the SNTP client is configured
with NTP server addresses from DHCP. The second time, unicast mode is disabled and only multicasts are
listened for. Note that the unicast test is partially bogus in the sense that any multicast packet received will
also make the unicast test pass. To reduce the chance of this happening the test will wait for a sorter time for
replies. This is not ideal, but it is the best that can be done with an automated test.

448

XXIV. Memory Allocation

Chapter 57. eCos Memory Pools

eCos Memory pools
There are three sorts of memory pools. A variable size memory pool is for allocating blocks of any size. A
fixed size memory pool, has the block size specified when the pool is created and only provides blocks of that
size. Both of these pools must be explicitly created. The third type is the traditional heap which can be accessed
using malloc and friends.

Variable Size Allocation Pools

Name
cyg_mempool_var_create, cyg_mempool_var_delete, cyg_mempool_var_alloc,
cyg_mempool_var_timed_alloc, cyg_mempool_var_try_alloc,
cyg_mempool_var_free, cyg_mempool_var_waiting, cyg_mempool_var_get_info —
Variable Size Allocation Pools

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_mempool_var_create (void* base , cyg_uint32 size , cyg_handle_t* varpool ,
cyg_mempool_var* var);
void cyg_mempool_var_delete (cyg_handle_t varpool);
void* cyg_mempool_var_alloc (cyg_handle_t varpool , cyg_uint32 size);
void* cyg_mempool_var_timed_alloc (cyg_handle_t varpool , cyg_uint32 size ,
cyg_tick_count_t abstime);
void* cyg_mempool_var_try_alloc (cyg_handle_t varpool , cyg_uint32 size);
void cyg_mempool_var_free (cyg_handle_t varpool , void* p);
cyg_bool_t cyg_mempool_var_waiting (cyg_handle_t varpool);
void cyg_mempool_var_get_info (cyg_handle_t varpool , cyg_mempool_info* info);

Description
The variable size memory pool functions are used for allocating blocks of any size. Before memory can be
allocated the pool must first be created by callingcyg_mempool_var_create() . The parameterbase is a
point to the bottom of the memory area to be used by the pool andsize is the size of the memory area in
bytes. It also takes a pointer to a cyg_mempool_var data structure which is typically statically allocated, and
may be part of a larger data structure. It should be noted that some memory is take from the pool for book
keeping purposes. If a memory pool is no longer required and there are not threads waiting to allocate memory
from it, it can be destroyed withcyg_mempool_var_delete() .

Memory can be allocated from the pool using a number of functions. They all take the
paramtersvarpool which indicates which pool should be used and thesize which indicates who big a
memory area should be allocated.cyg_mempool_var_alloc() will block until the memory becomes

451

Variable Size Allocation Pools

available.cyg_mempool_tryalloc() will try not block if no memory is available and will returnNULL.
Otherwise a pointer to the allocated memory will be returned.cyg_mempool_var_timed_alloc() will block
if memory is not available and wait for memory to become available until the timeabstime is reached. It
will then returnNULL.

Allocated memory can be freed using the functioncyg_mempool_var_free() .

Lastly it is possible to query information about the pool using the functioncyg_mempool_var_get_info() .
This takes a pointer to the structure cyg_mempool_info which is:

typedef struct {
cyg_int32 totalmem;
cyg_int32 freemem;
void *base;
cyg_int32 size;
cyg_int32 blocksize;
cyg_int32 maxfree;

} cyg_mempool_info;

452

Fixed Size Allocation Pools

Name
cyg_mempool_fix_create, cyg_mempool_fix_delete, cyg_mempool_fix_alloc,
cyg_mempool_fix_timed_alloc, cyg_mempool_fix_try_alloc,
cyg_mempool_fix_free, cyg_mempool_fix_waiting, cyg_mempool_fix_get_info —
Fixed Size Allocation Pools

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_mempool_fix_create (void* base , cyg_uint32 size , cyg_uint32 blocksize ,
cyg_handle_t* fixpool , cyg_mempool_var* var);
void cyg_mempool_fix_delete (cyg_handle_t fixpool);
void* cyg_mempool_fix_alloc (cyg_handle_t fixpool);
void* cyg_mempool_fix_timed_alloc (cyg_handle_t fixpool , cyg_tick_count_t abstime);
void* cyg_mempool_fix_try_alloc (cyg_handle_t fixpool);
void cyg_mempool_fix_free (cyg_handle_t fixpool , void* p);
cyg_bool_t cyg_mempool_fix_waiting (cyg_handle_t fixpool);
void cyg_mempool_fix_get_info (cyg_handle_t fixpool , cyg_mempool_info* info);

Description
The fixed size memory pool functions are used for allocating blocks of the same size. The allocation and
free functions are more efficient than the variable size pools, but are naturally limited to being only able to
allocate blocks of a sized size. Before memory can be allocated the pool must first be created by calling
cyg_mempool_fix_create() . The parameterbase is a point to the bottom of the memory area to be used by
the pool andsize is the size of the memory area in bytes.blocksize indicates the size of each allocation
in bytes. The function also takes a pointer to a cyg_mempool_fix data structure which is typically statically
allocated, and may be part of a larger data structure. It should be noted that some memory is take from the pool
for book keeping purposes. If a memory pool is no longer required and there are not threads waiting to allocate
memory from it, it can be destroyed withcyg_mempool_fix_delete() .

Memory can be allocated from the pool using a number of functions. They all take the
paramterfixpool which indicates which pool should be used.cyg_mempool_fix_alloc() will block
until the memory becomes available.cyg_mempool_tryalloc() will try not block if no memory
is available and will returnNULL. Otherwise a pointer to the allocated memory will be returned.
cyg_mempool_fix_timed_alloc() will block if memory is not available and wait for memory to become
available until the timeabstime is reached. It will then returnNULL.

Allocated memory can be freed using the functioncyg_mempool_fix_free() .

Lastly it is possible to query information about the pool using the functioncyg_mempool_fix_get_info() .
This takes a pointer to the structure cyg_mempool_info which is:

typedef struct {
cyg_int32 totalmem;
cyg_int32 freemem;
void *base;

453

Fixed Size Allocation Pools

cyg_int32 size;
cyg_int32 blocksize;
cyg_int32 maxfree;

} cyg_mempool_info;

454

stdlib malloc Pools

Name
malloc, calloc, free, realloc, mallinfo — stdlib malloc pool

Synopsis

#include <stdlib.h >

void * malloc (size_t size);
void * calloc (size_t size);
void free (void * ptr);
void * realloc (void * ptr , size_t size);
struct mallinfo mallinfo (void);

Description
eCos provides the standard library functions used for allocating memory from the heap.malloc() allocates
a block of memory ofsize bytes.calloc() performs the same, but also sets the memory to zero. The
function free() returns a block to the pool.realloc resizes a block of memory. Lastly,mallinfo() returns
information about the heap, as described by the structure mallinfo:

struct mallinfo {
int arena; /* total size of memory arena */
int ordblks; /* number of ordinary memory blocks */
int smblks; /* number of small memory blocks */
int hblks; /* number of mmapped regions */
int hblkhd; /* total space in mmapped regions */
int usmblks; /* space used by small memory blocks */
int fsmblks; /* space available for small memory blocks */
int uordblks; /* space used by ordinary memory blocks */
int fordblks; /* space free for ordinary blocks */
int keepcost; /* top-most, releasable (via malloc_trim) space */
int maxfree; /* (NON-STANDARD EXTENSION) size of largest free block */

};

455

stdlib malloc Pools

456

XXV. CRC Algorithms
The CRC package provides implementation of CRC algorithms. This includes the POSIX CRC calculation
which produces the same result as the cksum command on Linux, another 32 bit CRC by Gary S. Brown and
a 16bit CRC. The CRC used for Ethernet FCS is also implemented.

Chapter 58. CRC Functions

CRC API
The package implements a number of CRC functions as described below. The API to these functions is in the
include filecyg/crc/crc.h .

cyg_posix_crc32
This function implements a 32 bit CRC which is compliant to the POSIX 1008.2 Standard. This is the same as
the Linux cksum program.

cyg_uint32 cyg_posix_crc32(unsigned char ∗ s, int len);

The CRC calculation is run over the data pointed to bys , of lengthlen . The CRC is returned as an unsigned
long.

cyg_crc32
These functions implement a 32 bit CRC by Gary S. Brown. They use the polynomial
X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0.

cyg_uint32 cyg_crc32(unsigned char ∗ s, int len);
cyg_uint32 cyg_crc32_accumulate(cyg_uint32 crc, unsigned char ∗ s, int len);

The CRC calculation is run over the data pointed to bys , of lengthlen . The CRC is returned as an unsigned
long.

The CRC can be calculated over data separated into multiple buffers by using the function
cyg_crc32_accumulate() . The parametercrc should be the result from the previous CRC

calculation.

cyg_ether_crc32
These functions implement the 32 bit CRC used by the Ethernet FCS word.

cyg_uint32 cyg_ether_crc32(unsigned char ∗ s, int len);
cyg_uint32 cyg_ether_crc32_accumulate(cyg_uint32 crc, unsigned char ∗ s, int len);

The CRC calculation is run over the data pointed to bys , of lengthlen . The CRC is returned as an unsigned
long.

The CRC can be calculated over data separated into multiple buffers by using the function
cyg_ether_crc32_accumulate() . The parametercrc should be the result from the previous CRC

calculation.

cyg_crc16
This function implements a 16 bit CRC. It uses the polynomial x^16+x^12+x^5+1.

459

Chapter 58. CRC Functions

cyg_uint16 cyg_crc16(unsigned char ∗ s, int len);

The CRC calculation is run over the data pointed to bys , of lengthlen . The CRC is returned as an unsigned
short.

460

XXVI. CPU load measurements
The cpuload package provides a way to estimate the cpuload. It gives an estimated percentage load for the last
100 milliseconds, 1 second and 10 seconds.

Chapter 59. CPU Load Measurements

CPU Load API
The package allows the CPU load to be estimated. The measurement code must first be calibrated to the target
it is running on. Once this has been performed the measurement process can be started. This is a continuous
process, so always providing the most up to data measurements. The process can be stopped at any time if
required. Once the process is active, the results can be retrieved.

Note that if the target/processor performs any power saving actions, such as reducing the clock speed, or halting
until the next interrupt etc, these will interfere with the CPU load measurement. Under these conditions the
measurement results are undefined. The synthetic target is one such system. See the implementation details at
the foot of this page for further information.

SMP systems are not supported, only uniprocessor system.

The API for load measuring functions can be found in the filecyg/cpuload/cpuload.h .

cyg_cpuload_calibrate
This function is used to calibrate the cpu load measurement code. It makes a measurement to determine the
CPU properties while idle.

void cyg_cpuload_calibrate(cyg_uint32 *calibration);

The function returns the calibration value at the location pointed to bycalibration .

This function is quite unusual. For it to work correctly a few conditions must be met. The function makes use
of the two highest thread priorities. No other threads must be using these priorities while the function is being
used. The kernel scheduler must be started and not disabled. The function takes 100ms to complete during
which time no other threads will be run.

cyg_cpuload_create
This function starts the CPU load measurments.

void cyg_cpuload_create(cyg_cpuload_t *cpuload,
cyg_uint32 calibrate,
cyg_handle_t *handle);

The measurement process is started and a handle to it is returned in*handle . This handle is used to access
the results and the stop the measurement process.

cyg_cpuload_delete
This function stops the measurement process.

void cyg_cpuload_delete(cyg_handle_t handle);

handle should be the value returned by the create function.

463

Chapter 59. CPU Load Measurements

cyg_cpuload_get
This function returns the latest measurements.

void cyg_cpuload_get(cyg_handle_t handle,
cyg_uint32 *average_point1s,
cyg_uint32 *average_1s,
cyg_uint32 *average_10s);

handle should be the value returned by the create function. The load measurements for the last 100ms, 1s
and 10s are returned in*average_point1s ,*average_1s and*average_10s respectively.

Implementation details
This section gives a few details of how the measurements are made. This should help to understand what the
results mean.

When there are no other threads runnable, eCos will execute the idle thread. This thread is always runnable and
uses the lowest thread priority. The idle thread does little. It is an endless loop which increments the variable,
idle_thread_loops and executes the macroHAL_IDLE_THREAD_ACTION. The cpu load measurement code
makes use of the variable. It periodically examines the value of the variable and sees how much it has changed.
The idler the system, the more it will have incremented. From this it is simple to determine the load of the
system.

The function cyg_cpuload_calibrate executes the idle thread for 100ms to determine how much
idle_thread_loops is incremented on a system idle for 100ms.cyg_cpuload_create starts an alarm
which every 100ms calls an alarm function. This function looks at the difference inidle_thread_loops

since the last invocation of the alarm function and so calculated how idle or busy the system has been. The
structurecyg_cpuload is updated during the alarm functions with the new results. The 100ms result is simply
the result from the last measurement period. A simple filter is used to average the load over a period of time,
namely 1s and 10s. Due to rounding errors, the 1s and 10s value will probably never reach 100% on a fully
loaded system, but 99% is often seen.

As stated above, clever power management code will interfere with these measurements. The basic assumption
is that the idle thread will be executed un-hindered and under the same conditions as when the calibration
function was executed. If the CPU clock rate is reduced, the idle thread counter will be incremented less and
so the CPU load measurements will give values too high. If the CPU is halted entirely, 100% cpu load will be
measured.

464

XXVII. gprof Profiling Support

Profiling

Name
CYGPKG_PROFILE_GPROF— eCos Support for the gprof profiling tool

Description
The GNU gprof tool provides profiling support. After a test run it can be used to find where the application
spent most of its time, and that information can then be used to guide optimization effort. Typical gprof output
will look something like this:

Each sample counts as 0.003003 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
14.15 1.45 1.45 120000 12.05 12.05 Proc_7
11.55 2.63 1.18 120000 9.84 9.84 Func_1

8.04 3.45 0.82 main
7.60 4.22 0.78 40000 19.41 86.75 Proc_1
6.89 4.93 0.70 40000 17.60 28.99 Proc_6
6.77 5.62 0.69 40000 17.31 27.14 Func_2
6.62 6.30 0.68 40000 16.92 16.92 Proc_8
5.94 6.90 0.61 strcmp
5.58 7.47 0.57 40000 14.26 26.31 Proc_3
5.01 7.99 0.51 40000 12.79 12.79 Proc_4
4.46 8.44 0.46 40000 11.39 11.39 Func_3
3.68 8.82 0.38 40000 9.40 9.40 Proc_5
3.32 9.16 0.34 40000 8.48 8.48 Proc_2

...

This output is known as the flat profile. The data is obtained by having a hardware timer generate regular
interrupts. The interrupt handler stores the program counter of the interrupted code. gprof performs a statistical
analysis of the resulting data and works out where the time was spent.

gprof can also provide information about the call graph, for example:

index % time self children called name
...

0.78 2.69 40000/40000 main [1]
[2] 34.0 0.78 2.69 40000 Proc_1 [2]

0.70 0.46 40000/40000 Proc_6 [5]
0.57 0.48 40000/40000 Proc_3 [7]
0.48 0.00 40000/120000 Proc_7 [3]

This shows that functionProc_1 was called only frommain , andProc_1 in turn called three other functions.
Callgraph information is obtained only if the application code is compiled with the-pg option. This causes the
compiler to insert extra code into each compiled function, specifically a call tomcount , and the implementation
of mcount stores away the data for subsequent processing by gprof.

467

Profiling

Caution
There are a number of reasons why the output will not be 100% accurate. Collecting
the flat profile typically involves timer interrupts so any code that runs with interrupts dis-
abled will not appear. The current host-side gprof implementation maps program counter
values onto symbols using a bin mechanism. When a bin spans the end of one function
and the start of the next gprof may report the wrong function. This is especially likely on
architectures with single-byte instructions such as an x86. When examining gprof output
it may prove useful to look at a linker map or program disassembly.

The eCos profiling package requires some additional support from the HAL packages, and this may not be
available on all platforms:

1. There must be an implementation of the profiling timer. Typically this is provided by the variant or plat-
form HAL using one of the hardware timers. If there is no implementation then the configuration tools will
report an unresolved conflict related toCYGINT_PROFILE_HAL_TIMERand profiling is not possible. Some
implementations overload the system clock, which means that profiling is only possible in configurations
containing the eCos kernel andCYGVAR_KERNEL_COUNTERS_CLOCK.

2. There should be a hardware-specific implementation ofmcount , which in turn will call the generic func-
tionality provided by this package. It is still possible to do some profiling withoutmcount but the resulting
data will be less useful. To check whether or notmcount is available, look at the current value of the CDL
interfaceCYGINT_PROFILE_HAL_MCOUNTin the graphical configuration tool or in anecos.ecc save file.

This document only describes the eCos profiling support. Full details of gprof functionality and output formats
can be found in the gprof documentation. However it should be noted that that documentation describes some
functionality which cannot be implemented using current versions of the gcc compiler: the section on annotated
source listings is not relevant, and neither are associated command line options like-A and-y .

Building Applications for Profiling
To perform application profiling the gprof packageCYGPKG_PROFILE_GPROFmust first be added to the eCos
configuration. On the command line this can be achieved using:

$ ecosconfig add profile_gprof
$ ecosconfig tree
$ make

Alternatively the same steps can be performed using the graphical configuration tool.

If the HAL packages implementmcount for the target platform then usually application code should be com-
piled with -pg . Optionally eCos itself can also be compiled with this option by modifying the configuration
optionCYGBLD_GLOBAL_CFLAGS. Compiling with-pg is optional but gives more complete profiling data.

Note: The profiling package itself must not be compiled with -pg because that could lead to infinite recur-
sion when doing mcount processing. This is handled automatically by the package’s CDL.

Profiling does not happen automatically. Instead it must be started explicitly by the application, using a call to
profile_on . A typical example would be:

#include <pkgconf/system.h >

#ifdef CYGPKG_PROFILE_GPROF

468

Profiling

include <cyg/profile/profile.h >

#endif
...
int
main(int argc, char** argv)
{

...
#ifdef CYGPKG_PROFILE_GPROF

{
extern char _stext[], _etext[];
profile_on(_stext, _etext, 16, 3500);

}
#endif

...
}

Theprofile_on takes four arguments:

start address

end address

These specify the range of addresses that will be profiled. Usually profiling should cover the entire ap-
plication. On most targets the linker script will export symbols_stext and_etext corresponding to the
beginning and end of code, so these can be used as the addresses. It is possible to perform profiling on a
subset of the code if that code is located contiguously in memory.

bucket size

profile_on divides the range of addresses into a number of buckets of this size. It then allocates a single
array of 16-bit counters with one entry for each bucket. When the profiling timer interrupts the interrupt
handler will examine the program counter of the interrupted code and, assuming it is within the range of
valid addresses, find the containing bucket and increment the appropriate counter.

The size of the array counters is determined by the range of addresses being profiled and by the bucket
size. For a bucket size of 16, one counter is needed for every 16 bytes of code. For an application with say
512K of code that means dynamically allocating a 64K array. If the target hardware is low on memory then
this may be unacceptable, and the requirements can be reduced by increasing the bucket size. However
this will affect the accuracy of the results and gprof is more likely to report the wrong function. It also
increases the risk of a counter overflow.

For the sake of run-time efficiency the bucket size must be a power of 2, and it will be adjusted if necessary.

time interval

The final argument specifies the interval between profile timer interrupts, in units of microseconds. In-
creasing the interrupt frequency gives more accurate profiling results, but at the cost of higher run-time
overheads and a greater risk of a counter overflow. The HAL package may modify this interval because
of hardware restrictions, and the generated profile data will contain the actual interval that was used. Usu-
ally it is a good idea to use an interval that is not a simple fraction of the system clock, typically 10000
microseconds. Otherwise there is a risk that the profiling timer will disproportionally sample code that
runs only in response to the system clock.

If the eCos configuration includes a TCP/IP stack and if a tftp daemon will be used toextractthe data from the
target then the call toprofile_on should happen after the network is up.profile_on will attempt to start a
tftp daemon thread, and this will fail if networking has not yet been enabled.

469

Profiling

int
main(int argc, char** argv)
{

...
init_all_network_interfaces();
...

#ifdef CYGPKG_PROFILE_GPROF
{

extern char _stext[], _etext[];
profile_on(_stext, _etext, 16, 3000);

}
#endif

...
}

The application can then be linked and run as usual.

When gprof is used for native development rather than for embedded targets the profiling data will automat-
ically be written out to a filegmon.out when the program exits. This is not possible on an embedded target
because the code has no direct access to the host’s file system. Instead thegmon.out file has to beextracted
from the target as described below. gprof can then be invoked normally:

$ gprof dhrystone
Flat profile:

Each sample counts as 0.003003 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
14.15 1.45 1.45 120000 12.05 12.05 Proc_7
11.55 2.63 1.18 120000 9.84 9.84 Func_1

8.04 3.45 0.82 main
...

If gmon.out does not contain call graph data, either becausemcount is not supported or because this function-
ality was explicitly disabled, then the-no-graph must be used.

$ gprof --no-graph dhrystone
Flat profile:

Each sample counts as 0.003003 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
14.15 1.45 1.45 Proc_7
11.55 2.63 1.18 Func_1

8.04 3.45 0.82 main

470

Profiling

...

Extracting the Data
By default gprof expects to find the profiling data in a filegmon.out in the current directory. This package
provides two ways of extracting data: a gdb macro or tftp transfers. Using tftp is faster but requires a TCP/IP
stack on the target. It also consumes some additional target-side resources, including an extra tftp daemon
thread and its stack. The gdb macro can be used even when the eCos configuration does not include a TCP/IP
stack. However it is much slower, typically taking tens of seconds to retrieve all the data for a non-trivial
application.

The gdb macro is calledgprof_dump, and can be found in the filegprof.gdb in thehost subdirectory of this
package. A typical way of using this macro is:

(gdb) source <repo >/services/profile/gprof/ <version >/host/gprof.gdb
(gdb) gprof_dump

This macro can be used any time after the call toprofile_on . It will store the profiling data accumulated so
far to the filegmon.out in the current directory, and then reset all counts. gprof uses only a 16 bit counter for
every bucket of code. These counters can easily saturate if the profiling run goes on for a long time, or if the
application code spends nearly all its time in just a few tight inner loops. The counters will not actually wrap
around back to zero, instead they will stick at 0xFFFF, but this will still affect the accuracy of the gprof output.
Hence it is desirable to reset the counters once the profiling data has been extracted.

The filegprof.gdb contains two other macros which may prove useful.gprof_fetch extracts the profiling data
and generates the filegmon.out , but does not reset the counters.gprof_resetonly resets the counters, without
extracting the data or overwritinggmon.out .

If the configuration includes a TCP/IP stack then the profiling data can be extracted using tftp instead. There
are two relevant configuration options.CYGPKG_PROFILE_TFTPcontrols whether or not tftp is supported. It
is enabled by default if the configuration includes a TCP/IP stack, but can be disabled to save target-side
resources.CYGNUM_PROFILE_TFTP_PORTcontrols the UDP port which will be used. This port cannot be shared
with other tftp daemons. If neither application code nor any other package (for example the gcov test coverage
package) provides a tftp service then the default port can be used. Otherwise it will be necessary to assign
unique ports to each daemon.

If enabled the tftp daemon will be started automatically byprofile_on . This should only happen once the
network is up and running, typically after the call toinit_all_network_interfaces .

The data can then be retrieved using a standard tftp client. There are a number of such clients available with
very different interfaces, but a typical session might look something like this:

$ tftp
tftp > connect 10.1.1.134
tftp > binary
tftp > get gmon.out
Received 64712 bytes in 0.9 seconds
tftp > quit

The address10.1.1.134 should be replaced with the target’s IP address. Extracting the profiling data by tftp
will automatically reset the counters.

471

Profiling

Configuration Options
This package contains a number of configuration options. Two of these,CYGPKG_PROFILE_TFTPand
CYGNUM_PROFILE_TFTP_PORT, related to support fortftp transfersand have already been described.

Support for collecting the call graph data viamcount is optional and can be controlled via
CYGPKG_PROFILE_CALLGRAPH. This option will only be active if the HAL provides the underlyingmcount

support and implementsCYGINT_PROFILE_HAL_MCOUNT. The call graph data allows gprof to produce more
useful output, but at the cost of extra run-time and memory overheads. If this option is disabled then the-pg

compiler flag should not be used.

If CYGPKG_PROFILE_CALLGRAPHis enabled then there are two further options which can be used to control
memory requirements. Collecting the data requires two blocks of memory, a simple hash table and an array of
arc records. Themcount code uses the program counter address to index into the hash table, giving the first
element of a singly linked list. The array of arc records contains the various linked lists for each hash slot. The
required number of arc records depends on the number of function calls in the application. For example if a
functionProc_7 is called from three different places in the application then three arc records will be needed.

CYGNUM_PROFILE_CALLGRAPH_HASH_SHIFTcontrols the size of the hash table. The default value of 8 means
that the program counter is shifted right by eight places to give a hash table index. Hence each hash table slot
corresponds to 256 bytes of code, and for an application with say 512K of codeprofile_on will dynamically
allocate an 8K hash table. Increasing the shift size reduces the memory requirement, but means that each hash
table slot will correspond to more code and hencemcount will need to traverse a longer linked list of arc
records.

CYGNUM_PROFILE_CALLGRAPH_ARC_PERCENTAGEcontrols how much memoryprofile_on will allocate for
the arc records. This uses a simple heuristic, a percentage of the overall code size. By default the amount of arc
record space allocated will be 5% of the code size, so for a 512K executable that requires approximately 26K.
This default should suffice for most applications. In exceptional cases it may be insufficient and a diagnostic
will be generated when the profiling data is extracted.

Implementing the HAL Support
The profiling package requires HAL support: A functionhal_enable_profile_timer and an
implementation ofmcount . The profile timer is required. Typically it will be implemented by the
variant or platform HAL using a spare hardware timer, and that HAL package will also implement
the CDL interfaceCYGINT_PROFILE_HAL_TIMER. Support for mcount is optional but very desirable.
Typically it will be implemented by the architectural HAL, which will also implement the CDL interface
CYGINT_PROFILE_HAL_MCOUNT.

#include <pkgconf/system.h >

#ifdef CYGPKG_PROFILE_GPROF
include <cyg/profile/profile.h >

#endif

int
hal_enable_profile_timer(int resolution)
{

...
return actual_resolution;

}

This function takes a single argument, a time interval in microseconds. It should arrange for a timer interrupt to
go off after every interval. The timer VSR or ISR should then determine the program counter of the interrupted
code and register this with the profiling package:

472

Profiling

...
__profile_hit(interrupted_pc);
...

The exact details of how this is achieved, especially obtaining the interrupted PC, are left to the HAL imple-
mentor. The HAL is allowed to modify the requested time interval because of hardware constraints, and should
return the interval that is actually used.

mcount can be more difficult. The calls tomcount are generated internally by the compiler and the details
depend on the target architecture. In factmcount may not use the standard calling conventions at all. Typically
implementingmcount requires looking at the code that is actually generated, and possibly at the sources of the
appropriate compiler back end.

The HAL mcount function should call into the profiling package using standard calling conventions:

...
__profile_mcount((CYG_ADDRWORD) caller_pc, (CYG_ADDRWORD) callee_pc);
...

If mcount was invoked becausemain called Proc_1 then the caller pc should be an address insidemain ,
typically corresponding to the return location, and the callee pc should be an address insideProc_1 , usually
near the start of the function.

For some targets the compiler does additional work, for example automatically allocating a per-function word
of memory to eliminate the need for the hash table. This is too target-specific and hence cannot easily be used
by the generic profiling package.

473

Profiling

474

XXVIII. eCos Power Management
Support

475

Profiling

476

Introduction

Name
Introduction — eCos support for Power Management

Introduction
The eCos Power Management package provides a framework for incorporating power management facilities
in an embedded application. However its functionality is deliberately limited.

1. The package does not contain any support for controlling the current power mode of any given processor,
device or board. Instead it is the responsibility of the appropriate HAL or device driver package to im-
plement such support, by implementingpower controllers. The power management package groups these
power controllers together and provides an interface for manipulating them.

2. The package does not contain any power management policy support. Specifically, including this package
in an application does not by itself ever cause the system to go into low-power mode. Instead it is the
responsibility of a separate policy module, provided by higher-level application code or by some other
package, to decide when it would be appropriate to switch from one power mode to another. The power
management package then provides the mechanisms for making it happen.

Including Power Management
The power management package is never included automatically in an eCos configuration: it is not part of any
target specification or of any template. Instead it must be added explicitly to a configuration if the intended
application requires power management functionality. When using the command-lineecosconfigtool this can
be achieved using a command such as:

$ ecosconfig add power

The generic eCos user documentation should be consulted for more information on how to use the
various tools. The functionality provided by the power management package is defined in the header file
cyg/power/power.h . This header file can be used by both C and C++ code.

Power Modes
There are four defined modes of operation:

active

The system is fully operational, and power consumption is expected to be high.

idle

There has been little or no activity for a short period of time. It is up to the policy module to determine
what constitutes a short period of time, but typically it will be some tenths of a second or some small
number of seconds. A possible action when entering idle mode is to reduce the system’s clock speed, thus
reducing the power drawn by the cpu.

477

Introduction

Note that typically this power mode is not entered automatically whenever the idle thread starts running.
Instead it is entered when the policy module discovers that for a certain period of time the system has been
spending most of its time in the idle thread. Theoretically it is possible to implement a policy module that
would cause a switch to idle mode as soon as the idle thread starts running, but that could result in a great
many power mode changes for no immediate benefit.

sleep

The system has been idle for a significant period of time, perhaps some tens of seconds. It is desirable to
shut down any hardware that is drawing a significant amount of power, for example a screen backlight.

off

The system is powered down. Power consumption should be minimized. Some special action may be
needed before the system comes back up, for example the user may need to press a specific button.

The exact transitions that will happen are decided by the policy module. One policy module might include
transitions from active to idle, from idle to sleep, from sleep to off, and from any of idle, sleep or off directly
back to active. Another policy module might only use the active and off states, bypassing the intermediate
ones.

Power Controllers
The power management package operates primarily on power controllers. The main functionality provided by
a power controller is to switch the power mode for some part of the system, for example the lcd display or
the cpu. A power controller consists primarily of a function which will be invoked to switch the power mode
for the part of the overall system being controlled, plus some auxiliary data. A typical system will include a
number of different power controllers:

1. Usually there will be one power controllerpower_controller_cpu associated with the processor or with
the target platform, and provided by the corresponding HAL package. It is this controller which is re-
sponsible for switching off the system when entering the off mode, which makes it somewhat special:
attempting to switch off the cpu before other devices like the lcd display does not make sense because the
cpu would no longer be executing any instructions for the latter operation. Therefore this power controller
has to be invoked last when switching to a lower-power mode, and similarly when switching back to a
higher-power mode it will be invoked first.

It should be noted that providing power management support is not a hard requirement when porting
eCos to a new processor or platform, and many eCos ports predate the availability of power management
support. Therefore for any given platform it is distinctly possible thatpower_controller_cpu is not yet
provided, and if full power management functionality is desired then the appropriate HAL package would
have to be extended first. System developers should examine the relevant HAL documentation and sources
to determine what is actually available.

2. Some or all of the device drivers will supply their own power controllers, as part of the device driver
package. It is not required that all device drivers provide power controllers. In some cases, especially for
devices that are integrated with the processor,power_controller_cpu will take care of the integrated
devices as a side effect. In other cases the hardware may not provide any functionality that allows power
consumption to be controlled. For any given device driver it is also possible that no power controller
exists either because it was not required when the driver was written, or because the driver predates the

478

Introduction

availability of power management. Again the relevant documentation and sources should be consulted for
further information.

3. There may be power controllers which are not associated directly with any specific hardware. For exam-
ple a TCP/IP stack could provide a power controller so that it gets informed when the system has been
reactivated: by looking at the system clock it can determine for how long the system has been switched
off; using this information it can then recover from expired dhcp leases, or even to shut down any stream
connections that may have become invalid (although arguably the stack should have refused to go to off
mode while there were open connections).

Basic Operation
By default the Power Management package creates a thread during initialization. It is also possible for the
package to be used without such a thread, for example in configurations which do not include a full
kernel, and this alternative is described below. When a separate thread is used the stacksize and priority
for this thread can be controlled by configuration optionsCYGNUM_POWER_THREAD_STACKSIZEand
CYGNUM_POWER_THREAD_PRIORITY. Typically the thread will just wait on a semaphore internal to the
package, and will do nothing until some other part of the system requests a change to the power mode.

At some point the policy module will decide that the system should move into a lower-power mode, for ex-
ample from active to idle. This is achieved by calling the functionpower_set_mode , provided by the power
management package and declared incyg/power/power.h , with a single argument,PowerMode_Idle . This
function manipulates some internal state and posts the semaphore, thus waking up the power management
thread. Note that the function returns before the mode change has completed, and in fact depending on thread
priorities this return may happen before any power controller has been invoked.

When the power management thread wakes up it examines the internal state to figure out what it should
be doing. In this case it is supposed to change the global power mode, so it will iterate over all the power
controllers requesting each one to switch to the idle mode. It is up to each power controller to handle this request
appropriately. Optionally the thread will invoke a callback function after processing each power controller, so
that higher-level code such as the policy module can more easily keep track of the actual state of each controller.
Once the thread has iterated through all the power controllers it will again wait on the internal semaphore for
the next request to arrive.

Note: At present the power management thread always runs at a single priority, which defaults to a low
priority. A possible future enhancement would be to support two separate priorities. When switching to a
lower-powered mode the thread would run at a low priority as before, thus allowing other threads to run
and get a chance to cancel this mode change. When switching to a higher-powered mode the thread would
run at a high priority. This could be especially important when moving out of the off state: for example it
would ensure that all device drivers get a chance to wake up before ordinary application threads get to run
again and possibly attempt I/O operations.

Although usually calls topower_set_mode will come from just one place in the policy module, this is not a
hard requirement. It is possible for multiple threads to call this function, with no need for any synchronization.
If the power management thread is in the middle of performing a mode change and a new request comes in, the
thread will detect this, abort the current operation, and start iterating through the power controllers again with
the new mode. This check happens between every power controller invocation. Usefully this makes it possible
for power controllers themselves to manipulate power modes: a power controller is invoked to change mode;
for some reason it determines that the new mode is inappropriate; it callspower_set_mode to move the system
back to another mode; when the power controller returns this event will be detected; the power management
thread will abort the current mode change, and start the new one.

479

Introduction

In addition to changing the power mode for the system as a whole, individual controllers can be manipulated
using the functionpower_set_controller_mode . For example, while the system as a whole might be in active
mode certain devices might be kept in sleep mode until they are explicitly activated. It is possible to mix con-
current calls topower_set_mode andpower_set_controller_mode , and when a power controller is invoked
it may usepower_set_controller_mode to request further changes to its own or to another controller’s mode
as required.

There are some scenarios where the power management package should not use its own thread. One scenario is
if the configuration is specifically for a single-threaded application such as RedBoot. Another scenario is if the
policy module already involves a separate thread: it may make more sense if the various power management
operations are synchronous with respect to the calling thread. The use of a separate thread inside the power
management package is controlled by the configuration optionCYGPKG_POWER_THREAD, which is active only if
the kernel package is present and enabled by default.

If no separate power management thread is used then obviously the implementations ofpower_set_mode

andpower_set_controller_mode will be somewhat different: instead of waking up a separate thread to do
the work, these functions will now manipulate the power controllers directly. If the system does still involve
multiple threads then only one thread may callpower_set_mode or power_set_controller_mode at a time:
the power management package will not provide any synchronization, that must happen at a higher level.
However when a power controller is invoked it can still call these functions as required.

480

Power Management Information

Name
Obtaining Power Management Information — finding out about the various power controllers
in the system

Synopsis

#include <cyg/power/power.h >

extern PowerController __POWER__[], __POWER_END__;
extern PowerController power_controller_cpu;
extern cyg_handle_t power_thread_handle;
PowerMode power_get_mode (void);
PowerMode power_get_desired_mode (void);
PowerMode power_get_controller_mode (PowerController* controller);
PowerMode power_get_controller_desired_mode (PowerController* controller);
const char* power_get_controller_id (PowerController* controller);

Accessing Power Controllers
All the power controllers in a system are held in a table, filled in at link-time. The symbols__POWER__and
__POWER_ENDcan be used to iterate through this table, for example:

PowerController* controller;
for (controller = &(__POWER__[0]);

controller != &(__POWER_END__);
controller++) {

...
}

Each controller has an associated priority, controlling the order in which they appear in the table. Typically a
software-only component such as a TCP/IP stack would use a small number for the priority, so that it appears
near the start of the table, whereas a device driver would be nearer the back of the table. When switching
to a lower-powered mode the power management package will iterate through this table from front to back,
thus ensuring that for example the TCP/IP stack gets a chance to shut down before the underlying ethernet
or other hardware that the stack depends on. Similarly when switching to a higher-powered mode the power
management package will iterate through this table from back to front.

In most systems there will be one special controller,power_controller_cpu , which should be provided by
one of the architectural, variant or platform HAL packages. This controller will always be the last entry in
the table. It is responsible for the final power down operation when switching to off mode. Other packages
such as device drivers may or may not declare variable identifiers for their power controllers, allowing those
controllers to be accessed by name as well as by their entries in the global table.

481

Power Management Information

Global Power Modes
The functionpower_get_mode can be called at any time to determine the current power mode for the system
as a whole. The return value will be one ofPowerMode_Active , PowerMode_Idle , PowerMode_Sleep or
PowerMode_Off . In normal circumstances it is unlikely thatPowerMode_Off would be returned since that
mode generally means that the cpu is no longer running.

The functionpower_get_desired_mode returns the power mode that the system should be running at. Most
of the time this will be the same value as returned bypower_get_mode . However a different value may be
returned when in the middle of changing power modes. For example, if the current thread runs at a higher
priority than the power management thread then the latter may have been pre-empted in the middle of a mode
change:power_get_mode will return the mode the system was running at before the mode change started,
and power_get_desired_mode will return the mode the system should end up in when the mode change
completes, barring further calls topower_set_mode .

Individual Controller Power Modes
The power management package keeps track of the current and desired modes for each power controller,
as well as the modes for the system as a whole. The functionpower_get_controller_mode takes a single
argument, a pointer to a power controller, and returns the power mode that controller is currently running at.
Similarly power_get_controller_desired_mode returns the power mode that controller should be running
at. Most of the time the current and desired modes for a given controller will be the same, and will also be the
same as the global power mode. However if the power management thread is preeempted in the middle of a
mode change then some of the controllers will have been updated to the desired global mode, whereas others
will still be at the old mode. The power management package also provides functionality for manipulating
individual controllers, and fordetachingcontrollers from global mode changes.

Power Controller Identification
In some scenarios the power management package will run completely automated, and there is no need to
identify individual power controllers. Any form of identification such as a string description would serve no
purpose, but would still consume memory in the final system. In other scenarios it may be very desirable to
provide some means of identification. For example, while still debugging it may be useful to see a simple
string when printing the contents of a power controller structure. Alternatively, if the application is expected to
provide some sort of user interface that gives control over which parts of the system are enabled or disabled, a
string identifier for each controller would be useful. To cope with these scenarios the power management pack-
age provides a configuration optionCYGIMP_POWER_PROVIDE_STRINGS. When enabled, each power controller
will contain a pointer to a constant string which can be accessed via a functionpower_get_controller_id .
When disabled the system will not contain these strings, and the function will not be provided. The following
code illustrates how to use this function.

#include <stdio.h >

#include <pkgconf/system.h >

#ifndef CYGPKG_POWER
error The power management package is not present.
#endif
#include <pkgconf/power.h >

#ifndef CYGIMP_POWER_PROVIDE_STRINGS
error Power controller identifiers are not available.
#endif
#include <cyg/power/power.h >

static const char*

482

Power Management Information

mode_to_string(PowerMode mode)
{

const char* result;
switch(mode) {

case PowerMode_Active : result = "active"; break;
case PowerMode_Idle : result = "idle"; break;
case PowerMode_Sleep : result = "sleep"; break;
case PowerMode_Off : result = "off"; break;
default : result = " <unknown >"; break;

}
return result;

}

int
main(int argc, char** argv)
{

PowerController* controller;

for (controller = &(__POWER__[0]);
controller != &(__POWER_END__);
controller++) {

printf("Controller @ %p: %s, %s\n", controller,
power_get_controller_id(controller),
mode_to_string(power_get_controller_mode(controller)));

}
return 0;

}

The Power Management Thread
If the power management package is configured to use a separate thread then a handle for that thread is made
available to higher-level code via the variablepower_thread_handle . This handle can be used for a variety
of purposes, including manipulating that thread’s priority.

483

Power Management Information

484

Changing Power Modes

Name
Changing Power Modes — reducing or increasing power consumption as needed

Synopsis

#include <cyg/power/power.h >

void power_set_mode (PowerMode new_mode);
void power_set_controller_mode (PowerController* controller , PowerMode new_mode);
void power_set_controller_mode_now (PowerController* controller , PowerMode new_mode
);

Changing the Global Power Mode
The primary functionality supported by the power management package is to change the system’s global power
mode. This is achieved by calling the functionpower_set_mode with a single argument, which should be one
of PowerMode_Active , PowerMode_Idle , PowerMode_Sleep or PowerMode_Off . Typically this function will
only be invoked in certain scenarios:

1. A typical system will contain a policy module which is primarily responsible for initiating power
mode changes, and a thread inside the power management package. The policy module will call
power_set_mode , which has the effect of manipulating some internal state in the power management
package and waking up its thread. When this thread gets scheduled to run (its priority is controlled by a
configuration option), it will iterate over the power controllers and invoke each controller to change its
power mode. There is support for acallback function, and fordetachedpower controllers.

2. After a call topower_set_mode but before the power management thread has had a chance to iterate over
all the controllers, or even before the thread has been rescheduled at all, the policy module may decide that
a different power mode would be more appropriate for the current situation and callspower_set_mode

again. This has the effect of aborting the previous mode change, followed by the power management thread
iterating over the power controllers again for the new mode.

3. If there is no single policy module responsible for power mode changes, any code can call
power_set_mode . If there are multiple calls in quick succession, earlier calls will be aborted and the
system should end up in the power mode corresponding to the last call

4. As a special case, it is possible for a power controller to callpower_set_mode when invoked by the power
management thread. For example a power controller could decide that it is inappropriate for the system to
go to sleep because the device it is associated with is still busy. The effect is as if the policy module had
calledpower_set_mode again before the mode change had completed.

If the power management package has been configured not to use a separate thread then obviously the be-
haviour is somewhat different. The call topower_set_mode will now iterate over the various power con-
trollers immediately, rather than leaving this to a separate thread, and the whole mode change completes before
power_set_mode returns. If some other thread or a DSR callspower_set_mode concurrently the behaviour of
the system is undefined. However, it is still legal for a power controller to callpower_set_mode : effectively this
is a recursive call; it is detected by the system, and internal state is updated; the recursivepower_set_mode call

485

Changing Power Modes

now returns, and when the power controller returns back to the originalpower_set_mode call it detects what
has happened, aborts the previous mode change, and starts a new mode change as requested by the controller.

power_set_mode is normally invoked from thread context. If a separate power management thread is used it
can be invoked safely from DSR context. If the system is configured not to use such a thread, it may or may
not be safe to invoke this function from DSR context: essentially the function just iterates through the various
power controllers, and the documentation or source code of each controller present in the current system will
have to be examined to determine whether or not this can happen safely in DSR context.power_set_mode

should never be invoked from ISR context.

Manipulating an Individual Power Controller
In some cases it is desirable to set the power mode of an individual controller separately from the mode for
the system as a whole. For example if a device is not currently being used then the associated power controller
could be set toPowerMode_Off , even while the system as a whole is still active. This can be achieved by
calling the functionpower_set_controller_mode . It takes two arguments: the first identifies a particular
controller; the second specifies the desired new power mode for that controller. The function operates in much
the same way aspower_set_mode , for example if a separate power management thread is being used then
power_set_controller_mode operates by manipulating some internal state and waking up that thread. The
limitations are also much the same as forpower_set_mode , so for examplepower_set_controller_mode

should not be invoked from inside ISRs.

Manipulating individual controllers is often used in conjunction with the function
power_set_controller_attached , allowing the policy module to specify which controllers are affected by
global mode changes.

Direct Manipulation of a Power Controller
In exceptional circumstances it may be necessary to invoke a power controller directly, bypassing the
power management thread and higher-level functionality such ascallback functions. The function
power_set_controller_mode_now allows this. It takes two arguments, a controller and a mode, just like
power_set_controller_mode .

Use ofpower_set_controller_mode_now is dangerous. For example no attempt is made to synchronise with
any other power mode changes that might be happening concurrently. A possible use is when the system gets
woken up out of sleep mode: depending on the hardware, on which power controllers are present, and on the
application code it may be necessary to wake up some power controllers immediately before the system as a
whole is ready to run again.

486

Support for Policy Modules

Name
Support for Policy Modules — closer integration with higher-level code

Synopsis

#include <cyg/power/power.h >

void power_set_policy_callback (void (*)(PowerController*, PowerMode, PowerMode,
PowerMode, PowerMode) callback);
void (*)(PowerController*, PowerMode, PowerMode, PowerMode, PowerMode)
power_get_policy_callback (void);
CYG_ADDRWORDpower_get_controller_policy_data (PowerController* controller);
void power_set_controller_policy_data (PowerController* controller , CYG_ADDRWORD
data);

Policy Callbacks
The use of a separate thread to perform power mode changes in typical configurations can cause problems for
some policy modules. Specifically, the policy module can request a mode change for the system as a whole or
for an individual controller, but it does not know when the power management thread actually gets scheduled
to run again and carry out the request. Although it would be possible for the policy module to perform some
sort of polling, in general that is undesirable.

To avoid such problems the policy module can install a callback function usingpower_set_policy_callback .
The current callback function can be retrieved usingpower_get_policy_callback . If a callback function has
been installed then it will be called by the power management package whenever a power controller has been
invoked to perform a mode change. The callback will be called in the context of the power management thread,
so usually it will have to make use of thread synchronisation primitives to interact with the main policy module.
It is passed five arguments:

1. The power controller that has just been invoked to perform a mode change.

2. The mode this controller was running at before the invocation.

3. The current mode this controller is now running at.

4. The desired mode before the power controller was invoked. Usually this will be the same as the current
mode, unless the controller has decided for some reason that this was inappropriate.

5. The current desired mode. This will differ from the previous argument only if there has was another call
to power_set_mode or power_set_controller_mode while the power controller was being invoked,
probably by the power controller itself.

A simple example of a policy callback function would be:

static void
power_callback(

PowerController* controller,
PowerMode old_mode,
PowerMode new_mode,
PowerMode old_desired_mode,

487

Support for Policy Modules

powerMode new_desired_mode)
{

printf("Power mode change: %s, %s -> %d\n",
power_get_controller_id(controller),
mode_to_string(old_mode),
mode_to_string(new_mode));

CYG_UNUSED_PARAM(PowerMode, old_desired_mode);
CYG_UNUSED_PARAM(PowerMode, new_desired_mode);

}

int
main(int argc, char** argv)
{

...
power_set_policy_callback(&power_callback);
...

}

If power_set_controller_mode_now is used to manipulate an individual controller the policy callback will
not be invoked. This function may get called from any context including DSRs, and even if there is already a
call to the policy callback happening in some other context, so invoking the callback would usually be unsafe.

If the power management package has not been configured to use a separate thread thenpower_set_mode

andpower_set_controller_mode will manipulate the power controllers immediately and invoke the policy
callback afterwards. Therefore the policy callback will typically run in the same context as the main policy
module.

Policy-specific Controller Data
Some policy modules may want to associate some additional data with each power controller. This could be
achieved by for example maintaining a hash table or similar data structure, but for convenience the power
management package allows higher-level code, typically the policy module, to store and retrieve one word of
data in each power controller. The functionpower_set_controller_policy_data takes two arguments, a
pointer to a power controller and a CYG_ADDRWORD of data: by appropriate use of casts this word could be
an integer or a pointer to some data structure. The matching functionpower_get_controller_policy_data

retrieves the word previously installed, and can be cast back to an integer or pointer. The default value for the
policy data is 0.

For example the following code fragment stores a simple index value in each power controller. This could then
be retrieved by the policy callback.

unsigned int i = 0;
PowerController* controller;

for (controller = &(__POWER__[0]);
controller != &(__POWER_END__);
controller++) {

power_set_controller_policy_data(controller, (CYG_ADDRWORD) i++);
}

Not all policy modules will require per-controller data. The configuration option
CYGIMP_POWER_PROVIDE_POLICY_DATAcan be used to control this functionality, thus avoiding wasting a
small amount of memory inside each power controller structure.

488

Attached and Detached Controllers

Name
Attached and Detached Controllers — control which power controllers are affected by global
changes

Synopsis

#include <cyg/power/power.h >

cyg_bool power_get_controller_attached (PowerController* controller);
void power_set_controller_attached (PowerController* controller , cyg_bool new_state
);

Detaching Power Controllers
By default the global operationpower_set_mode affects all power controllers. There may be circumstances
when this is not desirable. For example if a particular device is not currently being used then it can be left
switched off: the rest of the system could be moving between active, idle and sleep modes, but there is no
point in invoking the power controller for the unused device. To support this the power management pack-
age supports the concept of attached and detached controllers. By default all controllers are attached, and
hence will be affected by global mode changes. A specific controller can be detached using the function
power_set_controller_attached . This function takes two arguments, one to specify a particular controller
and another to specify the desired new state.power_get_controller_attached can be used to determine
whether or not a specific controller is currently attached.

The attached or detached state of a controller only affects what happens during a global mode change, in
other words following a call topower_set_mode . It is still possible to manipulate a detached controller using
power_set_controller_mode or power_set_controller_mode_now .

489

Attached and Detached Controllers

490

Implementing a Power Controller

Name
Implementing a Power Controller — adding power management support to device drivers and
other packages

Implementing a Power Controller
A system will have some number of power controllers. Usually there will be one power controller for the cpu,
power_controller_cpu , typically provided by one of the HAL packages and responsible for managing the
processor itself and associated critical components such as memory. Some or all of the device drivers will
provide power controllers, allowing the power consumption of the associated devices to be controlled. There
may be some arbitrary number of other controllers present in the system. The power management package
does not impose any restrictions on the number or nature of the power controllers in the system, other than
insisting that at most onepower_controller_cpu be provided.

Each power controller involves a single data structure of type PowerController, defined in the header file
cyg/power/power.h . These data structures should all be placed in the table__POWER__, so that the power
management package and other code can easily locate all the controllers in the system. This table is constructed
at link-time, avoiding code-size or run-time overheads. To facilitate this the package provides two macros
which should be used to define a power controller,POWER_CONTROLLER()andPOWER_CONTROLLER_CPU().

The macroPOWER_CONTROLLERtakes four arguments:

1. A variable name. This can be used to access the power controller directly, as well as via the table.

2. A priority. The table of power controllers is sorted, such that power controllers with a numerically lower
priority come earlier in the table. The special controllerpower_controller_cpu always comes at the end
of the table. When moving from a high-power mode to a lower-powered mode, the power management
package iterates through the table from front to back. When moving to a higher-powered mode the reverse
direction is used. The intention is that the power controller for a software-only package such as a TCP/IP
stack should appear near the start of the table, whereas the controllers for the ethernet and similar devices
would be near the end of the table. Hence when the policy module initiates a mode change to a lower-
powered mode the TCP/IP stack gets a chance to cancel this mode change, before the devices it depends
on are powered down. Similarly when moving to a higher-powered mode the devices will be re-activated
before any software that depends on those devices.

The header filecyg/power/power.h defines three prioritiesPowerPri_Early , PowerPri_Typical and
PowerPri_Late . For most controllers one of these priorities, possibly with a small number added or
subtracted, will give sufficient control. If an application developer is uncertain about the relative priorities
of the various controllers, a simpletest programthat iterates over the table will quickly eliminate any
confusion.

3. A constant string identifier. If the system has been configured without support for such identifiers
(CYGIMP_POWER_PROVIDE_STRINGS) then this identifer will be discarded at compile-time. Otherwise it
will be made available to higher-level code using the functionpower_get_controller_id .

4. A function pointer. This will be invoked to perform actual mode changes, as described below.

A typical example of the use of thePOWER_CONTROLLERmacro would be as follows:

#include <pkgconf/system.h >

491

Implementing a Power Controller

#ifdef CYGPKG_POWER
include <cyg/power/power.h >

static void
xyzzy_device_power_mode_change(

PowerController* controller,
PowerMode desired_mode,
PowerModeChange change)

{
// Do the work

}

static POWER_CONTROLLER(xyzzy_power_controller, \
PowerPri_Late, \
"xyzzy device", \
&xyzzy_device_power_mode_change);

#endif

This creates a variablexyzzy_power_controller , which is a power controller data structure that will end up
near the end of the table of power controllers. Higher-level code can iterate through this table and report the
string"xyzzy device" to the user. Whenever there is a mode change operation that affects this controller, the
functionxyzzy_device_power_mode_change will be invoked. The variable is declared static so this controller
cannot be manipulated by name in any other code. Alternatively, if the variable had not been declared static
other code could manipulate this controller by name as well as through the table, especially if the package for
the xyzzy device driver explicitly declared this variable in an exported header file. Obviously exporting the
variable involves a slight risk of a name clash at link time.

The above code explicitly checks for the presence of the power management package before including that
package’s header file or providing any related functionality. Since power management functionality is optional,
such checks are recommended.

The macroPOWER_CONTROLLER_CPUonly takes two arguments, a string identifier and a mode change function
pointer. This macro always instantiates a variablepower_controller_cpu so there is no need to provide a
variable name. The resulting power controller structure always appears at the end of the table, so there is no
need to specify a priority. Typical usage of thePOWER_CONTROLLER_CPUmacro would be:

static void
wumpus_processor_power_mode_change(

PowerController* controller,
PowerMode desired_mode,
PowerModeChange change)

{
// Do the work

}

POWER_CONTROLLER_CPU("wumpus processor", \
&wumpus_processor_power_mode_change);

This defines a power controller structurepower_controller_cpu . It should not be declared static since higher-
level code may well want to manipulate the cpu’s power mode directly, and the variable is declared by the power
management package’s header file.

Some care has to be taken to ensure that the power controllers actually end up in the final executable. If a power
controller variable ends up in an ordinary library and is never referenced directly then typically the linker will
believe that the variable is not needed and it will not end up in the executable. For eCos packages this can be
achieved in the CDL, by specifying that the containing source file should end up inlibextras.a rather than
the defaultlibtarget.a :

cdl_package CYGPKG_HAL_WUMPUS_ARCH {

492

Implementing a Power Controller

...
compile -library=libextras.a data.c

}

If the file data.c instantiates a power controller this is now guaranteed to end up in the final executable, as
intended. Typically HAL and device driver packages will already have some data that must not be eliminated
by the linker, so they will already contain a file that gets built intolibextras.a . For power controllers defined
inside application code it is important that the power controllers end up in.o object files rather than in.a
library archive files.

All the real work of a power controller is done by the mode change function. If the power management package
has been configured to use a separate thread then this mode change function will be invoked by that thread
(except for the special case ofpower_set_controller_mode_now). If no separate thread is used then the
mode change function will be invoked directly bypower_set_mode or power_set_controller_mode .

The mode change function will be invoked with three arguments. The first argument identifies the power
controller. Usually this argument is not actually required since a given mode change function will only ever
be invoked for a single power controller. For example,xyzzy_device_power_mode_change will only ever be
used in conjunction withxyzzy_power_controller . However there may be some packages which contain
multiple controllers, all of which can share a single mode change function, and in that case it is essential to
identify the specific controller. The second argument specifies the mode the controller should switch to, if
possible: it will be one ofPowerMode_Active , PowerMode_Idle , PowerMode_Sleep or PowerMode_Off .
The final argument will be one ofPowerModeChange_Controller , PowerModeChange_ControllerNow,
or PowerModeChange_Global , and identifies the call that caused this invocation. For example, if the
mode change function was invoked because of a call topower_set_mode then this argument will be
PowerModeChange_Global . It is up to each controller to decide how to interpret this final argument. A typical
controller might reject a global request to switch to off mode if the associated device is still busy, but if the
request was aimed specifically at this controller then it could instead abort any current I/O operations and
switch off the device.

The PowerController data structure contains one field,mode, that needs to be updated by the power mode
change function. At all times it should indicate the current mode for this controller. When a mode change is
requested the desired mode is passed as the second argument. The exact operation of the power mode change
function depends very much on what is being controlled and the current circumstances, but some guidelines
are possible:

1. If the request can be satisfied without obvious detriment, do so and update themode field. Reducing the
power consumption of a device that is not currently being used is generally harmless.

2. If a request is a no-op, for example if the system is switching from idle to sleep mode and the controller
does not distinguish between these modes, simply act as if the request was satisfied.

3. If a request is felt to be unsafe, for example shutting down a device that is still in use, then the controller
may decide to reject this request. This is especially true if the request was a global mode change as opposed
to one intended specifically for this controller: in the latter case the policy module should be given due
deference. There are a number of ways in which a request can be rejected:

a. If the request cannot be satisfied immediately but may be feasible in a short while, leave themodefield
unchanged. Higher-level code in the policy module can interpret this as a hint to retry the operation
a little bit later. This approach is also useful if the mode change can be started but will take some
time to complete, for example shutting down a socket connection, and additional processing will be
needed later on.

b. If the request is felt to be inappropriate, for example switching off a device that is still in use, the mode
change function can callpower_set_controller_mode to reset the desired mode for this controller

493

Implementing a Power Controller

back to the current mode. Higher-level code can then interpret this as a hint that there is more activity
in the system than had been apparent.

c. For a global mode change, if the new mode is felt to be inappropriate then the power controller can
call power_set_mode to indicate this. An example of this would be the policy module deciding to
switch off the whole unit while there is still I/O activity.

Mode change functions should not directly manipulate any other fields in the PowerController data structure.
If it is necessary to keep track of additional data then static variables can be used.

It should be noted that the above are only guidelines. Their application in any given situation may be unclear.
In addition the detailed requirements of specific systems will vary, so even if the power controller for a given
device driver follows the above guidelines exactly it may turn out that slightly different behaviour would be
more appropriate for the actual system that is being developed. Fortunately the open source nature of eCos
allows system developers to fine-tune power controllers to meet their exact requirements.

494

XXIX. eCos USB Slave Support

495

Implementing a Power Controller

496

Introduction

Name
Introduction — eCos support for USB slave devices

Introduction
The eCos USB slave support allows developers to produce USB peripherals. It consists of a number of different
eCos packages:

1. Device drivers for specific implementations of USB slave hardware, for example the on-chip USB Device
Controller provided by the Intel SA1110 processor. A typical USB peripheral will only provide one USB
slave port and therefore only one such device driver package will be needed. Usually the device driver
package will be loaded automatically when you create an eCos configuration for target hardware that has
a USB slave device. If you select a target which does have a USB slave device but no USB device driver
is loaded, this implies that no such device driver is currently available.

2. The common USB slave package. This serves two purposes. It defines the API that specific device drivers
should implement. It also provides various utilities that will be needed by most USB device drivers and
applications, such as handlers for standard control messages. Usually this package will be loaded auto-
matically at the same time as the USB device driver.

3. The common USB package. This merely provides some information common to both the host and slave
sides of USB, such as details of the control protocol. It is also used to place the other USB-related packages
appropriately in the overall configuration hierarchy. Usually this package will be loaded at the same time
as the USB device driver.

4. Class-specific USB support packages. These make it easier to develop specific classes of USB peripheral,
such as a USB-ethernet device. If no suitable package is available for a given class of peripheral then the
USB device driver can instead be accessed directly from application code. Such packages will never be
loaded automatically since the configuration system has no way of knowing what class of USB peripheral
is being developed. Instead developers have to add the appropriate package or packages explicitly.

These packages only provide support for developing USB peripherals, not USB hosts.

USB Concepts
Information about USB can be obtained from a number of sources including the USB Implementers Forum
web site (http://www.usb.org/). Only a brief summary is provided here.

A USB network is asymmetrical: it consists of a single host, one or more slave devices, and possibly some
number of intermediate hubs. The host side is significantly more complicated than the slave side. Essentially,
all operations are initiated by the host. For example, if the host needs to receive some data from a particular
USB peripheral then it will send an IN token to that peripheral; the latter should respond with either a NAK or
with appropriate data. Similarly, when the host wants to transmit data to a peripheral it will send an OUT token
followed by the data; the peripheral will return a NAK if it is currently unable to receive more data or if there
was corruption, otherwise it will return an ACK. All transfers are check-summed and there is a clearly-defined
error recovery process. USB peripherals can only interact with the host, not with each other.

USB supports four different types of communication: control messages, interrupt transfers, isochronous trans-
fers, and bulk transfers. Control messages are further subdivided into four categories: standard, class, vendor
and a reserved category. All USB peripherals must respond to certain standard control messages, and usually

497

Introduction

this will be handled by the common USB slave package (for complicated peripherals, application support will
be needed). Class and vendor control messages may be handled by an class-specific USB support package,
for example the USB-ethernet package will handle control messages such as getting the MAC address or en-
abling/disabling promiscuous mode. Alternatively, some or all of these messages will have to be handled by
application code.

Interrupt transfers are used for devices which need to be polled regularly. For example, a USB keyboard might
be polled once every millisecond. The host will not poll the device more frequently than this, so interrupt
transfers are best suited to peripherals that involve a relatively small amount of data. Isochronous transfers are
intended for multimedia-related peripherals where typically a large amount of video or audio data needs to be
exchanged continuously. Given appropriate host support a USB peripheral can reserve some of the available
bandwidth. Isochronous transfers are not reliable; if a particular packet is corrupted then it will just be discarded
and software is expected to recover from this. Bulk transfers are used for everything else: after taking care of
any pending control, isochronous and interrupt transfers the host will use whatever bandwidth remains for bulk
transfers. Bulk transfers are reliable.

Transfers are organized into USB packets, with the details depending on the transfer type. Control messages
always involve an initial 8-byte packet from host to peripheral, optionally followed by some additional packets;
in theory these additional packets can be up to 64 bytes, but hardware may limit it to 8 bytes. Interrupt transfers
involve a single packet of up to 64 bytes. Isochronous transfers involve a single packet of up to 1024 bytes.
Bulk transfers involve multiple packets. There will be some number, possibly zero, of 64-byte packets. The
transfer is terminated by a single packet of less than 64 bytes. If the transfer involves an exact multiple of 64
bytes than the final packet will be 0 bytes, consisting of just a header and checksum which typically will be
generated by the hardware. There is no pre-defined limit on the size of a bulk transfer. Instead higher-level
protocols are expected to handle this, so for a USB-ethernet peripheral the protocol could impose a limit of
1514 bytes of data plus maybe some additional protocol overhead.

Transfers from the host to a peripheral are addressed not just to that peripheral but to a specific endpoint
within that peripheral. Similarly, the host requests incoming data from a specific endpoint rather than from the
peripheral as a whole. For example, a combined keyboard/touchpad device could provide the keyboard events
on endpoint 1 and the mouse events on endpoint 2. A given USB peripheral can have up to 16 endpoints for
incoming data and another 16 for outgoing data. However, given the comparatively high speed of USB I/O
this endpoint addressing is typically implemented in hardware rather than software, and the hardware will only
implement a small number of endpoints. Endpoint 0 is generally used only for control messages.

In practice, many of these details are irrelevant to application code or to class packages. Instead, such higher-
level code usually just performs blockingread and write , or non-blocking USB-specific calls, to transfer
data between host and target via a specific endpoint. Control messages are more complicated but are usually
handled by existing code.

When a USB peripheral is plugged into the host there is an initial enumeration and configuration process. The
peripheral provides information such as its class of device (audio, video, etc.), a vendor id, which endpoints
should be used for what kind of data, and so on. The host OS uses this information to identify a suitable
host device driver. This could be a generic driver for a class of peripherals, or it could be a vendor-specific
driver. Assuming a suitable driver is installed the host will then activate the USB peripheral and perform addi-
tional application-specific initialisation. For example for a USB-ethernet device this would involve obtaining
an ethernet MAC address. Most USB peripherals will be fairly simple, but it is possible to build multifunction
peripherals with multiple configurations, interfaces, and alternate interface settings.

It is not possible for any of the eCos packages to generate all the enumeration data automatically. Some of the
required information such as the vendor id cannot be supplied by generic packages; only by the application
developer. Class support code such as the USB-ethernet package could in theory supply some of the informa-
tion automatically, but there are also hardware dependencies such as which endpoints get used for incoming
and outgoing ethernet frames. Instead it is the responsibility of the application developer to provide all the
enumeration data and perform some additional initialisation. In addition, the common USB slave package can

498

Introduction

handle all the standard control messages for a simple USB peripheral, but for something like a multifunction
peripheral additional application support is needed.

Note: The initial implementation of the eCos USB slave packages involved hardware that only supported
control and bulk transfers, not isochronous or interrupt. There may be future changes to the USB code and
API to allow for isochronous and interrupt transfers, especially the former. Other changes may be required
to support different USB devices. At present there is no support for USB remote wakeups, since again it is
not supported by the hardware.

eCos USB I/O Facilities
For protocols other than control messages, eCos provides two ways of performing USB I/O. The first involves
device table or devtab entries such as/dev/usb1r , with one entry per endpoint per USB device. It is possible
to open these devices and use conventional blocking I/O functions such asread andwrite to exchange data
between host and peripheral.

There is also a lower-level USB-specific API, consisting of functions such asusbs_start_rx_buffer . A USB
device driver will supply a data structure for each endpoint, for example ausbs_rx_endpointstructure for every
receive endpoint. The first argument tousbs_start_rx_buffer should be a pointer to such a data structure.
The USB-specific API is non-blocking: the initial call merely starts the transfer; some time later, once the
transfer has completed or has been aborted, the device driver will invoke a completion function.

Control messages are different. With four different categories of control messages including application and
vendor specific ones, the conventionalopen /read /write model of I/O cannot easily be applied. Instead, a
USB device driver will supply ausbs_control_endpointdata structure which can be manipulated appropriately.
In practice the standard control messages will usually be handled by the common USB slave package, and
other control messages will be handled by class-specific code such as the USB-ethernet package. Typically,
application code remains responsible for supplying theenumeration dataand for actuallystartingup the USB
device.

Enabling the USB code
If the target hardware contains a USB slave device then the appropriate USB device driver and the common
packages will typically be loaded into the configuration automatically when that target is selected (assuming a
suitable device driver exists). However, the driver will not necessarily be active. For example a processor might
have an on-chip USB device, but not all applications using that processor will want to use USB functionality.
Hence by default the USB device is disabled, ensuring that applications do not suffer any memory or other
penalties for functionality that is not required.

If the application developer explicitly adds a class support package such as the USB-ethernet one then this
implies that the USB device is actually needed, and the device will be enabled automatically. However, if
no suitable class package is available and the USB device will instead be accessed by application code, it is
necessary to enable the USB device manually. Usually the easiest way to do this is to enable the configuration
option CYGGLO_IO_USB_SLAVE_APPLICATION, and the USB device driver and related packages will adjust
accordingly. Alternatively, the device driver may provide some configuration options to provide more fine-
grained control.

499

Introduction

500

USB Enumeration Data

Name
Enumeration Data — The USB enumeration data structures

Synopsis
#include <cyg/io/usb/usb.h >

#include <cyg/io/usb/usbs.h >

typedef struct usb_device_descriptor {
...

} usb_device_descriptor __attribute__((packed));

typedef struct usb_configuration_descriptor {
...

} usb_configuration_descriptor __attribute__((packed));

typedef struct usb_interface_descriptor {
...

} usb_interface_descriptor __attribute__((packed));

typedef struct usb_endpoint_descriptor {
...

} usb_endpoint_descriptor;

typedef struct usbs_enumeration_data {
usb_device_descriptor device;
int total_number_interfaces;
int total_number_endpoints;
int total_number_strings;
const usb_configuration_descriptor* configurations;
const usb_interface_descriptor* interfaces;
const usb_endpoint_descriptor* endpoints;
const unsigned char** strings;

} usbs_enumeration_data;

USB Enumeration Data
When a USB host detects that a peripheral has been plugged in or powered up, one of the first steps is to
ask the peripheral to describe itself by supplying enumeration data. Some of this data depends on the class
of peripheral. Other fields are vendor-specific. There is also a dependency on the hardware, specifically which
endpoints are available should be used. In general it is not possible for generic code to provide this information,
so it is the responsibility of application code to provide a suitable usbs_enumeration_data data structure and
install it in the endpoint 0 data structure during initialization. This must happen before the USB device is
enabled by a call tousbs_start , for example:

const usbs_enumeration_data usb_enum_data = {
...

};

int
main(int argc, char** argv)

501

USB Enumeration Data

{
usbs_sa11x0_ep0.enumeration_data = &usb_enum_data;
...
usbs_start(&usbs_sa11x0_ep0);
...

}

For most applications the enumeration data will be static, although the usbs_enumeration_data structure can
be filled in at run-time if necessary. Full details of the enumeration data can be found in the Universal Serial
Bus specification obtainable from the USB Implementers Forum web site (http://www.usb.org/), although the
meaning of most fields is fairly obvious. The various data structures and utility macros are defined in the header
files cyg/io/usb/usb.h andcyg/io/usb/usbs.h . Note that the example code below makes use of the gcc
labelled element extension.

usb_device_descriptor

The main information about a USB peripheral comes from a single usb_device_descriptor structure, which is
embedded in the usbs_enumeration_data structure. A typical example might look like this:

const usbs_enumeration_data usb_enum_data = {
{

length: USB_DEVICE_DESCRIPTOR_LENGTH,
type: USB_DEVICE_DESCRIPTOR_TYPE,
usb_spec_lo: USB_DEVICE_DESCRIPTOR_USB11_LO,
usb_spec_hi: USB_DEVICE_DESCRIPTOR_USB11_HI,
device_class: USB_DEVICE_DESCRIPTOR_CLASS_VENDOR,
device_subclass: USB_DEVICE_DESCRIPTOR_SUBCLASS_VENDOR,
device_protocol: USB_DEVICE_DESCRIPTOR_PROTOCOL_VENDOR,
max_packet_size: 8,
vendor_lo: 0x42,
vendor_hi: 0x42,
product_lo: 0x42,
product_hi: 0x42,
device_lo: 0x00,
device_hi: 0x01,
manufacturer_str: 1,
product_str: 2,
serial_number_str: 0,
number_configurations: 1

},
...

};

The length and type fields are specified by the USB standard. Theusb_spec_lo andusb_spec_hi fields
identify the particular revision of the standard that the peripheral implements, for example revision 1.1.

The device class, subclass, and protocol fields are used by generic host-side USB software to determine which
host-side device driver should be loaded to interact with the peripheral. A number of standard classes are
defined, for example mass-storage devices and human-interface devices. If a peripheral implements one of the
standard classes then a standard existing host-side device driver may exist, eliminating the need to write a
custom driver. The value0xFF (VENDOR) is reserved for peripherals that implement a vendor-specific protocol
rather than a standard one. Such peripherals will require a custom host-side device driver. The value0x00

(INTERFACE) is reserved and indicates that the protocol used by the peripheral is defined at the interface level
rather than for the peripheral as a whole.

502

USB Enumeration Data

Themax_package_size field specifies the maximum length of a control message. There is a lower bound
of eight bytes, and typical hardware will not support anything larger because control messages are usually
small and not performance-critical.

Thevendor_lo andvendor_hi fields specify a vendor id, which must be obtained from the USB Imple-
mentor’s Forum. The numbers used in the code fragment above are examples only and must not be used in real
USB peripherals. The product identifier is determined by the vendor, and different USB peripherals should use
different identifiers. The device identifier field should indicate a release number in binary-coded decimal.

The above fields are all numerical in nature. A USB peripheral can also provide a number of strings as described
below, for example the name of the vendor can be provided. The various_str fields act as indices into an
array of strings, with index 0 indicating that no string is available.

A typical USB peripheral involves just a single configuration. However more complicated peripherals can
support multiple configurations. Only one configuration will be active at any one time, and the host will switch
between them as appropriate. If a peripheral does involve multiple configurations then typically it will be the
responsibility of application code tohandlethe standard set-configuration control message.

usb_configuration_descriptor

A USB peripheral involves at least one and possible several different configurations. The
usbs_enumeration_data structure requires a pointer to an array, possibly of length 1, of
usb_configuration_descriptor structures. Usually a single structure suffices:

const usb_configuration_descriptor usb_configuration = {
length: USB_CONFIGURATION_DESCRIPTOR_LENGTH,
type: USB_CONFIGURATION_DESCRIPTOR_TYPE,
total_length_lo: USB_CONFIGURATION_DESCRIPTOR_TOTAL_LENGTH_LO(1, 2),
total_length_hi: USB_CONFIGURATION_DESCRIPTOR_TOTAL_LENGTH_HI(1, 2),
number_interfaces: 1,
configuration_id: 1,
configuration_str: 0,
attributes: USB_CONFIGURATION_DESCRIPTOR_ATTR_REQUIRED |

USB_CONFIGURATION_DESCRIPTOR_ATTR_SELF_POWERED,
max_power: 50

};

const usbs_enumeration_data usb_enum_data = {
...
configurations: &usb_configuration,
...

};

The values for thelength and type fields are determined by the standard. Thetotal_length field
depends on the number of interfaces and endpoints used by this configuration, and convenience macros are
provided to calculate this: the first argument to the macros specify the number of interfaces, the second the
number of endpoints. Thenumber_interfaces field is self-explanatory. If the peripheral involves multiple
configurations then each one must have a unique id, and this will be used in the set-configuration control
message. The id0 is reserved, and a set-configuration control message that uses this id indicates that the
peripheral should be inactive. Configurations can have a string description if required. Theattributes
field must have theREQUIREDbit set; theSELF_POWEREDbit informs the host that the peripheral has its own
power supply and will not draw any power over the bus, leaving more bus power available to other peripherals;
theREMOTE_WAKEUPbit is used if the peripheral can interrupt the host when the latter is in power-saving mode.
For peripherals that are not self-powered, themax_power field specifies the power requirements in units of
2mA.

503

USB Enumeration Data

usb_interface_descriptor

A USB configuration involves one or more interfaces, typically corresponding to different streams of data. For
example, one interface might involve video data while another interface is for audio. Multiple interfaces in a
single configuration will be active at the same time.

const usb_interface_descriptor usb_interface = {
length: USB_INTERFACE_DESCRIPTOR_LENGTH,
type: USB_INTERFACE_DESCRIPTOR_TYPE,
interface_id: 0,
alternate_setting: 0,
number_endpoints: 2,
interface_class: USB_INTERFACE_DESCRIPTOR_CLASS_VENDOR,
interface_subclass: USB_INTERFACE_DESCRIPTOR_SUBCLASS_VENDOR,
interface_protocol: USB_INTERFACE_DESCRIPTOR_PROTOCOL_VENDOR,
interface_str: 0

};

const usbs_enumeration_data usb_enum_data = {
...
total_number_interfaces: 1,
interfaces: &usb_interface,
...

};

Again, the length and type fields are specified by the standard. Each interface within a configuration
requires its own id. However, a given interface may have several alternate settings, in other words entries in
the interfaces array with the same id but differentalternate_setting fields. For example, there might be
one setting which requires a bandwidth of 100K/s and another setting that only needs 50K/s. The host can use
the standard set-interface control message to choose the most appropriate setting. The handling of this request
is the responsibility of higher-level code, so the application may have toinstall its own handler.

The number of endpoints used by an interface is specified in thenumber_endpoints field. Exact details of
which endpoints are used is held in a separate array of endpoint descriptors. The class, subclass and protocol
fields are used by host-side code to determine which host-side device driver should handle this specific inter-
face. Usually this is determined on a per-peripheral basis in the usb_device_descriptor structure, but that can
defer the details to individual interfaces. A per-interface string is allowed as well.

For USB peripherals involving multiple configurations, the array of usb_interface_descriptor structures should
first contain all the interfaces for the first configuration, then all the interfaces for the second configuration, and
so on.

usb_endpoint_descriptor

The host also needs information about which endpoint should be used for what. This involves an array of
endpoint descriptors:

const usb_endpoint_descriptor usb_endpoints[] = {
{

length: USB_ENDPOINT_DESCRIPTOR_LENGTH,
type: USB_ENDPOINT_DESCRIPTOR_TYPE,
endpoint: USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT | 1,
attributes: USB_ENDPOINT_DESCRIPTOR_ATTR_BULK,
max_packet_lo: 64,
max_packet_hi: 0,
interval: 0

},

504

USB Enumeration Data

{
length: USB_ENDPOINT_DESCRIPTOR_LENGTH,
type: USB_ENDPOINT_DESCRIPTOR_TYPE,
endpoint: USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN | 2,
attributes: USB_ENDPOINT_DESCRIPTOR_ATTR_BULK,
max_packet_lo: 64,
max_packet_hi: 0,
interval: 0

}
};

const usbs_enumeration_data usb_enum_data = {
...
total_number_endpoints: 2,
endpoints: usb_endpoints,
...

};

As usual the values for thelength and type fields are specified by the standard. Theendpoint field
gives both the endpoint number and the direction, so in the above example endpoint 1 is used for OUT (host
to peripheral) transfers and endpoint 2 is used for IN (peripheral to host) transfers. Theattributes field
indicates the USB protocol that should be used on this endpoint:CONTROL, ISOCHRONOUS, BULKor INTERRUPT.
The max_packet field specifies the maximum size of a single USB packet. For bulk transfers this will
typically be 64 bytes. For isochronous transfers this can be up to 1023 bytes. For interrupt transfers it can be
up to 64 bytes, although usually a smaller value will be used. Theinterval field is ignored for control and
bulk transfers. For isochronous transfers it should be set to 1. For interrupt transfers it can be a value between
1 and 255, and indicates the number of milliseconds between successive polling operations.

For USB peripherals involving multiple configurations or interfaces the array of endpoint descriptors should
be organized sequentially: first the endpoints corresponding to the first interface of the first configuration, then
the second interface in that configuration, and so on; then all the endpoints for all the interfaces in the second
configuration; etc.

Strings

The enumeration data can contain a number of strings with additional information. Unicode encoding is used
for the strings, and it is possible for a peripheral to supply a given string in multiple languages using the appro-
priate characters. The first two bytes of each string give a length and type field. The first string is special; after
the two bytes header it consists of an array of 2-byte language id codes, indicating the supported languages.
The language code 0x0409 corresponds to English (United States).

const unsigned char* usb_strings[] = {
"\004\003\011\004",
"\020\003R\000e\000d\000 \000H\000a\000t\000"

};

const usbs_enumeration_data usb_enum_data = {
...
total_number_strings: 2,
strings: usb_strings,
...

};

The default handler for standard control messages assumes that the peripheral only uses a single language.
If this is not the case then higher-level code will have to handle the standard get-descriptor control messages
when a string descriptor is requested.

505

USB Enumeration Data

usbs_enumeration_data

The usbs_enumeration_data data structure collects together all the various descriptors that make up the enu-
meration data. It is the responsibility of application code to supply a suitable data structure and install it in the
control endpoints’senumeration_data field before the USB device is started.

506

Starting up a USB Device

Name
usbs_start — Starting up a USB Device

Synopsis

#include <cyg/io/usb/usbs.h >

void usbs_start (usbs_control_endpoint* ep0);

Description
Initializing a USB device requires some support from higher-level code, typically the application, in the form
of enumeration data. Hence it is not possible for the low-level USB driver to activate a USB device itself.
Instead the higher-level code has to take care of this by invokingusbs_start . This function takes a pointer to
a USB control endpoint data structure. USB device drivers should provide exactly one such data structure for
every USB device, so the pointer uniquely identifies the device.

const usbs_enumeration_data usb_enum_data = {
...

};

int
main(int argc, char** argv)
{

usbs_sa11x0_ep0.enumeration_data = &usb_enum_data;
...
usbs_start(&usbs_sa11x0_ep0);
...

}

The exact behaviour ofusbs_start depends on the USB hardware and the device driver. A typical imple-
mentation would change the USB data pins from tristated to active. If the peripheral is already plugged into a
host then the latter should detect this change and start interacting with the peripheral, including requesting the
enumeration data. Some of this may happen beforeusbs_start returns, but given that multiple interactions
between USB host and peripheral are required it is likely that the function will return before the peripheral
is fully configured. Control endpoints provide amechanismfor informing higher-level code of USB state
changes.usbs_start will return even if the peripheral is not currently connected to a host: it will not block
until the connection is established.

usbs_start should only be called once for a given USB device. There are no defined error conditions. Note
that the function affects the entire USB device and not just the control endpoint: there is no need to start any
data endpoints as well.

507

Starting up a USB Device

508

Devtab Entries

Name
Devtab Entries — Data endpoint data structure

Synopsis
/dev/usb0c
/dev/usb1r
/dev/usb2w

Devtab Entries
USB device drivers provide two ways of transferring data between host and peripheral. The first involves USB-
specific functionality such asusbs_start_rx_buffer . This provides non-blocking I/O: a transfer is started,
and some time later the device driver will call a supplied completion function. The second uses the conventional
I/O model: there are entries in the device table corresponding to the various endpoints. Standard calls such as
open can then be used to get a suitable handle. Actual I/O happens via blockingread andwrite calls. In
practice the blocking operations are simply implemented using the underlying non-blocking functionality.

Each endpoint will have its own devtab entry. The exact names are controlled by the device driver package,
but typically the root will be/dev/usb . This is followed by one or more decimal digits giving the endpoint
number, followed byc for a control endpoint,r for a receive endpoint (host to peripheral), andw for a transmit
endpoint (peripheral to host). If the target hardware involves more than one USB device then different roots
should be used, for example/dev/usb0c and/dev/usb1_0c . This may require explicit manipulation of device
driver configuration options by the application developer.

At present the devtab entry for a control endpoint does not support any I/O operations.

write operations

cyg_io_write and similar functions in higher-level packages can be used to perform a transfer from peripheral
to host. Successive write operations will not be coalesced. For example, when doing a 1000 byte write to an
endpoint that uses the bulk transfer protocol this will involve 15 full-size 64-byte packets and a terminating 40-
byte packet. USB device drivers are not expected to do any locking, and if higher-level code performs multiple
concurrent write operations on a single endpoint then the resulting behaviour is undefined.

A USB write operation will never transfer less data than specified. It is the responsibility of higher-level code
to ensure that the amount of data being transferred is acceptable to the host-side code. Usually this will be
defined by a higher-level protocol. If an attempt is made to transfer more data than the host expects then the
resulting behaviour is undefined.

There are two likely error conditions.EPIPE indicates that the connection between host and target has been
broken.EAGAIN indicates that the endpoint has been stalled, either at the request of the host or by other activity
inside the peripheral.

read operations

cyg_io_read and similar functions in higher-level packages can be used to perform a transfer from host to
peripheral. This should be a complete transfer: higher-level protocols should define an upper bound on the

509

Devtab Entries

amount of data being transferred, and theread operation should involve at least this amount of data. The
return value will indicate the actual transfer size, which may be less than requested.

Some device drivers may support partial reads, but USB device drivers are not expected to perform any buffer-
ing because that involves both memory and code overheads. One technique that may work for bulk transfers is
to exploit the fact that such transfers happen in 64-byte packets. It is possible toread an initial 64 bytes, corre-
sponding to the first packet in the transfer. These 64 bytes can then be examined to determine the total transfer
size, and the remaining data can be transferred in anotherread operation. This technique is not guaranteed to
work with all USB hardware. Also, if the delay between accepting the first packet and the remainder of the
transfer is excessive then this could cause timeout problems for the host-side software. For these reasons the
use of partial reads should be avoided.

There are two likely error conditions.EPIPE indicates that the connection between host and target has been
broken.EAGAIN indicates that the endpoint has been stalled, either at the request of the host or by other activity
inside the peripheral.

USB device drivers are not expected to do any locking. If higher-level code performs multiple concurrent read
operations on a single endpoint then the resulting behaviour is undefined.

select operations

Typical USB device drivers will not provide any support forselect . Consider bulk transfers from the host to
the peripheral. At the USB device driver level there is no way of knowing in advance how large a transfer will
be, so it is not feasible for the device driver to buffer the entire transfer. It may be possible to buffer part of
the transfer, for example the first 64-byte packet, and copy this into application space at the start of aread ,
but this adds code and memory overheads. Worse, it means that there is an unknown but potentially long delay
between a peripheral accepting the first packet of a transfer and the remaining packets, which could confuse or
upset the host-side software.

With some USB hardware it may be possible for the device driver to detect OUT tokens from the host without
actually accepting the data, and this would indicate that aread is likely to succeed. However, it would not be
reliable since the host-side I/O operation could time out. A similar mechanism could be used to implement
select for outgoing data, but again this would not be reliable.

Some device drivers may provide partial support forselect anyway, possibly under the control of a configu-
ration option. The device driver’s documentation should be consulted for further information. It is also worth
noting that the USB-specific non-blocking API can often be used as an alternative toselect .

get_config and set_config operations

There are noset_config or get_config (also known asioctl) operations defined for USB devices. Some
device drivers may provide hardware-specific facilities this way.

Note: Currently the USB-specific functions related to halted endpoints cannot be accessed readily via
devtab entries. This functionality should probably be made available via set_config and get_config . It may
also prove useful to provide a get_config operation that maps from the devtab entries to the underlying
endpoint data structures.

510

Devtab Entries

Presence

The devtab entries are optional. If the USB device is accessed primarily by class-specific code such as the
USB-ethernet package and that package uses the USB-specific API directly, the devtab entries are redundant.
Even if application code does need to access the USB device, the non-blocking API may be more convenient
than the blocking I/O provided via the devtab entries. In these cases the devtab entries serve no useful purpose,
but they still impose a memory overhead. It is possible to suppress the presence of these entries by disabling
the configuration optionCYGGLO_IO_USB_SLAVE_PROVIDE_DEVTAB_ENTRIES.

511

Devtab Entries

512

Receiving Data from the Host

Name
usbs_start_rx_buffer — Receiving Data from the Host

Synopsis

#include <cyg/io/usb/usbs.h >

void usbs_start_rx_buffer (usbs_rx_endpoint* ep , unsigned char* buffer , int length , void
(*)(void*,int) complete_fn , void * complete_data);
void usbs_start_rx (usbs_rx_endpoint* ep);

Description

usbs_start_rx_buffer is a USB-specific function to accept a transfer from host to peripheral. It can be used
for bulk, interrupt or isochronous transfers, but not for control messages. Instead those involve manipulating
theusbs_control_endpointdata structure directly. The function takes five arguments:

1. The first argument identifies the specific endpoint that should be used. Different USB devices will sup-
port different sets of endpoints and the device driver will provide appropriate data structures. The device
driver’s documentation should be consulted for details of which endpoints are available.

2. The buffer and length arguments control the actual transfer. USB device drivers are not expected
to perform any buffering or to support partial transfers, so the length specified should correspond to the
maximum transfer that is currently possible and the buffer should be at least this large. For isochronous
transfers the USB specification imposes an upper bound of 1023 bytes, and a smaller limit may be set in
theenumeration data. Interrupt transfers are similarly straightforward with an upper bound of 64 bytes, or
less as per the enumeration data. Bulk transfers are more complicated because they can involve multiple
64-byte packets plus a terminating packet of less than 64 bytes, so there is no predefined limit on the
transfer size. Instead it is left to higher-level protocols to specify an appropriate upper bound.

One technique that may work for bulk transfers is to exploit the fact that such transfers happen in 64-byte
packets: it may be possible to receive an initial 64 bytes, corresponding to the first packet in the transfer;
these 64 bytes can then be examined to determine the total transfer size, and the remaining data can be
transferred in another receive operation. This technique is not guaranteed to work with all USB hardware.
Also, if the delay between accepting the first packet and the remainder of the transfer is excessive then
this could cause timeout problems for the host-side software. For these reasons this technique should be
avoided.

3. usbs_start_rx_buffer is non-blocking. It merely starts the receive operation, and does not wait for
completion. At some later point the USB device driver will invoke the completion function parameter
with two arguments: the completion data defined by the last parameter and a result field. A result>= 0

indicates a successful transfer of that many bytes, which may be less than the upper bound imposed by the
length argument. A result< 0 indicates an error. The most likely errors are-EPIPE to indicate that the
connection between the host and the target has been broken, and-EAGAIN for when the endpoint has been
halted. Specific USB device drivers may specify additional error conditions.

513

Receiving Data from the Host

The normal sequence of events is that the USB device driver will update the appropriate hardware registers.
At some point after that the host will attempt to send data by transmitting an OUT token followed by a data
packet, and since a receive operation is now in progress the data will be accepted and ACK’d. If there were
no receive operation then the peripheral would instead generate a NAK. The USB hardware will generate an
interrupt once the whole packet has been received, and the USB device driver will service this interrupt and
arrange for a DSR to be called. Isochronous and interrupt transfers involve just a single packet. However, bulk
transfers may involve multiple packets so the device driver has to check whether the packet was a full 64 bytes
or whether it was a terminating packet of less than this. When the device driver DSR detects a complete transfer
it will inform higher-level code by invoking the supplied completion function.

This means that the completion function will normally be invoked by a DSR and not in thread context -
although some USB device drivers may have a different implementation. Therefore the completion function
is restricted in what it can do. In particular it must not make any calls that will or may block such as locking
a mutex or allocating memory. The kernel documentation should be consulted for more details of DSR’s and
interrupt handling generally.

It is possible that the completion function will be invoked beforeusbs_start_rx_buffer returns. Such an
event would be unusual because the transfer cannot happen until the next time the host tries to send data to this
peripheral, but it may happen if for example another interrupt happens and a higher priority thread is scheduled
to run. Also, if the endpoint is currently halted then the completion function will be invoked immediately with
-EAGAIN: typically this will happen in the current thread rather than in a separate DSR. The completion function
is allowed to start another transfer immediately by callingusbs_start_rx_buffer again.

USB device drivers are not expected to perform any locking. It is the responsibility of higher-level code to
ensure that there is only one receive operation for a given endpoint in progress at any one time. If there
are concurrent calls tousbs_start_rx_buffer then the resulting behaviour is undefined. For typical USB
applications this does not present any problems, because only one piece of code will access a given endpoint
at any particular time.

The following code fragment illustrates a very simple use ofusbs_start_rx_buffer to implement a blocking
receive, using a semaphore to synchronise between the foreground thread and the DSR. For a simple example
like this no completion data is needed.

static int error_code = 0;
static cyg_sem_t completion_wait;

static void
completion_fn(void* data, int result)
{

error_code = result;
cyg_semaphore_post(&completion_wait);

}

int
blocking_receive(usbs_rx_endpoint* ep, unsigned char* buf, int len)
{

error_code = 0;
usbs_start_rx_buffer(ep, buf, len, &completion_fn, NULL);
cyg_semaphore_wait(&completion_wait);
return error_code;

}

There is also a utility functionusbs_start_rx . This can be used by code that wants to manipulatedata
endpointsdirectly, specifically thecomplete_fn , complete_data , buffer andbuffer_size fields.
usbs_start_tx just invokes a function supplied by the device driver.

514

Sending Data to the Host

Name
usbs_start_tx_buffer — Sending Data to the Host

Synopsis

#include <cyg/io/usb/usbs.h >

void usbs_start_tx_buffer (usbs_tx_endpoint* ep , const unsigned char* buffer , int
length , void (*)(void*,int) complete_fn , void * complete_data);
void usbs_start_tx (usbs_tx_endpoint* ep);

Description

usbs_start_tx_buffer is a USB-specific function to transfer data from peripheral to host. It can be used for
bulk, interrupt or isochronous transfers, but not for control messages; instead those involve manipulating the
usbs_control_endpointdata structure directly. The function takes five arguments:

1. The first argument identifies the specific endpoint that should be used. Different USB devices will sup-
port different sets of endpoints and the device driver will provide appropriate data structures. The device
driver’s documentation should be consulted for details of which endpoints are available.

2. Thebuffer and length arguments control the actual transfer. USB device drivers are not allowed to
modify the buffer during the transfer, so the data can reside in read-only memory. The transfer will be
for all the data specified, and it is the responsibility of higher-level code to make sure that the host is
expecting this amount of data. For isochronous transfers the USB specification imposes an upper bound
of 1023 bytes, but a smaller limit may be set in theenumeration data. Interrupt transfers have an upper
bound of 64 bytes or less, as per the enumeration data. Bulk transfers are more complicated because they
can involve multiple 64-byte packets plus a terminating packet of less than 64 bytes, so the basic USB
specification does not impose an upper limit on the total transfer size. Instead it is left to higher-level
protocols to specify an appropriate upper bound. If the peripheral attempts to send more data than the host
is willing to accept then the resulting behaviour is undefined and may well depend on the specific host
operating system being used.

For bulk transfers, the USB device driver or the underlying hardware will automatically split the transfer
up into the appropriate number of full-size 64-byte packets plus a single terminating packet, which may
be 0 bytes.

3. usbs_start_tx_buffer is non-blocking. It merely starts the transmit operation, and does not wait for
completion. At some later point the USB device driver will invoke the completion function parameter
with two arguments: the completion data defined by the last parameter, and a result field. This result will
be either an error code< 0, or the amount of data transferred which should correspond to thelength
argument. The most likely errors are-EPIPE to indicate that the connection between the host and the target
has been broken, and-EAGAIN for when the endpoint has beenhalted. Specific USB device drivers may
define additional error conditions.

515

Sending Data to the Host

The normal sequence of events is that the USB device driver will update the appropriate hardware registers. At
some point after that the host will attempt to fetch data by transmitting an IN token. Since a transmit operation
is now in progress the peripheral can send a packet of data, and the host will generate an ACK. At this point
the USB hardware will generate an interrupt, and the device driver will service this interrupt and arrange for a
DSR to be called. Isochronous and interrupt transfers involve just a single packet. However, bulk transfers may
involve multiple packets so the device driver has to check whether there is more data to send and set things up
for the next packet. When the device driver DSR detects a complete transfer it will inform higher-level code
by invoking the supplied completion function.

This means that the completion function will normally be invoked by a DSR and not in thread context -
although some USB device drivers may have a different implementation. Therefore the completion function
is restricted in what it can do, in particular it must not make any calls that will or may block such as locking
a mutex or allocating memory. The kernel documentation should be consulted for more details of DSR’s and
interrupt handling generally.

It is possible that the completion function will be invoked beforeusbs_start_tx_buffer returns. Such an
event would be unusual because the transfer cannot happen until the next time the host tries to fetch data
from this peripheral, but it may happen if, for example, another interrupt happens and a higher priority thread
is scheduled to run. Also, if the endpoint is currently halted then the completion function will be invoked
immediately with-EAGAIN: typically this will happen in the current thread rather than in a separate DSR. The
completion function is allowed to start another transfer immediately by callingusbs_start_tx_buffer again.

USB device drivers are not expected to perform any locking. It is the responsibility of higher-level code to
ensure that there is only one transmit operation for a given endpoint in progress at any one time. If there
are concurrent calls tousbs_start_tx_buffer then the resulting behaviour is undefined. For typical USB
applications this does not present any problems because only piece of code will access a given endpoint at any
particular time.

The following code fragment illustrates a very simple use ofusbs_start_tx_buffer to implement a blocking
transmit, using a semaphore to synchronise between the foreground thread and the DSR. For a simple example
like this no completion data is needed.

static int error_code = 0;
static cyg_sem_t completion_wait;

static void
completion_fn(void* data, int result)
{

error_code = result;
cyg_semaphore_post(&completion_wait);

}

int
blocking_transmit(usbs_tx_endpoint* ep, const unsigned char* buf, int len)
{

error_code = 0;
usbs_start_tx_buffer(ep, buf, len, &completion_fn, NULL);
cyg_semaphore_wait(&completion_wait);
return error_code;

}

There is also a utility functionusbs_start . This can be used by code that wants to manipulatedata end-
points directly, specifically thecomplete_fn , complete_data , buffer and buffer_size fields.
usbs_start_tx just calls a function supplied by the device driver.

516

Halted Endpoints

Name
Halted Endpoints — Support for Halting and Halted Endpoints

Synopsis

#include <cyg/io/usb/usbs.h >

cyg_bool usbs_rx_endpoint_halted (usbs_rx_endpoint* ep);
void usbs_set_rx_endpoint_halted (usbs_rx_endpoint* ep , cyg_bool new_state);
void usbs_start_rx_endpoint_wait (usbs_rx_endpoint* ep , void (*)(void*, int)
complete_fn , void * complete_data);
cyg_bool usbs_tx_endpoint_halted (usbs_tx_endpoint* ep);
void usbs_set_tx_endpoint_halted (usbs_tx_endpoint* ep , cyg_bool new_state);
void usbs_start_tx_endpoint_wait (usbs_tx_endpoint* ep , void (*)(void*, int)
complete_fn , void * complete_data);

Description

Normal USB traffic involves straightforward handshakes, with either anACK to indicate that a packet was
transferred without errors, or aNAKif an error occurred, or if a peripheral is currently unable to process another
packet from the host, or has no packet to send to the host. There is a third form of handshake, aSTALL, which
indicates that the endpoint is currentlyhalted.

When an endpoint is halted it means that the host-side code needs to take some sort of recovery action before
communication over that endpoint can resume. The exact circumstances under which this can happen are
not defined by the USB specification, but one example would be a protocol violation if say the peripheral
attempted to transmit more data to the host than was permitted by the protocol in use. The host can use the
standard control messages get-status, set-feature and clear-feature to examine and manipulate the halted status
of a given endpoint. There are USB-specific functions which can be used inside the peripheral to achieve the
same effect. Once an endpoint has been halted the host can then interact with the peripheral using class or
vendor control messages to perform appropriate recovery, and then the halted condition can be cleared.

Halting an endpoint does not constitute a device state change, and there is no mechanism by which higher-level
code can be informed immediately. However, any ongoing receive or transmit operations will be aborted with
an-EAGAIN error, and any new receives or transmits will fail immediately with the same error.

There are six functions to support halted endpoints, one set for receive endpoints and another for transmit
endpoints, with both sets behaving in essentially the same way. The first,usbs_rx_endpoint_halted , can
be used to determine whether or not an endpoint is currently halted: it takes a single argument that identi-
fies the endpoint of interest. The second function,usbs_set_rx_endpoint_halted , can be used to change
the halted condition of an endpoint: it takes two arguments; one to identify the endpoint and another to
specify the new state. The last functionusbs_start_rx_endpoint_wait operates in much the same way
asusbs_start_rx_buffer : when the endpoint is no longer halted the device driver will invoke the supplied
completion function with a status of 0. The completion function has the same signature as that for a transfer op-
eration. Often it will be possible to use a single completion function and have the foreground code invoke either
usbs_start_rx_buffer or usbs_start_rx_endpoint_wait depending on the current state of the endpoint.

517

Halted Endpoints

518

Control Endpoints

Name
Control Endpoints — Control endpoint data structure

Synopsis
#include <cyg/io/usb/usbs.h >

typedef struct usbs_control_endpoint {
*hellip;

} usbs_control_endpoint;

usbs_control_endpoint Data Structure
The device driver for a USB slave device should supply one usbs_control_endpoint data structure per USB
device. This corresponds to endpoint 0 which will be used for all control message interaction between the host
and that device. The data structure is also used for internal management purposes, for example to keep track
of the current state. In a typical USB peripheral there will only be one such data structure in the entire system,
but if there are multiple USB slave ports, allowing the peripheral to be connected to multiple hosts, then there
will be a separate data structure for each one. The name or names of the data structures are determined by the
device drivers. For example, the SA11x0 USB device driver package providesusbs_sa11x0_ep0 .

The operations on a control endpoint do not fit cleanly into a conventional open/read/write I/O model. For
example, when the host sends a control message to the USB peripheral this may be one of four types: standard,
class, vendor and reserved. Some or all of the standard control messages will be handled automatically by
the common USB slave package or by the device driver itself. Other standard control messages and the other
types of control messages may be handled by a class-specific package or by application code. Although it
would be possible to have devtab entries such as/dev/usbs_ep0/standard and/dev/usbs_ep0/class , and
then support read and write operations on these devtab entries, this would add significant overhead and code
complexity. Instead, all of the fields in the control endpoint data structure are public and can be manipulated
directly by higher level code if and when required.

Control endpoints involve a number of callback functions, with higher-level code installing suitable function
pointers in the control endpoint data structure. For example, if the peripheral involves vendor-specific control
messages then a suitable handler for these messages should be installed. Although the exact details depend
on the device driver, typically these callback functions will be invoked at DSR level rather than thread level.
Therefore, only certain eCos functions can be invoked; specifically, those functions that are guaranteed not
to block. If a potentially blocking function such as a semaphore wait or a mutex lock operation is invoked
from inside the callback then the resulting behaviour is undefined, and the system as a whole may fail. In
addition, if one of the callback functions involves significant processing effort then this may adversely affect
the system’s real time characteristics. The eCos kernel documentation should be consulted for more details of
DSR handling.

Initialization

The usbs_control_endpoint data structure contains the following fields related to initialization.

typedef struct usbs_control_endpoint {
...

519

Control Endpoints

const usbs_enumeration_data* enumeration_data;
void (*start_fn)(usbs_control_endpoint*);
...

};

It is the responsibility of higher-level code, usually the application, to define the USB enumeration data. This
needs to be installed in the control endpoint data structure early on during system startup, before the USB
device is actually started and any interaction with the host is possible. Details of the enumeration data are sup-
plied in the sectionUSB Enumeration Data. Typically, the enumeration data is constant for a given peripheral,
although it can be constructed dynamically if necessary. However, the enumeration data cannot change while
the peripheral is connected to a host: the peripheral cannot easily claim to be a keyboard one second and a
printer the next.

Thestart_fn member is normally accessed via the utilityusbs_start rather than directly. It is provided
by the device driver and should be invoked once the system is fully initialized and interaction with the host is
possible. A typical implementation would change the USB data pins from tristated to active. If the peripheral
is already plugged into a host then the latter should detect this change and start interacting with the peripheral,
including requesting the enumeration data.

State

There are three usbs_control_endpoint fields related to the current state of a USB slave device, plus some state
constants and an enumeration of the possible state changes:

typedef struct usbs_control_endpoint {
...
int state;
void (*state_change_fn)(struct usbs_control_endpoint*, void*,

usbs_state_change, int);
void* state_change_data;
...

};

#define USBS_STATE_DETACHED 0x01
#define USBS_STATE_ATTACHED 0x02
#define USBS_STATE_POWERED 0x03
#define USBS_STATE_DEFAULT 0x04
#define USBS_STATE_ADDRESSED 0x05
#define USBS_STATE_CONFIGURED 0x06
#define USBS_STATE_MASK 0x7F
#define USBS_STATE_SUSPENDED (1 << 7)

typedef enum {
USBS_STATE_CHANGE_DETACHED = 1,
USBS_STATE_CHANGE_ATTACHED = 2,
USBS_STATE_CHANGE_POWERED = 3,
USBS_STATE_CHANGE_RESET = 4,
USBS_STATE_CHANGE_ADDRESSED = 5,
USBS_STATE_CHANGE_CONFIGURED = 6,
USBS_STATE_CHANGE_DECONFIGURED = 7,
USBS_STATE_CHANGE_SUSPENDED = 8,
USBS_STATE_CHANGE_RESUMED = 9

} usbs_state_change;

The USB standard defines a number of states for a given USB peripheral. The initial state isdetached, where
the peripheral is either not connected to a host at all or, from the host’s perspective, the peripheral has not

520

Control Endpoints

started up yet because the relevant pins are tristated. The peripheral then moves via intermediateattachedand
poweredstates to its default orresetstate, at which point the host and peripheral can actually start exchanging
data. The first message is from host to peripheral and provides a unique 7-bit address within the local USB
network, resulting in a state change toaddressed. The host then requests enumeration data and performs other
initialization. If everything succeeds the host sends a standard set-configuration control message, after which
the peripheral isconfiguredand expected to be up and running. Note that some USB device drivers may be
unable to distinguish between thedetached, attachedandpoweredstates but generally this is not important to
higher-level code.

A USB host should generate at least one token every millisecond. If a peripheral fails to detect any USB traffic
for a period of time then typically this indicates that the host has entered a power-saving mode, and the periph-
eral should do the same if possible. This corresponds to thesuspendedbit. The actual state is a combination of
suspendedand the previous state, for exampleconfiguredandsuspendedrather than justsuspended. When the
peripheral subsequently detects USB traffic it would switch back to theconfiguredstate.

The USB device driver and the common USB slave package will maintain the current state in the control
endpoint’sstate field. There should be no need for any other code to change this field, but it can be examined
whenever appropriate. In addition whenever a state change occurs the generic code can invoke a state change
callback function. By default, no such callback function will be installed. Some class-specific packages such
as the USB-ethernet package will install a suitable function to keep track of whether or not the host-peripheral
connection is up, that is whether or not ethernet packets can be exchanged. Application code can also update
this field. If multiple parties want to be informed of state changes, for example both a class-specific package and
application code, then typically the application code will install its state change handler after the class-specific
package and is responsible for chaining into the package’s handler.

The state change callback function is invoked with four arguments. The first identifies the control endpoint.
The second is an arbitrary pointer: higher-level code can fill in thestate_change_data field to set this.
The third argument specifies the state change that has occurred, and the last argument supplies the previous
state (the new state is readily available from the control endpoint structure).

eCos does not provide any utility functions for updating or examining thestate_change_fn or
state_change_data fields. Instead, it is expected that the fields in the usbs_control_endpoint data
structure will be manipulated directly. Any utility functions would do just this, but at the cost of increased
code and cpu overheads.

Standard Control Messages

typedef struct usbs_control_endpoint {
...
unsigned char control_buffer[8];
usbs_control_return (*standard_control_fn)(struct usbs_control_endpoint*, void*);
void* standard_control_data;
...

} usbs_control_endpoint;

typedef enum {
USBS_CONTROL_RETURN_HANDLED = 0,
USBS_CONTROL_RETURN_UNKNOWN = 1,
USBS_CONTROL_RETURN_STALL = 2

} usbs_control_return;

extern usbs_control_return usbs_handle_standard_control(struct usbs_control_endpoint*);

When a USB peripheral is connected to the host it must always respond to control messages sent to endpoint 0.
Control messages always consist of an initial eight-byte header, containing fields such as a request type. This
may be followed by a further data transfer, either from host to peripheral or from peripheral to host. The way
this is handled is described in theBuffer Managementsection below.

521

Control Endpoints

The USB device driver will always accept the initial eight-byte header, storing it in thecontrol_buffer
field. Then it determines the request type: standard, class, vendor, or reserved. The way in which the last three
of these are processed is described in the sectionOther Control Messages. Some standard control messages
will be handled by the device driver itself; typically theset-addressrequest and theget-status, set-featureand
clear-featurerequests when applied to endpoints.

If a standard control message cannot be handled by the device driver itself, the driver checks the
standard_control_fn field in the control endpoint data structure. If higher-level code has installed a
suitable callback function then this will be invoked with two argument, the control endpoint data structure
itself and thestandard_control_data field. The latter allows the higher level code to associate
arbitrary data with the control endpoint. The callback function can return one of three values:HANDLED to
indicate that the request has been processed;UNKNOWN if the message should be handled by the default
code; orSTALLto indicate an error condition. If higher level code has not installed a callback function or
if the callback function has returnedUNKNOWN then the device driver will invoke a default handler,
usbs_handle_standard_control provided by the common USB slave package.

The default handler can cope with all of the standard control messages for a simple USB peripheral. However,
if the peripheral involves multiple configurations, multiple interfaces in a configuration, or alternate settings
for an interface, then this cannot be handled by generic code. For example, a multimedia peripheral may
support various alternate settings for a given data source with different bandwidth requirements, and the host
can select a setting that takes into account the current load. Clearly higher-level code needs to be aware when
the host changes the current setting, so that it can adjust the rate at which data is fed to or retrieved from the
host. Therefore the higher-level code needs to install its own standard control callback and process appropriate
messages, rather than leaving these to the default handler.

The default handler will take care of theget-descriptorrequest used to obtain the enumeration data. It has
support for string descriptors but ignores language encoding issues. If language encoding is important for the
peripheral then this will have to be handled by an application-specific standard control handler.

The header file<cyg/io/usb/usb.h > defines various constants related to control messages, for example the
function codes corresponding to the standard request types. This header file is provided by the common USB
package, not by the USB slave package, since the information is also relevant to USB hosts.

Other Control Messages

typedef struct usbs_control_endpoint {
...
usbs_control_return (*class_control_fn)(struct usbs_control_endpoint*, void*);
void* class_control_data;
usbs_control_return (*vendor_control_fn)(struct usbs_control_endpoint*, void*);
void* vendor_control_data;
usbs_control_return (*reserved_control_fn)(struct usbs_control_endpoint*, void*);
void* reserved_control_data;
...

} usbs_control_endpoint;

Non-standard control messages always have to be processed by higher-level code. This could be class-specific
packages. For example, the USB-ethernet package will handle requests for getting the MAC address and for
enabling or disabling promiscuous mode. In all cases the device driver will store the initial request in the
control_buffer field, check for an appropriate handler, and invoke it with details of the control endpoint
and any handler-specific data that has been installed alongside the handler itself. The handler should return
eitherUSBS_CONTROL_RETURN_HANDLEDto report success orUSBS_CONTROL_RETURN_STALLto report failure.
The device driver will report this to the host.

If there are multiple parties interested in a particular type of control messages, it is the responsibility of appli-
cation code to install an appropriate handler and process the requests appropriately.

522

Control Endpoints

Buffer Management

typedef struct usbs_control_endpoint {
...
unsigned char* buffer;
int buffer_size;
void (*fill_buffer_fn)(struct usbs_control_endpoint*);
void* fill_data;
int fill_index;
usbs_control_return (*complete_fn)(struct usbs_control_endpoint*, int);
...

} usbs_control_endpoint;

Many USB control messages involve transferring more data than just the initial eight-byte header. The header
indicates the direction of the transfer, OUT for host to peripheral or IN for peripheral to host. It also specifies a
length field, which is exact for an OUT transfer or an upper bound for an IN transfer. Control message handlers
can manipulate six fields within the control endpoint data structure to ensure that the transfer happens correctly.

For an OUT transfer, the handler should examine the length field in the header and provide a single buffer for
all the data. A class-specific protocol would typically impose an upper bound on the amount of data, allowing
the buffer to be allocated statically. The handler should update thebuffer andcomplete_fn fields. When
all the data has been transferred the completion callback will be invoked, and its return value determines the
response sent back to the host. The USB standard allows for a new control message to be sent before the
current transfer has completed, effectively cancelling the current operation. When this happens the completion
function will also be invoked. The second argument to the completion function specifies what has happened,
with a value of 0 indicating success and an error code such as-EPIPE or -EIO indicating that the current
transfer has been cancelled.

IN transfers are a little bit more complicated. The required information, for example the enumeration data, may
not be in a single contiguous buffer. Instead a mechanism is provided by which the buffer can be refilled, thus
allowing the transfer to move from one record to the next. Essentially, the transfer operates as follows:

1. When the host requests another chunk of data (typically eight bytes), the USB device driver will examine
the buffer_size field. If non-zero thenbuffer contains at least one more byte of data, and then
buffer_size is decremented.

2. Whenbuffer_size has dropped to 0, thefill_buffer_fn field will be examined. If non-null it
will be invoked to refill the buffer.

3. The fill_data and fill_index fields are not used by the device driver. Instead these fields are
available to the refill function to keep track of the current state of the transfer.

4. Whenbuffer_size is 0 andfill_buffer_fn is NULL, no more data is available and the transfer
has completed.

5. Optionally a completion function can be installed. This will be invoked with 0 if the transfer completes
successfully, or with an error code if the transfer is cancelled because of another control messsage.

If the requested data is contiguous then the only fields that need to be manipulated arebuffer and
buffer_size , and optionally complete_fn . If the requested data is not contiguous then the
initial control message handler should updatefill_buffer_fn and some or all of the other fields,
as required. An example of this is the handling of the standardget-descriptor control message by
usbs_handle_standard_control .

Polling Support

typedef struct usbs_control_endpoint {

523

Control Endpoints

void (*poll_fn)(struct usbs_control_endpoint*);
int interrupt_vector;
...

} usbs_control_endpoint;

In nearly all circumstances USB I/O should be interrupt-driven. However, there are special environments such
as RedBoot where polled operation may be appropriate. If the device driver can operate in polled mode then it
will provide a suitable function via thepoll_fn field, and higher-level code can invoke this regularly. This
polling function will take care of all endpoints associated with the device, not just the control endpoint. If the
USB hardware involves a single interrupt vector then this will be identified in the data structure as well.

524

Data Endpoints

Name
Data Endpoints — Data endpoint data structures

Synopsis
#include <cyg/io/usb/usbs.h >

typedef struct usbs_rx_endpoint {
void (*start_rx_fn)(struct usbs_rx_endpoint*);
void (*set_halted_fn)(struct usbs_rx_endpoint*, cyg_bool);
void (*complete_fn)(void*, int);
void* complete_data;
unsigned char* buffer;
int buffer_size;
cyg_bool halted;

} usbs_rx_endpoint;

typedef struct usbs_tx_endpoint {
void (*start_tx_fn)(struct usbs_tx_endpoint*);
void (*set_halted_fn)(struct usbs_tx_endpoint*, cyg_bool);
void (*complete_fn)(void*, int);
void* complete_data;
const unsigned char* buffer;
int buffer_size;
cyg_bool halted;

} usbs_tx_endpoint;

Receive and Transmit Data Structures
In addition to a single usbs_control_endpoint data structure per USB slave device, the USB device driver
should also provide receive and transmit data structures corresponding to the other endpoints. The names of
these are determined by the device driver. For example, the SA1110 USB device driver package provides
usbs_sa11x0_ep1 for receives andusbs_sa11x0_ep2 for transmits.

Unlike control endpoints, the common USB slave package does provide a number of utility routines to manip-
ulate data endpoints. For exampleusbs_start_rx_buffer can be used to receive data from the host into a
buffer. In addition the USB device driver can provide devtab entries such as/dev/usbs1r and/dev/usbs2w ,
so higher-level code canopen these devices and then perform blockingread andwrite operations.

However, the operation of data endpoints and the various endpoint-related functions is relatively
straightforward. First consider a usbs_rx_endpoint structure. The device driver will provide the members
start_rx_fn andset_halted_fn , and it will maintain thehalted field. To receive data, higher-level
code sets thebuffer , buffer_size , complete_fn and optionally thecomplete_data fields.
Next thestart_rx_fn member should be called. When the transfer has finished the device driver will
invoke the completion function, usingcomplete_data as the first argument and a size field for the second
argument. A negative size indicates an error of some sort:-EGAIN indicates that the endpoint has been halted,
usually at the request of the host;-EPIPE indicates that the connection between the host and the peripheral
has been broken. Certain device drivers may generate other error codes.

525

Data Endpoints

If higher-level code needs to halt or unhalt an endpoint then it can invoke theset_halted_fn member.
When an endpoint is halted, invokingstart_rx_fn wit buffer_size set to 0 indicates that higher-level
code wants to block until the endpoint is no longer halted; at that point the completion function will be invoked.

USB device drivers are allowed to assume that higher-level protocols ensure that host and peripheral agree on
the amount of data that will be transferred, or at least on an upper bound. Therefore there is no need for the
device driver to maintain its own buffers, and copy operations are avoided. If the host sends more data than
expected then the resulting behaviour is undefined.

Transmit endpoints work in essentially the same way as receive endpoints. Higher-level code should set the
buffer andbuffer_size fields to point at the data to be transferred, then callstart_tx_fn , and the
device driver will invoked the completion function when the transfer has completed.

USB device drivers are not expected to perform any locking. If at any time there are two concurrent receive op-
erations for a given endpoint, or two concurrent transmit operations, then the resulting behaviour is undefined.
It is the responsibility of higher-level code to perform any synchronisation that may be necessary. In practice,
conflicts are unlikely because typically a given endpoint will only be accessed sequentially by just one part of
the overall system.

526

Writing a USB Device Driver

Name
Writing a USB Device Driver — USB Device Driver Porting Guide

Introduction
Often the best way to write a USB device driver will be to start with an existing one and modify it as necessary.
The information given here is intended primarily as an outline rather than as a complete guide.

Note: At the time of writing only one USB device driver has been implemented. Hence it is possible, per-
haps probable, that some portability issues have not yet been addressed. One issue involves the different
types of transfer, for example the initial target hardware had no support for isochronous or interrupt trans-
fers, so additional functionality may be needed to switch between transfer types. Another issue would be
hardware where a given endpoint number, say endpoint 1, could be used for either receiving or transmitting
data, but not both because a single fifo is used. Issues like these will have to be resolved as and when
additional USB device drivers are written.

The Control Endpoint
A USB device driver should provide a singleusbs_control_endpointdata structure for every USB device.
Typical peripherals will have only one USB port so there will be just one such data structure in the entire
system, but theoretically it is possible to have multiple USB devices. These may all involve the same chip, in
which case a single device driver should support multiple device instances, or they may involve different chips.
The name or names of these data structures are determined by the device driver, but appropriate care should be
taken to avoid name clashes.

A USB device cannot be used unless the control endpoint data structure exists. However, the presence of
USB hardware in the target processor or board does not guarantee that the application will necessarily want
to use that hardware. To avoid unwanted code or data overheads, the device driver can provide a configuration
option to determine whether or not the endpoint 0 data structure is actually provided. A default value of
CYGINT_IO_USB_SLAVE_CLIENTSensures that the USB driver will be enabled automatically if higher-level
code does require USB support, while leaving ultimate control to the user.

The USB device driver is responsible for filling in thestart_fn , poll_fn and interrupt_vector
fields. Usually this can be achieved by static initialization. The driver is also largely responsible for maintaining
thestate field. Thecontrol_buffer array should be used to hold the first packet of a control message.
The buffer and other fields related to data transfers will be managedjointly by higher-level code and the
device driver. The remaining fields are generally filled in by higher-level code, although the driver should
initialize them to NULL values.

Hardware permitting, the USB device should be inactive until thestart_fn is invoked, for example by
tristating the appropriate pins. This prevents the host from interacting with the peripheral before all other parts
of the system have initialized. It is expected that thestart_fn will only be invoked once, shortly after
power-up.

Where possible the device driver should detect state changes, such as when the connection between host and
peripheral is established, andreportthese to higher-level code via thestate_change_fn callback, if any.
The state change to and from configured state cannot easily be handled by the device driver itself, instead
higher-level code such as the common USB slave package will take care of this.

527

Writing a USB Device Driver

Once the connection between host and peripheral has been established, the peripheral must be ready to accept
control messages at all times, and must respond to these within certain time constraints. For example, the
standard set-address control message must be handled within 50ms. The USB specification provides more
information on these constraints. The device driver is responsible for receiving the initial packet of a
control message. This packet will always be eight bytes and should be stored in thecontrol_buffer
field. Certain standard control messages should be detected and handled by the device driver itself. The
most important is set-address, but usually the get-status, set-feature and clear-feature requests when
applied to halted endpoints should also be handled by the driver. Other standard control messages should
first be passed on to thestandard_control_fn callback (if any), and finally to the default handler
usbs_handle_standard_control provided by the common USB slave package. Class, vendor and reserved
control messages should always be dispatched to the appropriate callback and there is no default handler for
these.

Some control messages will involve further data transfer, not just the initial packet. The device driver must
handle this in accordance with the USB specification and thebuffer management strategy. The driver is also
responsible for keeping track of whether or not the control operation has succeeded and generating an ACK or
STALL handshake.

The polling support is optional and may not be feasible on all hardware. It is only used in certain specialised
environments such as RedBoot. A typical implementation of the polling function would just check whether or
not an interrupt would have occurred and, if so, call the same code that the interrupt handler would.

Data Endpoints
In addition to the control endpoint data structure, a USB device driver should also provide appropriatedata
endpointdata structures. Obviously this is only relevant if the USB support generally is desired, that is if the
control endpoint is provided. In addition, higher-level code may not require all the endpoints, so it may be
useful to provide configuration options that control the presence of each endpoint. For example, the intended
application might only involve a single transmit endpoint and of course control messages, so supporting receive
endpoints might waste memory.

Conceptually, data endpoints are much simpler than the control endpoint. The device driver has to sup-
ply two functions, one for data transfers and another to control the halted condition. These implement the
functionality for usbs_start_rx_buffer , usbs_start_tx_buffer , usbs_set_rx_endpoint_halted and
usbs_set_tx_endpoint_halted . The device driver is also responsible for maintaining thehalted status.

For data transfers, higher-level code will have filled in thebuffer , buffer_size , complete_fn and
complete_data fields. The transfer function should arrange for the transfer to start, allowing the host to
send or receive packets. Typically this will result in an interrupt at the end of the transfer or after each packet.
Once the entire transfer has been completed, the driver’s interrupt handling code should invoke the completion
function. This can happen either in DSR context or thread context, depending on the driver’s implementation.
There are a number of special cases to consider. If the endpoint is halted when the transfer is started then the
completion function can be invoked immediately with-EAGAIN. If the transfer cannot be completed because
the connection is broken then the completion function should be invoked with-EPIPE . If the endpoint is stalled
during the transfer, either because of a standard control message or because higher-level code calls the appro-
priateset_halted_fn , then again the completion function should be invoked with-EAGAIN. Finally, the
<usbs_start_rx_endpoint_wait andusbs_start_tx_endpoint_wait functions involve calling the device
driver’s data transfer function with a buffer size of 0 bytes.

Note: Giving a buffer size of 0 bytes a special meaning is problematical because it prevents transfers of that
size. Such transfers are allowed by the USB protocol, consisting of just headers and acknowledgements
and an empty data phase, although rarely useful. A future modification of the device driver specification will

528

Writing a USB Device Driver

address this issue, although care has to be taken that the functionality remains accessible through devtab
entries as well as via low-level accesses.

Devtab Entries
For some applications or higher-level packages it may be more convenient to use traditional open/read/write
I/O calls rather than the non-blocking USB I/O calls. To support this the device driver can provide a devtab
entry for each endpoint, for example:

#ifdef CYGVAR_DEVS_USB_SA11X0_EP1_DEVTAB_ENTRY

static CHAR_DEVIO_TABLE(usbs_sa11x0_ep1_devtab_functions,
&cyg_devio_cwrite,
&usbs_devtab_cread,
&cyg_devio_bwrite,
&cyg_devio_bread,
&cyg_devio_select,
&cyg_devio_get_config,
&cyg_devio_set_config);

static CHAR_DEVTAB_ENTRY(usbs_sa11x0_ep1_devtab_entry,
CYGDAT_DEVS_USB_SA11X0_DEVTAB_BASENAME "1r",
0,
&usbs_sa11x0_ep1_devtab_functions,
&usbs_sa11x0_devtab_dummy_init,
0,
(void*) &usbs_sa11x0_ep1);

#endif

Again care must be taken to avoid name clashes. This can be achieved by having a configuration option to
control the base name, with a default value of e.g./dev/usbs , and appending an endpoint-specific string.
This gives the application developer sufficient control to eliminate any name clashes. The common USB slave
package provides functionsusbs_devtab_cwrite andusbs_devtab_cread , which can be used in the func-
tion tables for transmit and receive endpoints respectively. The private fieldpriv of the devtab entry should
be a pointer to the underlying endpoint data structure.

Because devtab entries are never accessed directly, only indirectly, they would usually be eliminated by the
linker. To avoid this the devtab entries should normally be defined in a separate source file which ends up the
special librarylibextras.a rather than in the default librarylibtarget.a .

Not all applications or higher-level packages will want to use the devtab entries and the blocking I/O facilities.
It may be appropriate for the device driver to provide additional configuration options that control whether or
not any or all of the devtab entries should be provided, to avoid unnecessary memory overheads.

Interrupt Handling
A typical USB device driver will need to service interrupts for all of the endpoints and possibly for additional
USB events such as entering or leaving suspended mode. Usually these interrupts need not be serviced directly
by the ISR. Instead, they can be left to a DSR. If the peripheral is not able to accept or send another packet
just yet, the hardware will generate a NAK and the host will just retry a little bit later. If high throughput is
required then it may be desirable to handle the bulk transfer protocol largely at ISR level, that is take care of
each packet in the ISR and only activate the DSR once the whole transfer has completed.

529

Writing a USB Device Driver

Control messages may involve invoking arbitrary callback functions in higher-level code. This should normally
happen at DSR level. Doing it at ISR level could seriously affect the system’s interrupt latency and impose
unacceptable constraints on what operations can be performed by those callbacks. If the device driver requires
a thread anyway then it may be appropriate to use this thread for invoking the callbacks, but usually it is not
worthwhile to add a new thread to the system just for this; higher-level code is expected to write callbacks
that function sensibly at DSR level. Much the same applies to the completion functions associated with data
transfers. These should also be invoked at DSR or thread level.

Support for USB Testing
Optionally a USB device driver can provide support for theUSB test software. This requires defining a number
of additional data structures, allowing the generic test code to work out just what the hardware is capable of
and hence what testing can be performed.

The key data structure is usbs_testing_endpoint, defined incyg/io/usb/usbs.h . In addition some
commonly required constants are provided by the common USB package incyg/io/usb/usb.h . One
usbs_testing_endpoint structure should be defined for each supported endpoint. The following fields need to
be filled in:

endpoint_type

This specifies the type of endpoint and should be one ofUSB_ENDPOINT_DESCRIPTOR_ATTR_CONTROL,
BULK, ISOCHRONOUSor INTERRUPT.

endpoint_number

This identifies the number that should be used by the host to address this endpoint. For a control endpoint
it should be 0. For other types of endpoints it should be between 1 and 15.

endpoint_direction

For control endpoints this field is irrelevant. For other types of endpoint it should be either
USB_ENDPOINT_DESCRIPTOR_ENDPOINT_INor USB_ENDPOINT_DESCRIPTOR_ENDPOINT_OUT. If a given
endpoint number can be used for traffic in both directions then there should be two entries in the array,
one for each direction.

endpoint

This should be a pointer to the appropriate usbs_control_endpoint, usbs_rx_endpoint or usbs_tx_endpoint
structure, allowing the generic testing code to perform low-level I/O.

devtab_entry

If the endpoint also has an entry in the system’s device table then this field should give the corresponding
string, for example"/dev/usbs1r" . This allows the generic testing code to access the device via higher-
level calls likeopen andread .

min_size

This indicates the smallest transfer size that the hardware can support on this endpoint. Typically this will
be one.

Note: Strictly speaking a minimum size of one is not quite right since it is valid for a USB transfer to
involve zero bytes, in other words a transfer that involves just headers and acknowledgements and
an empty data phase, and that should be tested as well. However current device drivers interpret a
transfer size of 0 as special, so that would have to be resolved first.

530

Writing a USB Device Driver

max_size

Similarly, this specifies the largest transfer size. For control endpoints the USB protocol uses only two
bytes to hold the transfer length, so there is an upper bound of 65535 bytes. In practice it is very unlikely
that any control transfers would ever need to be this large, and in fact such transfers would take a long time
and probably violate timing constraints. For other types of endpoint any of the protocol, the hardware, or
the device driver may impose size limits. For example a given device driver might be unable to cope
with transfers larger than 65535 bytes. If it should be possible to transfer arbitrary amounts of data then
a value of-1 indicates no upper limit, and transfer sizes will be limited by available memory and by the
capabilities of the host machine.

max_in_padding

This field is needed on some hardware where it is impossible to send packets of a certain size. For example
the hardware may be incapable of sending an empty bulk packet to terminate a transfer that is an exact
multiple of the 64-byte bulk packet size. Instead the driver has to do some padding and send an extra byte,
and the host has to be prepared to receive this extra byte. Such a driver should specify a value of1 for the
padding field. For most drivers this field should be set to0.

A better solution would be for the device driver to supply a fragment of Tcl code that would adjust the
receive buffer size only when necessary, rather than for every transfer. Forcing receive padding on all
transfers when only certain transfers will actually be padded reduces the accuracy of certain tests.

alignment

On some hardware data transfers may need to be aligned to certain boundaries, for example a word bound-
ary or a cacheline boundary. Although in theory device drivers could hide such alignment restrictions from
higher-level code by having their own buffers and performing appropriate copying, that would be expen-
sive in terms of both memory and cpu cycles. Instead the generic testing code will align any buffers passed
to the device driver to the specified boundary. For example, if the driver requires that buffers be aligned
to a word boundary then it should specify an alignment value of 4.

The device driver should provide an array of these structuresusbs_testing_endpoints[] . The USB testing
code examines this array and uses the information to perform appropriate tests. Because different USB devices
support different numbers of endpoints the number of entries in the array is not known in advance, so instead
the testing code looks for a special terminatorUSBS_TESTING_ENDPOINTS_TERMINATOR. An example array,
showing just the control endpoint and the terminator, might look like this:

usbs_testing_endpoint usbs_testing_endpoints[] = {
{

endpoint_type : USB_ENDPOINT_DESCRIPTOR_ATTR_CONTROL,
endpoint_number : 0,
endpoint_direction : USB_ENDPOINT_DESCRIPTOR_ENDPOINT_IN,
endpoint : (void*) &ep0.common,
devtab_entry : (const char*) 0,
min_size : 1,
max_size : 0x0FFFF,
max_in_padding : 0,
alignment : 0

},
...,
USBS_TESTING_ENDPOINTS_TERMINATOR

531

Writing a USB Device Driver

};

Note: The use of a single array usbs_testing_endpoints limits USB testing to platforms with a single USB
device: if there were multiple devices, each defining their own instance of this array, then there would a
collision at link time. In practice this should not be a major problem since typical USB peripherals only
interact with a single host machine via a single slave port. In addition, even if a peripheral did have multiple
slave ports the current USB testing code would not support this since it would not know which port to use.

532

Testing

Name
Testing — Testing of USB Device Drivers

Introduction
The support for USB testing provided by the eCos USB common slave package is somewhat different in nature
from the kind of testing used in many other packages. One obvious problem is that USB tests cannot be run
on just a bare target platform: instead the target platform must be connected to a suitable USB host machine,
and that host machine must be running appropriate software for the test code to interact with. This is very
different from say a kernel test which typically will have no external dependencies. Another important differ-
ence between USB testing and say a C librarystrcmp test is sensitivity to timing and to hardware boundary
conditions: although a simple test case that just performs a small number of USB transfers is better than no
testing at all, it should also be possible to run tests for hours or days on end, under a variety of loads. In order
to provide the required functionality the basic architecture of the USB testing support is as follows:

1. There is a single target-side program usbtarget. By default when this is run on a target platform it will
appear to do nothing. In fact it is waiting to be contacted by another program usbhost which will tell it
what test or tests to run. usbtarget provides mechanisms for running a wide range of tests.

2. usbtarget is a generic program, but USB testing depends to some extent on the functionality provided by
the hardware. For example there is no point in testing bulk transmits to endpoint 12 if the target hardware
does not support an endpoint 12. Therefore each USB device driver should supply information about what
the hardware is actually capable of, in the form of an array of usbs_testing_endpoint data structures.

3. There is a single host-side program usbhost, which acts as a counterpart to usbtarget. Again usbhost has
no built-in knowledge of the test or tests that are supposed to run, it only provides mechanisms for running
a wide range of tests. On start-up usbhost will search the USB bus for hardware running the target-side
program, specifically a USB device that identifies itself as the product"Red Hat eCos USB test" .

4. usbhost contains a Tcl interpreter, and will execute any Tcl scripts specified on the command line to-
gether with appropriate arguments. The Tcl interpreter has been extended with various commands such as
usbtest::bulktest , so the script can perform the desired test or tests.

5. Adding a new test simply involves writing a short Tcl script that invokes the appropriate USB-specific
commands. Running multiple tests involves passing appropriate arguments to usbhost, or alternatively
writing a single script that just invokes other scripts.

The current implementation of usbhost depends heavily on functionality provided by the Linux kernel and in
particular the usbdevfs support. It uses/proc/bus/usb/devices to find out what devices are attached to the
bus, and will then access the device by opening/proc/bus/usb/xxx/yyy and performingioctl operations.
This allows USB testing to take place without having to write a new host-side device driver, but getting the
code working on host machines not running Linux would obviously be problematical.

Building and Running the Target-side Code
The target-side component of the USB testing software consists of a single program usbtarget which contains
support for a range of different tests, under the control of host-side software. This program is not built by
default alongside other eCos test cases since it will only operate in certain environments, specifically when the
target board’s connector is plugged into a Linux host, and when the appropriate host-side software has been

533

Testing

installed on that host. Instead the user must enable a configuration optionCYGBLD_IO_USB_SLAVE_USBTESTto
add the program to the list of tests for the current configuration.

Starting the usbtarget program does not require anything unusual, so it can be run in a normal gdb session
just like any eCos application. After initialization the program will wait for activity from the host. Depending
on the hardware, the Linux host will detect that a new USB peripheral is present on the bus either when the
usbtarget initialization is complete or when the cable between target and host is connected. The host will
perform the normal USB enumeration sequence and discover that the peripheral does not match any known
vendor or product id and that there is no device driver for"Red Hat eCos USB test" , so it will ignore the
peripheral. When the usbhost program is run on the host it will connect to the target-side software, and testing
can now commence.

Building and Running the Host-side Code

Note: In theory the host-side software should be built when the package is installed in the component
repository, and removed when a package is uninstalled. The current eCos administration tool does not
provide this functionality.

The host-side software should be built via the usual sequence of "configure/make/make install". It can only be
built on a Linux host and theconfigure script contains an explicit test for this. Because the eCos component
repository should generally be treated as a read-only resource the configure script will also prevent you from
trying to build inside the source tree. Instead a separate build tree is required. Hence a typical sequence for
building the host-side software would be as follows:

$ mkdir usbhost_build
$ cd usbhost_build
$ <repo >packages/io/usb/slave/current/host/configure ➊ ➋ <args > ➌

$ make
<output from make >

$ su ➍

$ make install
<output from make install >

$

➊ The location of the eCos component repository should be substituted for<repo >.

➋ If the package has been obtained via CVS or anonymous CVS then the package version will becurrent ,
as per the example. If instead the package has been obtained as part of a full eCos release or as a separate
.epk file then the appropriate package version should be used instead ofcurrent .

➌ The configure script takes the usual arguments such as--prefix= to specify where the executables
and support files should be installed. The only other parameter that some users may wish to specify
is the location of a suitable Tcl installation. By default usbhost will use the existing Tcl installation
in /usr , as provided by your Linux distribution. An alternative Tcl installation can be specified using
the parameter--with-tcl= , or alternatively using some combination of--with-tcl-include ,
--with-tcl-lib and--with-tcl-version .

➍ One of the host-side executables that gets built, usbchmod, needs to be installed with suid root privileges.
Although the Linux kernel makes it possible for applications to perform low-level USB operations such as
transmitting bulk packets, by default access to this functionality is restricted to programs with superuser
privileges. It is undesirable to run a complex program such as usbhost with such privileges, especially since
the program contains a general-purpose Tcl interpreter. Therefore when usbhost starts up and discovers
that it does not have sufficient access to the appropriate entries in/proc/bus/usb , it spawns an instance of

534

Testing

usbchmod to modify the permissions on these entries. usbchmod will only do this for a USB device"Red

Hat eCos USB test" , so installing this program suid root should not introduce any security problems.

Duringmake install the following actions will take place:

1. usbhost will be installed in/usr/local/bin , or some otherbin directory if the default location is
changed at configure-time using a--prefix= or similar option. It will be installed as the executable
usbhost_<version>, for example usbhost_current, thus allowing several releases of the USB slave pack-
age to co-exist. For convenience a symbolic link fromusbhost to this executable will be created, so users
can just runusbhostto access the most recently-installed version.

2. usbchmod will be installed in/usr/local/libexec/ecos/io_usb_slave_ <version >. This program
should only be run by usbhost, not invoked directly, so it is not placed in thebin directory. Again the
presence of the package version in the directory name allows multiple releases of the package to co-exist.

3. A Tcl script usbhost.tcl will get installed in the same directory as usbchmod. This Tcl script is loaded
automatically by the usbhost executable.

4. A number of additional Tcl scripts, for examplelist.tcl will get installed alongsideusbhost.tcl .
These correspond to various test cases provided as standard. If a given test case is specified on the com-
mand line and cannot be found relative to the current directory then usbhost will search the install directory
for these test cases.

Note: Strictly speaking installing the usbhost.tcl and other Tcl scripts below the libexec directory
deviates from standard practice: they are architecture-independent data files so should be installed
below the share subdirectory. In practice the files are sufficiently small that there is no point in sharing
them, and keeping them below libexec simplifies the host-side software somewhat.

The usbhost should be run only when there is a suitable target attached to the USB bus and running the
usbtarget program. It will search/proc/bus/usb/devices for an entry corresponding to this program, invoke
usbchmod if necessary to change the access rights, and then interact with usbtarget over the USB bus.usbhost
should be invoked as follows:

$ usbhost [-v|--version] [-h|--help] [-V|--verbose] <test > [<test parameters >]

1. The -v or --version option will display version information for usbhost including the version of the
USB slave package that was used to build the executable.

2. The-h or --help option will display usage information.

3. The -V or --verbose option can be used to obtain more information at run-time, for example some
output for every USB transfer. This option can be repeated multiple times to increase the amount of output.

4. The first argument that does not begin with a hyphen specifies a test that should be run, in the form of a
Tcl script. For example an argument oflist.tcl will cause usbhost to look for a script with that name,
adding a.tcl suffix if necessarary, and run that script. usbhost will look in the current directory first, then
in the install tree for standard test scripts provided by the USB slave package.

5. Some test scripts may want their own parameters, for example a duration in seconds. These can be passed
on the command line after the name of the test, for exampleusbhost mytest 60.

535

Testing

Writing a Test
Each test is defined by a Tcl script, running inside an interpreter provided by usbhost. In addition to the normal
Tcl functionality this interpreter provides a number of variables and functions related to USB testing. For
example there is a variablebulk_in_endpoints that lists all the endpoints on the target that can perform bulk
IN operations, and a related arraybulk_in which contains information such as the minimum and maximum
packets sizes. There is a functionbulktest which can be used to perform bulk tests on a particular endpoint. A
simple test script aimed at specific hardware could ignore the information variables since it would know exactly
what USB hardware is available on the target, whereas a general-purpose script would use the information to
adapt to the hardware capabilities.

To avoid namespace pollution all USB-related Tcl variables and functions live in theusbtest:: names-
pace. Therefore accessing requires either explicitly including the namespace any references, for example
$usbtest::bulk_in_endpoints , or by using Tcl’snamespace import facility.

A very simple test script might look like this:

usbtest::bulktest 1 out 4000
usbtest::bulktest 2 in 4000
if { [usbtest::start 60] } {

puts "Test successful"
} else

puts "Test failed"
foreach result $usbtest::results {

puts $result
}

}

This would perform a test run involving 4000 bulk transfers from the host to the target’s endpoint 1, and
concurrently 4000 bulk transfers from endpoint 2. Default settings for packet sizes, contents, and delays would
be used. The actual test would not start running untilusbtest is invoked, and it is expected that the test would
complete within 60 seconds. If any failures occur then they are reported.

Available Hardware
Each target-side USB device driver provides information about the actual capabilities of the hardware, for ex-
ample which endpoints are available. Strictly speaking it provides information about what is actually supported
by the device driver, which may be a subset of what the hardware is capable of. For example, the hardware
may support isochronous transfers on a particular endpoint but if there is no software support for this in the
driver then this endpoint will not be listed. When usbhost first contacts the usbtarget program running on the
target platform, it obtains this information and makes it available to test scripts via Tcl variables:

bulk_in_endpoints

This is a simple list of the endpoints which can support bulk IN transfers. For example if the target-side
hardware supports these transfers on endpoints 3 and 5 then the value would be"3 5" Typical test scripts
would iterate over the list using something like:

if { 0 != [llength $usbtest::bulk_in_endpoints] } {
puts"Bulk IN endpoints: $usbtest::bulk_in_endpoints"
foreach endpoint $usbtest:bulk_in_endpoints {

...
}

}

536

Testing

bulk_in()

This array holds additional information about each bulk IN endpoint. The array is indexed by two fields,
the endpoint number and one ofmin_size , max_size , max_in_padding anddevtab :

min_size

This field specifies a lower bound on the size of bulk transfers, and will typically will have a value
of 1.

Note: The typical minimum transfer size of a single byte is not strictly speaking correct, since
under some circumstances it can make sense to have a transfer size of zero bytes. However
current target-side device drivers interpret a request to transfer zero bytes as a way for higher-
level code to determine whether or not an endpoint is stalled, so it is not actually possible to
perform zero-byte transfers. This issue will be addressed at some future point.

max_size

This field specifies an upper bound on the size of bulk transfers. Some target-side drivers may be
limited to transfers of say 0x0FFFF bytes because of hardware limitations. In practice the transfer
size is likely to be limited primarily to limit memory consumption of the test code on the target
hardware, and to ensure that tests complete reasonably quickly. At the time of writing transfers are
limited to 4K.

max_in_padding

On some hardware it may be necessary for the target-side device driver to send more data than is
actually intended. For example the SA11x0 USB hardware cannot perform bulk transfers that are
an exact multiple of 64 bytes, instead it must pad such transfers with an extra byte and the host
must be ready to accept and discard this byte. Themax_in_padding field indicates the amount of
padding that is required. The low-level code inside usbhost will use this field automatically, and there
is no need for test scripts to adjust packet sizes for padding. The field is provided for informational
purposes only.

devtab

This is a string indicating whether or not the target-side USB device driver supports access to this
endpoint via entries in the device table, in other words through conventional calls likeopen and
write . Some device drivers may only support low-level USB access because typically that is what
gets used by USB class-specific packages such as USB-ethernet. An empty string indicates that no
devtab entry is available, otherwise it will be something like"/dev/usbs2w" .

Typical test scripts would access this data using something like:

foreach endpoint $usbtest:bulk_in_endpoints {
puts "Endpoint $endpoint: "
puts " minimum transfer size $usbtest::bulk_in($endpoint,min_size)"
puts " maximum transfer size $usbtest::bulk_in($endpoint,max_size)"
if { 0 == $usbtest::bulk_in($endpoint,max_in_padding) } {

puts " no IN padding required"
} else {

puts " $usbtest::bulk_in($endpoint,max_in_padding) bytes of IN padding required"
}
if { "" == $usbtest::bulk_in($endpoint,devtab) } {

puts " no devtab entry provided"
} else {

537

Testing

puts " corresponding devtab entry is $usbtest::bulk_in($endpoint,devtab)"
}

}

bulk_out_endpoint

This is a simple list of the endpoints which can support bulk OUT transfers. It is analogous to
bulk_in_endpoints .

bulk_out()

This array holds additional information about each bulk OUT endpoint. It can be accessed in the same
way asbulk_in() , except that there is nomax_in_padding field because that field only makes sense for
IN transfers.

control()

This array holds information about the control endpoint. It contains two fields,min_size andmax_size .
Note that there is no variablecontrol_endpoints because a USB target always supports a single control
endpoint0. Similarly thecontrol array does not use an endpoint number as the first index because that
would be redundant.

isochronous_in_endpoints andisochronous_in()

These variables provide the same information asbulk_in_endpoints andbulk_in , but for endpoints
that support isochronous IN transfers.

isochronous_out_endpoints andisochronous_out()

These variables provide the same information asbulk_out_endpoints andbulk_out , but for endpoints
that support isochronous OUT transfers.

interrupt_in_endpoints andinterrupt_in()

These variables provide the same information asbulk_in_endpoints andbulk_in , but for endpoints
that support interrupt IN transfers.

interrupt_out_endpoints andinterrupt_out()

These variables provide the same information asbulk_out_endpoints andbulk_out , but for endpoints
that support interrupt OUT transfers.

Testing Bulk Transfers
The main function for initiating a bulk test isusbtest::bulktest . This takes three compulsory arguments,
and can be given a number of additional arguments to control the exact behaviour. The compulsory arguments
are:

endpoint

This specifies the endpoint to use. It should correspond to one of the entries in
usbtest::bulk_in_endpoints or usbtest::bulk_out_endpoints , depending on the transfer
direction.

538

Testing

direction

This should be eitherin or out .

number of transfers

This specifies the number of transfers that should take place. The testing software does not currently
support the concept of performing transfers for a given period of time because synchronising this on both
the host and a wide range of targets is difficult. However it is relatively easy to work out the approximate
time a number of bulk transfers should take place, based on a typical bandwidth of 1MB/second and
assuming say a 1ms overhead per transfer. Alternatively a test script could perform a small initial run to
determine what performance can actually be expected from a given target, and then use this information
to run a much longer test.

Additional arguments can be used to control the exact transfer. For example atxdelay+ argument can be
used to slowly increase the delay between transfers. All such arguments involve a value which can be passed
either as part of the argument itself, for exampletxdelay+=5 , or as a subsequent argument,txdelay+ 5 . The
possible arguments fall into a number of categories: data, I/O mechanism, transmit size, receive size, transmit
delay, and receive delay.

Data

An obvious parameter to control is the actual data that gets sent. This can be controlled by the argumentdata
which can take one of five values:none , bytefill , intfill , byteseq and wordseq . The default value is
none .

none

The transmit code will not attempt to fill the buffer in any way, and the receive code will not check it. The
actual data that gets transferred will be whatever happened to be in the buffer before the transfer started.

bytefill

The entire buffer will be filled with a single byte, as permemset.

intfill

The buffer will be treated as an array of 32-bit integers, and will be filled with the same integer repeated
the appropriate number of times. If the buffer size is not a multiple of four bytes then the last few bytes
will be set to 0.

byteseq

The buffer will be filled with a sequence of bytes, generated by a linear congruential generator. If the first
byte in the buffer is filled with the valuex , the next byte will be(m*x)+i . For example a sequence of
slowly incrementing bytes can be achieved by setting both the multiplier and the increment to 1. Alter-
natively a pseudo-random number sequence can be achieved using values 1103515245 and 12345, as per
the standard C libraryrand function. For convenience these two constants are available as Tcl variables
usbtest::MULTIPLIER andusbtest::INCREMENT .

wordseq

This acts likebyteseq , except that the buffer is treated as an array of 32-bit integers rather than as an
array of bytes. If the buffer is not a multiple of four bytes then the last few bytes will be filled with zeroes.

The above requires three additional parametersdata1 , data* anddata+ . data1 specifies the value to be
used for byte or word fills, or the first number when calculating a sequence. The default value is0. data* and
data+ specify the multiplier and increment for a sequence, and have default values of1 and0 respectively.

539

Testing

For example, to perform a bulk transfer of a pseudo-random sequence of integers starting with 42 the following
code could be used:

bulktest 2 IN 1000 data=wordseq data1=42 \
data* $usbtest::MULTIPLIER data+ $usbtest::INCREMENT

The above parameters define what data gets transferred for the first transfer, but a test can involve multiple
transfers. The data format will be the same for all transfers, but it is possible to adjust the current value, the
multiplier, and the increment between each transfer. This is achieved with parametersdata1* , data1+ ,
data** , data*+ , data+* , anddata++ , with default values of 1 for each multiplier and 0 for each incre-
ment. For example, if the multiplier for the first transfer is set to2 usingdata* , and argumentsdata** 2 and
data*+ -1 are also supplied, then the multiplier for subsequent transfers will be3, 5, 9,

Note: Currently it is not possible for a test script to send specific data, for example a specific sequence of
bytes captured by a protocol analyser that caused a problem. If the transfer was from host to target then
the target would have to know the exact sequence of bytes to expect, which means transferring data over
the USB bus when that data is known to have caused problems in the past. Similarly for target to host
transfers the target would have to know what bytes to send. A possible future extension of the USB testing
support would allow for bounce operations, where a given message is first sent to the target and then sent
back to the host, with only the host checking that the data was returned correctly.

I/O Mechanism

On the target side USB transfers can happen using either low-level USB calls such asusbs_start_rx_buffer ,
or by higher-level calls which go through the device table. By default the target-side code will use the low-level
calls. If it is desired to test the higher-level calls instead, for example because those are what the application
uses, then that can be achieved with an argumentmechanism=devtab .

Transmit Size

The next set of arguments can be used to control the size of the transmitted buffer:txsize1 , txsize >=,
txsize <= txsize* , txsize/ , andtxsize+ .

txsize1 determines the size of the first transfer, and has a default value of 32 bytes. The size of the next
transfer is calculated by first multiplying by thetxsize* value, then dividing by thetxsize/ value, and
finally adding thetxsize+ value. The defaults for these are1, 1, and0 respectively, which means that the
transfer size will remain unchanged. If for example the transfer size should increase by approximately 50 per
cent each time then suitable values might betxsize* 3 , txsize/ 2 , andtxsize+ 1 .

The txsize >= andtxsize <= arguments can be used to impose lower and upper bounds on the transfer.
By default themin_size andmax_size values appropriate for the endpoint will be used. If at any time the
current size falls outside the bounds then it will be normalized.

Receive Size

The receive size, in other words the number of bytes that either host or target will expect to receive as opposed
to the number of bytes that actually get sent, can be adjusted using a similar set of arguments:rxsize1 ,
rxsize >=, rxsize <=, rxsize* , rxsize/ and rxsize+ . The current receive size will be adjusted
between transfers just like the transmit size. However when communicating over USB it is not a good idea to
attempt to receive less data than will actually be sent: typically neither the hardware nor the software will be
able to do anything useful with the excess, so there will be problems. Therefore if at any time the calculated

540

Testing

receive size is less than the transmit size, the actual receive will be for the exact number of bytes that will get
transmitted. However this will not affect the calculations for the next receive size.

The default values forrxsize1 , rxsize* , rxsize/ and rxsize+ are0, 1, 1 and0 respectively. This
means that the calculated receive size will always be less than the transmit size, so the receive operation will
be for the exact number of bytes transmitted. For some USB protocols this would not accurately reflect the
traffic that will happen. For example with USB-ethernet transfer sizes will vary between 16 and 1516 bytes, so
the receiver will always expect up to 1516 bytes. This can be achieved usingrxsize1 1516 , leaving the other
parameters at their default values.

For target hardware which involves non-zeromax_in_padding , on the host side the padding will be added
automatically to the receive size if necessary.

Transmit and Receive Delays

Typically during the testing there will be some minor delays between transfers on both host and target. Some
of these delays will be caused by timeslicing, for example another process running on the host, or a concurrent
test thread running inside the target. Other delays will be caused by the USB bus itself, for example activity
from another device on the bus. However it is desirable that test cases be allowed to inject additional and
somewhat more controlled delays into the system, for example to make sure that the target behaves correctly
even if the target is not yet ready to receive data from the host.

The transmit delay is controlled by six parameters:txdelay1 , txdelay* , txdelay/ , txdelay+ ,
txdelay >= andtxdelay <=. The default values for these are0, 1, 1, 0, 0 and1000000000 respectively,
so that by default transmits will happen as quickly as possible. Delays are measured in nanoseconds, so a
value of1000000 would correspond to a delay of 0.001 seconds or one millisecond. By default delays have an
upper bound of one second. Between transfers the transmit delay is updated in much the same was as the
transfer sizes.

The receive delay is controlled by a similar set of six parameters:rxdelay1 , rxdelay* , rxdelay/ ,
rxdelay+ , rxdelay >= andrxdelay <=. The default values for these are the same as for transmit delays.

The transmit delay is used on the side which sends data over the USB bus, so for a bulk IN transfer it is the
target that sends data and hence sleeps for the specified transmit delay, while the host receives data sleeps for
the receive delay. For an OUT transfer the positions are reversed.

It should be noted that although the delays are measured in nanoseconds, the actual delays will be much less
precise and are likely to be of the order of milliseconds. The exact details will depend on the kernel clock
speed.

Other Types of Transfer
Support for testing other types of USB traffic such as isochronous transfers is not yet implemented.

Starting a Test and Collecting Results
A USB test script should prepare one or more transfers using appropriate functions such as
usbtest::bulktest . Once all the individual tests have been prepared they can be started by a call to
usbtest::start . This takes a single argument, a maximum duration measured in seconds. If all transfers
have not been completed in the specified time then any remaining transfers will be aborted.

usbtest::start will return 1 if all the tests have succeeded, or0 if any of them have failed. More detailed
reports will be stored in the Tcl variableusbtests::results , which will be a list of string messages.

541

Testing

Existing Test Scripts
A number of test scripts are provided as standard. These are located in thehost subdirectory of the common
USB slave package, and will be installed as part of the process of building the host-side software. When a
script is specified on the command line usbhost will first search for it in the current directory, then in the install
tree. Standard test scripts include the following:

list.tcl

This script simply displays information about the capabilities of the target platform, as provided by the
target-side USB device driver. It can help with tracking down problems, but its primary purpose is to let
users check that everything is working correctly: if runningusbhost list.tcloutputs sensible information
then the user knows that the target side is running correctly and that communication between host and
target is possible.

verbose.tcl

The target-side code can provide information about what is happening while tests are prepared and run.
This facility should not normally be used since the extra I/O involved will significantly affect the be-
haviour of the system, but in some circumstances it may prove useful. Since an eCos application cannot
easily be given command-line arguments the target-side verbosity level cannot be controlled using-V
or --verbose options. Instead it can be controlled from inside gdb by changing the integer variable
verbose . Alternatively it can be manipulated by running the test scriptverbose.tcl . This script takes
a single argument, the desired verbosity level, which should be a small integer. For example, to disable
target-side run-time logging the commandusbhost verbose 0can be used.

Possible Problems
If all transfers succeed within the specified time then both host and target remain in synch and further tests
can be run without problem. However, if at any time a failure occurs then things get more complicated. For
example, if the current test involves a series of bulk OUT transfers and the target detects that for one of these
transfers it received less data than was expected then the test has failed, and the target will stop accepting data
on this endpoint. However the host-side software may not have detected anything wrong and is now blocked
trying to send the next lot of data.

The test code goes to considerable effort to recover from problems such as these. On the host-side separate
threads are used for concurrent transfers, and on the target-side appropriate asynchronous I/O mechanisms are
used. In addition there is a control thread on the host that checks the state of all the main host-side threads,
and the state of the target using private control messages. If it discovers that one side has stopped sending or
receiving data because of an error and the other side is blocked as a result, it will set certain flags and then
cause one additional transfer to take place. That additional transfer will have the effect of unblocking the other
side, which then discovers that an error has occurred by checking the appropriate flags. In this way both host
and target should end up back in synch, and it is possible to move on to the next set of tests.

However, the above assumes that the testing has not triggered any serious hardware conditions. If instead the
target-side hardware has been left in some strange state so that, for example, it will no longer raise an interrupt
for traffic on a particular endpoint then recovery is not currently possible, and the testing software will just
hang.

A possible future enhancement to the testing software would allow the host-side to raise a USB reset signal
whenever a failure occurs, in the hope that this would clear any remaining problems within the target-side USB
hardware.

542

XXX. eCos Support for Developing
USB-ethernet Peripherals

543

Testing

544

Introduction

Name
Introduction — eCos support for developing USB ethernet peripherals

Introduction
The eCos USB-ethernet package provides additional support for USB peripherals that involve some sort of
ethernet-style network. This can be a traditional ethernet, or it can involve some other networking technology
that uses ethernet frames as a unit of transfer. It provides functions to transfer ethernet frames over the USB
bus, handles certain control messages from the host, and optionally it can provide a network device driver for
use by the eCos TCP/IP stack. The package comes with an example host-side device driver.

The USB-ethernet package is not tied to any specific hardware. It requires the presence of USB hardware and
a suitable device driver, but not all USB peripherals involve ethernet communications. Hence the configuration
system cannot load the package automatically for specific targets, in the way that a USB device driver or an
ethernet driver can be loaded automatically. Instead, the package has to be added explicitly. When using the
command line tools this will involve an operation like the following:

$ ecosconfig add usbs_eth

Typically, this will automatically cause the USB device driver to become active. Loading the USB-ethernet
package automatically provides functionality forinitialization, data transfer, and the handling ofcontrol mes-
sagesand state changes. If the current configuration includes the eCos TCP/IP stack then thenetwork device
driversupport will be enabled as well by default, allowing the stack to exchange ethernet frames over the USB
bus.

There is a USB standard for a class of communication devices including ethernet. The package does not
implement this standard, due to limitations in the hardware for which the package was first developed. Instead,
the package uses its ownprotocolbetween USBhost device driverand the peripheral.

Usage Scenarios
The USB-ethernet package can be used several different scenarios. In a simple scenario, the peripheral serves
only to connect the USB host to a suitable network:

After initialization, and once the USB connection between host and peripheral has been established, higher-
level code needs to detect packets that are intended for the host, and to forward these. This can be achieved
by the low-levelusbs_eth_start_tx function. Similarly, higher-level code needs to detect packets coming
from the host, usingusbs_eth_start_rx , and to forward these using the real network. As far as the host
is concerned it is connected directly to the network. In this scenario there is no confusion about addresses:
there is a single MAC address for the host/peripheral combination, corresponding to the connection to the real
network, and it is this address which should be supplied duringinitialization.

545

Introduction

In a more complicated scenario, there is a TCP/IP stack running inside the peripheral.

This involves the USB-ethernet package providing a service both to the host and to the eCos TCP/IP stack.
It achieves the latter by acting as an eCos network device. Typically, the TCP/IP stack will be configured to
act as a network bridge. The USB peripheral needs to examine the packets arriving over the real network.
Some of these packets will be intended for the host, while others will be intended for the peripheral itself. To
distinguish between these two scenarios, two distinct MAC addresses are needed: one for the host, and one for
the peripheral. Similarly, packets sent by the host may have to be forwarded via the real network, or they may
be intended for the TCP/IP stack inside the peripheral. Packets generated inside the peripheral’s TCP/IP stack
may need to be sent via the real network or over the USB bus. The network bridge software will have to take
care of all these possibilities. Unusually for a network bridge, one of the network segments being bridged will
only ever have one machine attached.

There are other possible usage scenarios. For example, the peripheral might not be attached to a real network at
all. Instead it could be the USB host that acts as a network bridge, allowing a TCP/IP stack inside the peripheral
to communicate with the outside world. The various details will depend on the exact type of peripheral being
developed.

546

Initializing the USB-ethernet Package

Name
usbs_eth_init — Initializing the USB-ethernet Package

Synopsis

#include <cyg/io/usb/usbs_eth.h >

void usbs_eth_init (usbs_eth* usbeth , usbs_control_endpoint* ep0 , usbs_rx_endpoint* ep1 ,
usbs_tx_endpoint* ep2 , unsigned char* mac_address);

Description
The USB-ethernet package is not tied to any specific hardware. It requires certain functionality: there must be
USB-slave hardware supported by a device driver; there must also be two endpoints for bulk transfers between
host and peripheral, one for each direction; there must also be a control endpoint, although of course that is
implicit with any USB hardware.

However, USB-slave hardware may well provide more endpoints than the minimum required for ethernet
support. Some of those endpoints might be used by other packages, while other endpoints might be used
directly by the application, or might not be needed for the peripheral being built. There is also the possibility
of a USB peripheral that supports multiple configurations, with the ethernet support active in only some of
those configurations. The USB-ethernet package has no knowledge about any of this, so it relies on higher-level
code to tell it which endpoints should be used and other information. This is the purpose of theusbs_eth_init

function.

The first argument identifies the specific usbs_eth data structure that is affected. It is expected that the vast ma-
jority of affected applications will only provide a single USB-ethernet device to a single host, and the package
automatically provides a suitable data structureusbs_eth0 to support this. If multiple usbs_eth structures are
needed for some reason then these need to be instantiated by other code, and each one needs to be initialised
by a call tousbs_eth_init() .

The next three arguments identify the endpoints that should be used for USB communications: a control end-
point, a receive endpoint for ethernet packets coming from the host to the peripheral, and a transmit endpoint
for ethernet packets going in the other direction. Obviously all three endpoints should be provided by the same
USB hardware. The USB-ethernet package assumes that it has sole access to the receive and transmit end-
points, subject to the use ofusbs_eth_disable andusbs_eth_enable control functions. The package also
assumes that no other code is interested in USB state changes or class control messages: it installs handlers
usbs_eth_state_change_handler andusbs_eth_class_control_handler in the control endpoint. If any
other code does need to handle USB state changes or class control messages then replacement handlers should
be installed after the call tousbs_eth_init , and those replacements should invoke the USB-ethernet ones
when appropriate.

The final argument tousbs_eth_init specifies the MAC address (or Ethernet Station Address) that should
be provided to the host-side device driver. Since the USB-ethernet package does not interact directly with a
real ethernet device it cannot obtain the MAC address from any hardware. Instead, it must be supplied by
higher-level code. The details depend on thescenarioin which the USB-ethernet package is being used.

547

Initializing the USB-ethernet Package

The call tousbs_eth_init should normally happen after the enumeration data has been provided but before
the underlying USB device driver has been started. If the USB device were to be started first then a connection
between host and peripheral could be established immediately, and the host-side device driver would attempt
to contact the USB-ethernet package for information such as the MAC address.

int
main(int argc, char** argv)
{

unsigned char host_MAC[6] = { 0x40, 0x5d, 0x90, 0xa9, 0xbc, 0x02 };

usbs_sa11x0_ep0.enumeration_data = &usb_enum_data;
...
usbs_eth_init(&usbs_eth0, &usbs_sa11x0_ep0, &usbs_sa11x0_ep1, &usbs_sa11x0_ep2, host_MAC);
...
usbs_start(&usbs_sa11x0_ep0);
...

}

548

USB-ethernet Data Transfers

Name
USB-ethernet Data Transfers — Exchanging ethernet packets with the USB host

Synopsis

#include <cyg/io/usb/usbs_eth.h >

void usbs_eth_start_rx (usbs_eth* usbseth , unsigned char* buffer , void (*)(usbs_eth*,
void*, int) complete_fn , void* complete_data);
void usbs_eth_start_tx (usbs_eth* usbseth , unsigned char* buffer , void (*)(usbs_eth*,
void*, int) complete_fn , void* complete_data);

Description
The USB-ethernet package provides two main modes of operation. In the first mode it provides anetwork de-
vice driverfor use by a TCP/IP stack running inside the USB peripheral. All incoming ethernet packets should
be passed up the TCP/IP stack, and only the stack will generate outgoing packets. Apart frominitializationand
possibly certaincontrol operations, higher-level code will not interact with the USB-ethernet package directly.

In the second mode there is no TCP/IP stack running inside the USB peripheral. For example, a simple USB-
ethernet converter has an ethernet chip and a USB port: ethernet packets received by the ethernet chip need to
be forwarded to the USB host, and ethernet packets sent by the USB host need to be sent out of the ethernet
chip. usbs_eth_start_rx and usbs_eth_start_tx allow for this lower-level access to the USB-ethernet
package.

The two modes of operation are mutually exclusive. If the network device driver mode is enabled then appli-
cation code should communicate at the TCP/IP level, and not by using the lower-level functions. Instead, it is
the network device driver that will make use of these functions, and it assumes that it has exclusive access. The
package does not perform any locking.

The transmit and receive functions work in much the same way. The first argument identifies the usbs_eth struc-
ture that should be used. For the majority of applications this will beusbs_eth0 . The second argument specifies
the location of the ethernet packet; outgoing forusbs_eth_start_tx and incoming forusbs_eth_start_rx .
This buffer should correspond to theprotocol:

1. Outgoing packets can consist of up to 1516 bytes, consisting of a two-byte header specific to USB-ethernet
followed by a standard ethernet frame (a header with 6-byte destination address, 6-byte source address
and a further two bytes, followed by a payload of up to 1500 bytes). The two-byte USB-ethernet header
consists simply of the size of the ethernet frame, i.e. the size of the rest of the packet not including the
USB-ethernet header, with the least significant byte first.

2. For incoming packets the supplied buffer should usually be at least 1516 bytes. There may be special
circumstances in which a smaller buffer might be safe; for example, if the host-side device driver is modi-
fied to support only smaller packets. Once the packet has been received the buffer will contain a two-byte
header specific to USB-ethernet, followed by a normal ethernet frame. The header gives the size of the
ethernet frame, excluding the header, with the least significant byte first.

549

USB-ethernet Data Transfers

Both usbs_eth_start_tx andusbs_eth_start_rx are asynchronous: the transfer is started and, some time
later, a completion function will be invoked. The third and fourth arguments to bothusbs_eth_start_tx

andusbs_eth_start_rx supply the completion function and an argument to that function respectively. The
completion function will be invoked with three arguments: a pointer to the usbs_eth data structure, usually
usbs_eth0 ; the supplied completion data ; and a return code field. A negative value indicates that an error
occurred, for example-EPIPE if the connection between USB host and peripheral has been broken, or-EAGAIN

if an endpoint has been halted. A positive value indicates the total size of the transfer, which should correspond
to the size in the USB-ethernet header plus an additional two bytes for the header itself.

If the data transfer is succesful then the completion function will typically be invoked in DSR context rather
than in thread context, although this depends on the implementation of the underlying USB device driver.
Therefore the completion function is restricted in what it can do; in particular, it must not make any calls
that will or may block such as locking a mutex or allocating memory. The kernel documentation should be
consulted for more details of DSR’s and interrupt handling generally. Note that if the transfer finishes quickly
then the completion function may be invoked beforeusbs_eth_start_rx or usbs_eth_start_tx returns.
This is especially likely to happen if the current thread is descheduled after starting the data transfer but before
returning from these functions.

For transmit operations, it is possible forusbs_eth_start_tx to invoke the completion function immediately.
If there is no current connection between host and target then the transmit will fail immediately with-EPIPE .
In addition the USB-ethernet package will check the destination MAC address and make sure that the ether-
net frame really is intended for the host: either it must be for the address specified in the initialization call
usbs_eth_init , or it must be a broadcast packet, or the host must have enabled promiscuous mode.

550

USB-ethernet State Handling

Name
USB-ethernet State Handling — Maintaining the USB-ethernet connection with the host

Synopsis

#include <cyg/io/usb/usbs_eth.h >

usbs_control_return usbs_eth_class_control_handler (usbs_control_endpoint* ep0 , void*
callback_data);
void usbs_eth_state_change_handler (usbs_control_endpoint* ep0 , void* callback_data ,
usbs_state_change change , int old_state);
void usbs_eth_disable (usbs_eth* usbseth>);
void usbs_eth_enable (usbs_eth* usbseth>);

Description
When the USB-ethernet package is initialized by a call tousbs_eth_init it installs
usbs_eth_state_change_handler to handle USB state changes. This allows the package to detect when
the connection between the host and the peripheral is established or broken, resulting in internal calls to
usbs_eth_enable andusbs_eth_disable respectively. This is appropriate if no other code needs to access
the USB device. However, if there is other code, either other USB-related packages or the application itself,
that needs to perform I/O over the USB bus, then typically the USB-ethernet package should not have
exclusive access to state change events. Instead, the assumption is that higher-level code, typically provided
by the application, will install an alternative state change handler in the control endpoint data structure after
the call tousbs_eth_init . This alternative handler will either chain intousbs_eth_state_change_handler

when appropriate, or else it will invokeusbs_eth_enable and usbs_eth_disable directly. For further
details of state change handlers and control endpoints generally, see the documentation for the common
USB-slave package.

Similarly,usbs_eth_init will install usbs_eth_class_control_handler in the control endpoint data struc-
ture as the appropriate handler for class-specific USB control messages. This code will handle the ethernet-
specificcontrol messages, for example requests by the host to enable or disable promiscuous mode or to obtain
the MAC address. If the USB device is not shared with any other code then this is both necessary and sufficient.
However, if other code is involved and if that code also needs to process certain control messages, higher-level
code should install its own handler and chain to the USB-ethernet one when appropriate. It should be noted
that the request code is encoded in just a single byte, so there is a real possibility that exactly the same number
will be used by different protocols for different requests. Any such problems will have to be identified and
resolved by application developers, and may involve modifying the source code for the USB-ethernet package.

As an alternative to chaining the state change handler, higher-level code can instead callusbs_eth_disable

andusbs_eth_enable directly. These functions may also be called if the USB-ethernet package should be-
come inactive for reasons not related directly to events on the USB bus. The main effect ofusbs_eth_enable

is to restart receive operations and to allow transmits. The main effect ofusbs_eth_disable is to block fur-
ther transmits: any current receive operations need to be aborted at the USB level, for example by halting the
appropriate endpoint.

551

USB-ethernet State Handling

552

Network Device for the eCos TCP/IP Stack

Name
Network Device — USB-ethernet support for the eCos TCP/IP Stack

Description
If the USB peripheral involves running the eCos TCP/IP stack and that stack needs to use USB-ethernet as
a transport layer (or as one of the transports), then the USB-ethernet package can provide a suitable net-
work device driver. It is still necessary for higher-level code to perform appropriate initialization by calling
usbs_eth_init , but after that it will be the TCP/IP stack rather than application code that transmits or re-
ceives ethernet frames.

Not all peripherals involving the USB-ethernet package will require a TCP/IP stack. Hence the provision of the
network device is controlled by a configuration optionCYGPKG_USBS_ETHDRV. By default this will be enabled
if the TCP/IP packageCYGPKG_NETis loaded, and disabled otherwise.

There are a number of other configuration options related to the network device.
CYGFUN_USBS_ETHDRV_STATISTICS determines whether or not the package will maintain
statistics, mainly intended for SNMP: by default this will be enabled if the SNMP support package
CYGPKG_SNMPAGENTis loaded, and disabled otherwise. The name of the ethernet device is controlled by
CYGDATA_USBS_ETHDRV_NAME, and has a default value of eithereth0 or eth1 depending on whether or not
there is another network device driver present in the configuration.

Usually eCos network device drivers default to using DHCP for obtaining necessary information such as IP
addresses. This is not appropriate for USB-ethernet devices. On the host-side the USB-ethernet network device
will not exist until the USB peripheral has been plugged in and communication has been established. Therefore
any DHCP daemon on the host would not be listening on that network device at the point that eCos requests its
IP and other information. A related issue is that the use of DHCP would imply the presence of a DHCP daemon
on every affected host machine, as opposed to a single daemon (plus backups) for the network as a whole. For
these reasons the USB-ethernet package precludes the use of DHCP as a way of setting the IP address, instead
requiring alternatives such as manual configuration.

553

Network Device for the eCos TCP/IP Stack

554

Example Host-side Device Driver

Name
Example Host-side Device Driver — Provide host-side support for the eCos USB-ethernet
package

Description
The USB-ethernet package is supplied with a single host-side device driver. This driver has been developed
against the Linux kernel 2.2.16-22, as shipped with Red Hat 7. The driver is provided as is and should not be
considered production quality: for example it only checks for a bogus vendor id0x4242 rather than an official
vendor id supplied by the USB Implementers Forum (http://www.usb.org/). Also, if the peripheral involves
multiple configurations or multiple interfaces, it will fail to detect this. However, the driver can be used for
simple testing and as the basis of a full device driver. Details of the protocol used between host and peripheral
can be found in theCommunication Protocolsection.

The host-side device driver can be found in thehost subdirectory of the USB-ethernet package, specifically the
file ecos_usbeth.c , and comes with aMakefile . Both files may need to be modified for specific applications.
For example, the vendor id tableecos_usbeth_implementations may need to be updated for the specific
USB peripheral being built. TheMakefile assumes that the Linux kernel sources reside in/usr/src/linux ,
and that the kernel has already been configured and built. Assuming this is the case, the device driver can be
built simply by invokingmakewith no additional arguments. This will result in a dynamically loadable kernel
module,ecos_usbeth.o , in the current directory.

Note: As normal for Linux kernel builds, the generated files such as ecos_usbeth.o live in the same direc-
tory as the source tree. This is very different from eCos where the source tree (or component repository)
is kept separate from any builds. There may be problems if the component repository is kept read-only or
if it is put under source code control. Any such problems can be avoided by making a copy of the host

subdirectory and building that copy.

Loading the kernel module into the current system requires root privileges. If the generic USB support is also
a loadable module and has not been loaded already, this must happen first:

insmod usb-uhci
Using /lib/modules/2.2.16-22/usb/usb-uhci.o

Depending on the host hardware, theuhci or usb-ohci modules may be more appropriate. Loading the generic
USB module will typically result in a number of messages to the logfile/var/log/messages , giving details of
the specific host-side hardware that has been detected plus any hubs. The next step is to load the USB-ethernet
module:

insmod ecos_usbeth.o

This should result in a number of additional diagnostics in the logfile:

Apr 1 18:01:08 grumpy kernel: eCos USB-ethernet device driver
Apr 1 18:01:08 grumpy kernel: usb.c: registered new driver ecos_usbeth

If a suitable USB peripheral is now connected the host will detect this, assign an address in the local USB
network, obtain enumeration data, and find a suitable device driver. Assuming the peripheral and device driver

555

Example Host-side Device Driver

agree on the supported vendor ids, theecos_usbeth.o module will be selected and this will be reported in the
system log:

Apr 1 18:04:12 grumpy kernel: usb.c: USB new device connect, assigned device number 3
Apr 1 18:04:12 grumpy kernel: eCos-based USB ethernet peripheral active at eth1

What can happen next depends very much on the software that is running on top of the USB-ethernet package
inside the peripheral. For example, if there is a TCP/IP stack then it should be possible to bring up a network
connection between host and peripheral usingifconfig.

556

Communication Protocol

Name
Communication Protocol — Protocol used between the host-side device driver and the eCos
USB-ethernet package

Description
There is a USB standard for the protocol to be used between the host and a class of communication devices,
including ethernet. However, the eCos USB-ethernet package does not implement this protocol: the target
hardware for which the package was first developed had certain limitations, and could not implement the
standard. Instead, the package implements a simple new protocol.

A USB-ethernet peripheral involves bulk transfers on two endpoints: one endpoint will be used for packets
from host to peripheral and the other will be used for the opposite direction. Transfers in both directions are
variable length, with a lower limit of 16 bytes and an upper limit of 1516 bytes. The first two bytes of each
transfer constitute a header specific to USB-ethernet. The next 14 bytes form the normal header for an ethernet
frame: destination MAC address, source MAC address, and a protocol field. The remaining data, up to 1500
bytes, are the payload. The first two bytes give the size of the ethernet frame, least significant byte first, with a
value between 14 and 1514.

For example an ARP request from host to peripheral involves an ethernet frame of 42 bytes (0x002A), with
the usual 14-byte header and a 28-byte payload. The destination is the broadcast address 0xFFFFFFFFFFFF.
The source depends on the MAC address specified for the host in the call tousbs_eth_init , e.g.
0x405D90A9BC02. The remaining data is as specified by the appropriate IETF RFC’s (http://www.ietf.org).
The actual bulk USB transfer involves the following sequence of 44 bytes:

2a 00 ff ff ff ff ff ff 40 5d 90 a9 bc 02 08 06
00 01 08 00 06 04 00 01 40 5d 90 a9 bc 02 0a 00
00 01 00 00 00 00 00 00 0a 00 00 02

In addition there are two control messages. These will be sent by the host to endpoint 0, the control endpoint,
and by default they will be handled byusbs_eth_class_control_handler . If class-specific control messages
are intercepted by other code then it is the responsibility of that code to invoke the USB-ethernet handler when
appropriate.

The first control message can be used by the host to obtain a MAC address:

#define ECOS_USBETH_CONTROL_GET_MAC_ADDRESS 0x01

The control message’s type field should specify IN as the direction. The request field should be0x01 . The
length fields should specify a size of 6 bytes. The remaining fields of the control message will be ignored by
the USB-ethernet package. The response consists of the 6-byte MAC address supplied by the initialization call
usbs_eth_init .

The second control message can be used by the host to enable or disable promiscuous mode.

#define ECOS_USBETH_CONTROL_SET_PROMISCUOUS_MODE 0x02

This control message involves no further data so the length field should be set to 0. The value field should
be non-zero to enable promiscuous mode, zero to disable it. The request field should be0x02 . The remaining
fields in the control message will be ignored. It is the responsibility of the host-side device driver to keep track
of whether or not promiscuous mode is currently enabled. It will be disabled when the peripheral changes to
Configured state, typically at the point where the host-side device driver has been activated.

557

Communication Protocol

558

XXXI. eCos Synthetic Target

559

Communication Protocol

560

Overview

Name
The eCos synthetic target — Overview

Description
Usually eCos runs on either a custom piece of hardware, specially designed to meet the needs of a specific
application, or on a development board of some sort that is available before the final hardware. Such boards
have a number of things in common:

1. Obviously there has to be at least one processor to do the work. Often this will be a 32-bit processor,
but it can be smaller or larger. Processor speed will vary widely, depending on the expected needs of
the application. However the exact processor being used tends not to matter very much for most of the
development process: the use of languages such as C or C++ means that the compiler will handle those
details.

2. There needs to be memory for code and for data. A typical system will have two different types of memory.
There will be some non-volatile memory such as flash, EPROM or masked ROM. There will also be some
volatile memory such as DRAM or SRAM. Often the code for the final application will reside in the non-
volatile memory and all of the RAM will be available for data. However updating non-volatile memory
requires a non-trivial amount of effort, so for much of the development process it is more convenient to
burn suitable firmware, for example RedBoot, into the non-volatile memory and then use that to load the
application being debugged into RAM, alongside the application data and a small area reserved for use by
the firmware.

3. The platform must provide certain mimimal I/O facilities. Most eCos configurations require a clock signal
of some sort. There must also be some way of outputting diagnostics to the user, often but not always via a
serial port. Unless special debug hardware is being used, source level debugging will require bidirectional
communication between a host machine and the target hardware, usually via a serial port or an ethernet
device.

4. All the above is not actually very useful yet because there is no way for the embedded device to interact
with the rest of the world, except by generating diagnostics. Therefore an embedded device will have
additional I/O hardware. This may be fairly standard hardware such as an ethernet or USB interface,
or special hardware designed specifically for the intended application, or quite often some combination.
Standard hardware such as ethernet or USB may be supported by eCos device drivers and protocol stacks,
whereas the special hardware will be driven directly by application code.

Much of the above can be emulated on a typical PC running Linux. Instead of running the embedded application
being developed on a target board of some sort, it can be run as a Linux process. The processor will be the PC’s
own processor, for example an x86, and the memory will be the process’ address space. Some I/O facilities
can be emulated directly through system calls. For example clock hardware can be emulated by setting up
a SIGALRMsignal, which will cause the process to be interrupted at regular intervals. This emulation of real
hardware will not be particularly accurate, the number of cpu cycles available to the eCos application between
clock ticks will vary widely depending on what else is running on the PC, but for much development work it
will be good enough.

Other I/O facilities are provided through an I/O auxiliary process, ecosynth, that gets spawned by the eCos
application during startup. When an eCos device driver wants to perform some I/O operation, for example
send out an ethernet packet, it sends a request to the I/O auxiliary. That is an ordinary Linux application
so it has ready access to all normal Linux I/O facilities. To emulate a device interrupt the I/O auxiliary can

561

Overview

raise aSIGIO signal within the eCos application. The HAL’s interrupt subsystem installs a signal handler for
this, which will then invoke the standard eCos ISR/DSR mechanisms. The I/O auxiliary is based around Tcl
scripting, making it easy to extend and customize. It should be possible to configure the synthetic target so that
its I/O functionality is similar to what will be available on the final target hardware for the application being
developed.

A key requirement for synthetic target code is that the embedded application must not be linked with any of the
standard Linux libraries such as the GNU C library: that would lead to a confusing situation where both eCos
and the Linux libraries attempted to provide functions such asprintf . Instead the synthetic target support must
be implemented directly on top of the Linux kernels’ system call interface. For example, the kernel provides a
system call for write operations. The actual functionwrite is implemented in the system’s C library, but all it
does is move its arguments on to the stack or into certain registers and then execute a special trap instruction
such asint 0x80 . When this instruction is executed control transfers into the kernel, which will validate the
arguments and perform the appropriate operation. Now, a synthetic target application cannot be linked with
the system’s C library. Instead it contains a functioncyg_hal_sys_write which, like the C library’swrite

function, pushes its arguments on to the stack and executes the trap instruction. The Linux kernel cannot tell the
difference, so it will perform the I/O operation requested by the synthetic target. With appropriate knowledge
of what system calls are available, this makes it possible to emulate the required I/O facilities. For example,
spawning the ecosynth I/O auxiliary involves system callscyg_hal_sys_fork andcyg_hal_sys_execve , and
sending a request to the auxiliary usescyg_hal_sys_write .

In many ways developing for the synthetic target is no different from developing for real embedded targets.
eCos must be configured appropriately: selecting a suitable target such asi386linux will cause the config-
uration system to load the appropriate packages for this hardware; this includes an architectural HAL package
and a platform-specific package; the architectural package contains generic code applicable to all Linux plat-
forms, whereas the platform package is for specific Linux implementations such as the x86 version and con-
tains any processor-specific code. Selecting this target will also bring in some device driver packages. Other
aspects of the configuration such as which API’s are supported are determined by the template, by adding and
removing packages, and by fine-grained configuration.

In other ways developing for the synthetic target can be much easier than developing for a real embedded target.
For example there is no need to worry about building and installing suitable firmware on the target hardware,
and then downloading and debugging the actual application over a serial line or a similar connection. Instead
an eCos application built for the synthetic target is mostly indistinguishable from an ordinary Linux program.
It can be run simply by typing the name of the executable file at a shell prompt. Alternatively you can debug the
application using whichever version of gdb is provided by your Linux distribution. There is no need to build
or install special toolchains. Essentially using the synthetic target means that the various problems associated
with real embedded hardware can be bypassed for much of the development process.

The eCos synthetic target provides emulation, not simulation. It is possible to run eCos in suitable architectural
simulators but that involves a rather different approach to software development. For example, when running
eCos on the psim PowerPC simulator you need appropriate cross-compilation tools that allow you to build
PowerPC executables. These are then loaded into the simulator which interprets every instruction and attempts
to simulate what would happen if the application were running on real hardware. This involves a lot of process-
ing overhead, but depending on the functionality provided by the simulator it can give very accurate results.
When developing for the synthetic target the executable is compiled for the PC’s own processor and will be
executed at full speed, with no need for a simulator or special tools. This will be much faster and somewhat
simpler than using an architectural simulator, but no attempt is made to accurately match the behaviour of a

562

Overview

real embedded target.

563

Overview

564

Installation

Name
Installation — Preparing to use the synthetic target

Host-side Software
To get the full functionality of the synthetic target, users must build and install the I/O auxiliary ecosynth and
various support files. It is possible to develop applications for the synthetic target without the auxiliary, but
only limited I/O facilities will be available. The relevant code resides in thehost subdirectory of the synthetic
target architectural HAL package, and building it involves the standardconfigure, make, andmake install
steps.

There are two main ways of building the host-side software. It is possible to build both the generic host-side
software and all package-specific host-side software, including the I/O auxiliary. in a single build tree. This
involves using theconfigure script at the toplevel of the eCos repository, which will automatically search
the packages hierarchy for host-side software. For more information on this, see theREADME.host file at
the top of the repository. Note that if you have an existing build tree which does not include the synthetic
target architectural HAL package then it will be necessary to rerun the toplevel configure script: the search for
appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This involves creating a suitable build directory
and running theconfigurescript. Note that building directly in the source tree is not allowed.

$ cd <somewhere suitable >

$ mkdir synth_build
$ cd synth_build
$ <repo <>/packages/hal/synth/arch/ <version >/host/configure <options >

$ make
$ make install

The code makes extensive use of Tcl/TK and requires version 8.3 or later. This is checked by the
configure script. By default it will use the system’s Tcl installation in/usr . If a different, more recent Tcl
installation should be used then its location can be specified using the options--with-tcl= <path >,
--with-tcl-header= <path > and --with-tcl-lib= <path >. For more information on these options see
theREADME.host file at the toplevel of the eCos repository.

Some users may also want to specify the install location using a--prefix= <path > option. The default install
location is/usr/local . It is essential that thebin subdirectory of the install location is on the user’s search
PATH, otherwise the eCos application will be unable to locate and execute the I/O auxiliary ecosynth.

Because ecosynth is run automatically by an eCos application rather than explicitly by the user, it is not in-
stalled in thebin subdirectory itself. Instead it is installed belowlibexec , together with various support files
such as images. At configure time it is usually possible to specify an alternative location forlibexec using
--exec-prefix= <path > or --libexecdir= <path >. These options should not be used for this package be-
cause the eCos application is built completely separately and does not know how the host-side was configured.

Toolchain
When developing eCos applications for a normal embedded target it is necessary to use a suitable cross-
compiler and related tools such as the linker. Developing for the synthetic target is easier because you can just
use the standard GNU tools (gcc, g++, ld, . . .) which were provided with your Linux distribution, or which

565

Installation

you used to build your own Linux setup. Any reasonably recent version of the tools, for example gcc 2.96(Red
Hat) as shipped with Red Hat Linux 7, should be sufficient.

There is one important limitation when using these tools: current gdb will not support debugging of eCos
threads on the synthetic target. As far as gdb is concerned a synthetic target application is indistinguish-
able from a normal Linux application, so it assumes that any threads will be created by calls to the Linux
pthread_create function provided by the C library. Obviously this is not the case since the application is
never linked with that library. Therefore gdb never notices the eCos thread mechanisms and assumes the ap-
plication is single-threaded. Fixing this is possible but would involve non-trivial changes to gdb.

Theoretically it is possible to develop synthetic target applications on, for example, a PC running Windows and
then run the resulting executables on another machine that runs Linux. This is rarely useful: if a Linux machine
is available then usually that machine will also be used for building ecos and the application. However, if for
some reason it is necessary or desirable to build on another machine then this requires a suitable cross-compiler
and related tools. If the application will be running on a typical PC with an x86 processor then a suitable
configure triplet would bei686-pc-linux-gnu . The installation instructions for the various GNU tools
should be consulted for further information.

Hardware Preparation
Preparing a real embedded target for eCos development can be tricky. Often the first step is to install suitable
firmware, usually RedBoot. This means creating and building a special configuration for eCos with the Red-
Boot template, then somehow updating the target’s flash chips with the resulting RedBoot image. Typically
it will also be necessary to get a working serial connection, and possibly set up ethernet as well. Although
usually none of the individual steps are particularly complicated, there are plenty of ways in which things can
go wrong and it can be hard to figure out what is actually happening. Of course some board manufacturers
make life easier for their developers by shipping hardware with RedBoot preinstalled, but even then it is still
necessary to set up communication between host and target.

None of this is applicable to the synthetic target. Instead you can just build a normal eCos configuration, link
your application with the resulting libraries, and you end up with an executable that you can run directly on
your Linux machine or via gdb. A useful side effect of this is that application development can start before any
real embedded hardware is actually available.

Typically the memory map for a synthetic target application will be set up such that there is a read-only
ROM region containing all the code and constant data, and a read-write RAM region for the data. The default
locations and sizes of these regions depend on the specific platform being used for development. Note that
the application always executes out of ROM: on a real embedded target much of the development would
involve running RedBoot firmware there, with application code and data loaded into RAM; usually this would
change for the final system; the firmware would be replaced by the eCos application itself, configured for
ROM bootstrap, and it would perform the appropriate hardware initialization. Therefore the synthetic target
actually emulates the behaviour of a final system, not of a development environment. In practice this is rarely
significant, although having the code in read-only memory can help catch some problems in application code.

566

Running a Synthetic Target Application

Name
Execution — Arguments and configuration files

Description
The procedure for configuring and building eCos and an application for the synthetic target is the same as for
any other eCos target. Once an executable has been built it can be run like any Linux program, for example
from a shell prompt,

$ ecos_hello <options >

or using gdb:

$ gdb --nw --quiet --args ecos_hello <options >

(gdb) run
Starting program: ecos_hello <options >

By default use of the I/O auxiliary is disabled. If its I/O facilities are required then the option--io must be
used.

Note: In future the default behaviour may change, with the I/O auxiliary being started by default. The option
--nio can be used to prevent the auxiliary from being run.

Command-line Arguments
The syntax for running a synthetic target application is:

$ <ecos_app > [options] [-- [app_options]]

Command line options up to the-- are passed on to the I/O auxiliary. Subsequent arguments are not passed on
to the auxiliary, and hence can be used by the eCos application itself. The full set of arguments can be accessed
through the variablescyg_hal_sys_argc andcyg_hal_sys_argv .

The following options are accepted as standard:

--io

This option causes the eCos application to spawn the I/O auxiliary during HAL initialization. Without
this option only limited I/O will be available.

--nio

This option prevents the eCos application from spawning the I/O auxiliary. In the current version of the
software this is the default.

-nw , --no-windows

The I/O auxiliary can either provide a graphical user interface, or it can run in a text-only mode. The
default is to provide the graphical interface, but this can be disabled with-nw . Emulation of some devices,
for example buttons connected to digital inputs, requires the graphical interface.

567

Running a Synthetic Target Application

-w , --windows

The-w causes the I/O auxiliary to provide a graphical user interface. This is the default.

-v , --version

The -v option can be used to determine the version of the I/O auxiliary being used and where it has been
installed. Both the auxiliary and the eCos application will exit immediately.

-h , --help

-h causes the I/O auxiliary to list all accepted command-line arguments. This happens after all devices
have been initialized, since the host-side support for some of the devices may extend the list of recognised
options. After this both the auxiliary and the eCos application will exit immediately. This option implies
-nw .

-k , --keep-going

If an error occurs in the I/O auxiliary while reading in any of the configuration files or initializing devices,
by default both the auxiliary and the eCos application will exit. The-k option can be used to make the
auxiliary continue in spite of errors, although obviously it may not be fully functional.

-nr , --no-rc

Normally the auxiliary processes twouser configuration filesduring startup: initrc.tcl and
mainrc.tcl . This can be suppressed using the-nr option.

-x , --exit

When providing a graphical user interface the I/O auxiliary will normally continue running even after the
eCos application has exited. This allows the user to take actions such as saving the current contents of the
main text window. If run with-x then the auxiliary will exit as soon the application exits.

-nx , --no-exit

When the graphical user interface is disabled with-nw the I/O auxiliary will normally exit immediately
when the eCos application exits. Without the graphical frontend there is usually no way for the user to
interact directly with the auxiliary, so there is no point in continuing to run once the eCos application will
no longer request any I/O operations. Specifying the-nx option causes the auxiliary to continue running
even after the application has exited.

-V , --verbose

This option causes the I/O auxiliary to output some additional information, especially during initialization.

-l <file >, --logfile <file >

Much of the output of the eCos application and the I/O auxiliary is simple text, for example resulting from
eCosprintf or diag_printf calls. When running in graphical mode this output goes to a central text
window, and can be saved to a file or edited via menus. The-l can be used to automatically generate an
additional logfile containing all the text. If graphical mode is disabled then by default all the text just goes
to the current standard output. Specifying-l causes most of the text to go into a logfile instead, although
some messages such as errors generated by the auxiliary itself will still go to stdout as well.

-t <file >, --target <file >

During initialization the I/O auxiliary reads in a target definition file. This file holds information such as
which Linux devices should be used to emulate the various eCos devices. The-t option can be used to
specify which target definition should be used for the current run, defaulting todefault.tdf . It is not
necessary to include the.tdf suffix, this will be appended automatically if necessary.

568

Running a Synthetic Target Application

-geometry <geometry >

This option can be used to control the size and position of the main window, as per X conventions.

The I/O auxiliary loads support for the various devices dynamically and some devices may accept additional
command line arguments. Details of these can be obtained using the-h option or by consulting the device-
specific documentation. If an unrecognised command line argument is used then a warning will be issued.

The Target Definition File
The eCos application will want to access devices such aseth0 or /dev/ser0 . These need to be mapped on
to Linux devices. For example some users may all traffic on the eCos/dev/ser0 serial device to go via the
Linux serial device/dev/ttyS1 , while ethernet I/O for the eCoseth0 device should be mapped to the Linux
ethertap devicetap3 . Some devices may need additional configuration information, for example to limit the
number of packets that should be buffered within the I/O auxiliary. The target definition file provides all this
information.

By default the I/O auxiliary will look for a filedefault.tdf . An alternative target definition can be specified
on the command line using-t , for example:

$ bridge_app --io -t twineth

A .tdf suffix will be appended automatically if necessary. If a relative pathname is used then the I/O auxiliary
will search for the target definition file in the current directory, then in~/.ecos/synth/ , and finally in its
install location.

A typical target definition file might look like this:

synth_device console {
appearance -foreground white -background black
filter trace {^TRACE:.*} -foreground HotPink1 -hide 1

}

synth_device ethernet {
eth0 real eth1
eth1 ethertap tap4 00:01:02:03:FE:06

Maximum number of packets that should be buffered per interface.
Default 16
#max_buffer 32

Filters for the various recognised protocols.
By default all filters are visible and use standard colours.
filter ether -hide 0
#filter arp -hide 1
#filter ipv4 -hide 1
#filter ipv6 -hide 1

}

A target definition file is actually a Tcl script that gets run in the main interpreter of the I/O auxiliary during
initialization. This provides a lot of flexibility if necessary. For example the script could open a socket to a
resource management server of some sort to determine which hardware facilities are already in use and adapt
accordingly. Another possibility is to adapt based oncommand line arguments. Users who are not familiar with
Tcl programming should still be able to edit a simple target definition file without too much difficulty, using a
mixture of cut’n’paste, commenting or uncommenting various lines, and making small edits such as changing
tap4 to eth2 .

Each type of device will have its own entry in the target definition file, taking the form:

569

Running a Synthetic Target Application

synth_device <device type > {
<options >

}

The documentaton for each synthetic target device should provide details of the options available for that
device, and often a suitable fragment that can be pasted into a target definition file and edited. There is no
specific set of options that a given device will always provide. However in practice many devices will use
common code exported by the main I/O auxiliary, or their implementation will involve some re-use of code for
an existing device. Hence certain types of option are common to many devices.

A good example of this is filters, which control the appearance of text output. The above target
definition file defines a filtertrace for output from the eCos application. The regular expression will
match output from the infrastructure package’s tracing facilities whenCYGDBG_USE_TRACINGand
CYGDBG_INFRA_DEBUG_TRACE_ASSERT_SIMPLEare enabled. With the current settings this output will not be
visible by default, but can be made visible using the menu itemSystem Filters. If made visible the trace
output will appear in an unusual colour, so users can easily distinguish the trace output from other text. All
filters accept the following options:

-hide [0|1]

This controls whether or not text matching this filter should be invisible by default or not. At run-time the
visibility of each filter can be controlled using theSystem Filters menu item.

-foreground <colour >

This specifies the foreground colour for all text matching this filter. The colour can be specified using an
RGB value such as#F08010 , or a symbolic name such as"light steel blue" . The X11 utility showrgb
can be used to find out about the available colours.

-background <colour >

This specifies the background colour for all text matching the filter. As with-foreground the colour can
be specified using a symbolic name or an RGB value.

Some devices may create their own subwindows, for example to monitor ethernet traffic or to provide additional
I/O facilities such as emulated LED’s or buttons. Usually the target definition file can be used to control the
layoutof these windows.

The I/O auxiliary will not normally warn aboutsynth_deviceentries in the target definition file for devices
that are not actually needed by the current eCos application. This makes it easier to use a single file for several
different applications. However it can lead to confusion if an entry is spelled incorrectly and hence does not
actually get used. The-V command line option can be used to get warnings about unused device entries in the
target definition file.

If the body of asynth_devicecommand contains an unrecognised option and the relevant device is in use, the
I/O auxiliary will always issue a warning about such options.

User Configuration Files
During initialization the I/O auxiliary will execute two user configuration files,initrc.tcl andmainrc.tcl .
It will look for these files in the directory~/.ecos/synth/ . If that directory does not yet exist it will be created
and populated with initial dummy files.

Both of these configuration files are Tcl scripts and will be run in the main interpreter used by the I/O auxiliary
itself. This means that they have full access to the internals of the auxiliary including the various Tk widgets,
and they can perform file or socket I/O if desired. The sectionWriting New Devices - hostcontains information

570

Running a Synthetic Target Application

about the facilities available on the host-side for writing new device drivers, and these can also be used in the
initialization scripts.

The initrc.tcl script is run before the auxiliary has processed any requests from the eCos application, and
hence before any devices have been instantiated. At this point the generic command-line arguments has been
processed, the target definition file has been read in, and the hooks functionality has been initialized. If running
in graphical mode the main window will have been created, but has been withdrawn from the screen to allow
new widgets to be added without annoying screen flicker. A typicalinitrc.tcl script could add some menu
or toolbar options, or install a hook function that will be run when the eCos application exits.

Themainrc.tcl script is run after eCos has performed all its device initialization and after C++ static construc-
tors have run, and just before the call tocyg_start which will end up transferring control to the application
itself. A typical mainrc.tcl script could look at what interrupt vectors have been allocated to which devices
and create a little monitor window that shows interrupt activity.

Session Information
When running in graphical mode, the I/O auxiliary will read in a file~/.ecos/synth/guisession containing
session information. This file should not normally be edited manually, instead it gets updated automatically
when the auxiliary exits. The purpose of this file is to hold configuration options that are manipulated via the
graphical interface, for example which browser should be used to display online help.

Warning
GUI session functionality is not yet available in the current release. When that function-
ality is fully implemented it is possible that some target definition file options may be
removed, to be replaced by graphical editing via a suitable preferences dialog, with the
current settings saved in the session file.

571

Running a Synthetic Target Application

572

The I/O Auxiliary’s User Interface

Name
User Interface — Controlling the I/O Auxiliary

Description
The synthetic target auxiliary is designed to support both extensions and user customization. Support for the
desired devices is dynamically loaded, and each device can extend the user interface. For example it is possible
for a device to add menu options, place new buttons on the toolbar, create its own sub-window within the
overall layout, or even create entire new toplevel windows. These subwindows or toplevels could show graphs
of activity such as interrupts or packets being transferred. They could also allow users to interact with the eCos
application, for example by showing a number of buttons which will be mapped on to digital inputs in the
eCos application. Different applications will have their own I/O requirements, changing the host-side support
files that get loaded and that may modify the user interface. The I/O auxiliary also reads in user configuration
scripts which can enhance the interface in the same way. Therefore the exact user interface will depend on the
user and on the eCos application being run. However the overall layout is likely to remain the same.

The title bar identifies the window as belonging to an eCos synthetic target application and lists both the
application name and its process id. The latter is especially useful if the application was started directly from
a shell prompt and the user now wants to attach a gdb session. The window has a conventional menu bar with
the usual entries, plus a toolbar with buttons for common operations such as cut and paste. Balloon help is
supported.

There is a centraltext window, possibly surrounded by various sub-windows for various devices. For example
there could be a row of emulated LED’s above the text window, and monitors of ethernet traffic and interrupt
activity on the right. At the bottom of the window is a status line, including a small animation that shows
whether or not the eCos application is still running.

573

The I/O Auxiliary’s User Interface

Menus and the Toolbar
Usually there will be four menus on the menu bar:File, Edit, View andHelp.

On theFile menu there are three entries related to saving the current contents of the central text window.Save
is used to save the currently visible contents of the text window. Any text that is hidden because of filters will
not be written to the savefile. If there has been a previousSave or Save As operation then the existing savefile
will be re-used, otherwise the user will be asked to select a suitable file.Save As also saves just the currently
visible contents but will always prompt the user for a filename.Save All can be used to save the full contents
of the text window, including any text that is currently hidden. It will always prompt for a new filename, to
avoid confusion with partial savefiles.

Usually the eCos application will be run from inside gdb or from a shell prompt. Killing off the application
while it is being debugged in a gdb session is not a good idea, it would be better to use gdb’s ownkill command.
Alternatively the eCos application itself can use theCYG_TEST_EXIT or cyg_hal_sys_exit functionality.
However it is possible to terminate the application from the I/O auxiliary usingKill eCos. A clean shutdown
will be attempted, but that can fail if the application is currently halted inside gdb or if it has crashed completely.
As a last resortSIGKILL will be used.

When operating in graphical mode the I/O auxiliary will normally continue to run even after the eCos appli-
cation has exited. This allows the user to examine the last few lines of output, and perhaps perform actions
such as saving the output to a file. TheExit menu item can be used to shut down the auxiliary. Note that this
behaviour can be changed with command line arguments--exit and--no-exit .

If Exit is used while the eCos application is still running then the I/O auxiliary will first attempt to terminate
the application cleanly, and then exit.

The Edit menu contains the usual entries for text manipulation:Cut, Copy, Paste, Clear andSelect All.
These all operate on the central text window. By default this window cannot be edited so the cut, paste and
clear operations are disabled. If the user wants to edit the contents of the text window then theRead Only
checkbutton should be toggled.

ThePreferences menu item brings up a miscellaneous preferences dialog. One of the preferences relates to
online help: the I/O auxiliary does not currently have a built-in html viewer; instead it will execute an external
browser of some sort. With the example settings shown, the I/O auxiliary will first attempt to interact with an
existing mozilla session. If that fails it will try to run a new mozilla instance, or as a last result use the Gnome
help viewer.

574

The I/O Auxiliary’s User Interface

TheView menu contains theSystem Filters entry, used to edit the settings for the currentfilters.

TheHelp menu can be used to activate online help for eCos generally, for the synthetic target as a whole, and
for specific devices supported by the generic target. The Preferences dialog can be used to select the browser
that will be used.

Note: At the time of writing there is no well-defined toplevel index file for all eCos documentation. Hence
the relevant menu item is disabled. Documentation for the synthetic target and the supported devices is
stored as part of the package itself so can usually be found fairly easily. It may be necessary to set the
ECOS_REPOSITORY environment variable.

The Main Text Window
The central text window holds the console output from the eCos application: the screen shot above shows
DHCP initialization data from the TCP/IP stack, and some output from themain thread at the bottom. Some
devices can insert text of their own, for example the ethernet device support can be configured to show details
of incoming and outgoing packets. Mixing the output from the eCos application and the various devices can
make it easier to understand the order in which events occur.

The appearance of text from different sources can be controlled by means of filters, and it is also possible to
hide some of the text. For example, if tracing is enabled in the eCos configuration then the trace output can
be given its own colour scheme, making it stand out from the rest of the output. In addition the trace output
is generally voluminous so it can be hidden by default, made visible only to find out more about what was
happening when a particular problem occurred. Similarly the ethernet device support can output details of the
various packets being transferred, and using a different background colour for this output again makes it easier
to distinguish from console output.

The default appearance for most filters is controlled via thetarget definition file. An example entry might be:

filter trace {^TRACE:.*} -foreground HotPink1 -hide 1

The various colours and the hide flag for each filter can be changed at run-time, using theSystem Filters item
on theView menu. This will bring up a dialog like the following:

575

The I/O Auxiliary’s User Interface

It should be noted that the text window is line-oriented, not character-oriented. If an eCos application sends
a partial line of text then that will remain buffered until a newline character is received, rather than being
displayed immediately. This avoids confusion when there is concurrent output from several sources.

By default the text window is read-only. This means it will not allow cut, paste and clear operations, and
keyboard input will be ignored. TheEdit menu has a checkbuttonRead Only which can be toggled to allow
write operations. For example, a user could type in a reminder of what was happening at this time, or paste in
part of a gdb session. Such keyboard input does not get forwarded to the eCos application: if the latter requires
keyboard input then that should happen via a separate keyboard device.

Positioning Optional Windows
Some devices may create their own subwindows, for example to monitor ethernet traffic or to provide additional
I/O facilities such as emulated LED’s or buttons. Usually the target definition file can be used to control the
layoutof these windows. This requires an understanding of the overall layout of the display.

576

The I/O Auxiliary’s User Interface

Subwindows are generally packed in one of eight frames surrounding the central text window:.main.nw ,
.main.n , .main.ne , .main.w , .main.e , .main.sw , .main.s , and .main.se . To position a row of LED’s
above the text window and towards the left, a target definition file could contain an entry such as:

synth_device led {
pack -in .main.n -side left
...

}

Similarly, to put a traffic monitor window on the right of the text window would involve something like:

...
monitor_pack -in .main.e -side bottom
...

Often it will be sufficient to specify a container frame and one ofleft , right , top or bottom . Full control over
the positioning requires an understanding of Tcl/Tk and in particular the packing algorithm, and an appropriate
reference work should be consulted.

Global Settings

Note: This section still to be written - it should document the interaction between X resources and ecosynth,
and how users can control settings such as the main foreground and background colours.

577

The I/O Auxiliary’s User Interface

578

The Console Device

Name
The console device — Show output from the eCos application

Description
The eCos application can generate text output in a variety of ways, including callingprintf or diag_printf .
When the I/O auxiliary is enabled the eCos startup code will instantiate a console device to process all such
output. If operating in text mode the output will simply go to standard output, or to a logfile if the-l command
line option is specified. If operating in graphical mode the output will go to the central text window, and
optionally to a logfile as well. In addition it is possible to control the appearance of the main text via the target
definition file, and to install extra filters for certain types of text.

It should be noted that the console device is line-oriented, not character-oriented. This means that outputting
partial lines is not supported, and some functions such asfflush andsetvbuf will not operate as expected.
This limitation prevents much possible confusion when using filters to control the appearance of the text
window, and has some performance benefits - especially when the eCos application generates a great deal of
output such as when tracing is enabled. For most applications this is not a problem, but it is something that
developers should be aware of.

The console device is output-only, it does not provide any support for keyboard input. If the application requires
keyboard input then that should be handled by a separate eCos device package and matching host-side code.

Installation
The eCos side of the console device is implemented by the architectural HAL itself, in the source file
synth_diag.c , rather than in a separate device package. Similarly the host-side implementation,
console.tcl , is part of the architectural HAL’s host-side support. It gets installed automatically alongside
the I/O auxiliary itself, so no separate installation procedure is required.

Target Definition File
Thetarget definition filecan contain a number of entries related to the console device. These are all optional,
they only control the appearance of text output. If such control is desired then the relevant options should
appear in the body of asynth_deviceentry:

synth_device console {
...

}

The first option isappearance, used to control the appearance of any text generated by the eCos application
that does not match one of the installed filters. This option takes the same argument as any other filter, for
example:

synth_device console {
appearance -foreground white -background black
...

}

Any number of additional filters can be created with afilter option, for example:

579

The Console Device

synth_device console {
...
filter trace {^TRACE:.*} -foreground HotPink1 -hide 1
...

}

The first argument gives the new filter a name which will be used in thefilters dialog. Filter names should
be unique. The second argument is a Tcl regular expression. The console support will match each line of
eCos output against this regular expression, and if a match is found then the filter will be used for this line of
text. The above example matches any line of output that begins withTRACE:, which corresponds to the eCos
infrastructure’s tracing facilities. The remaining options control the desired appearance for matched text. If
some eCos output matches the regular expressions for several different filters then only the first match will be
used.

Target-side Configuration Options
There are no target-side configuration options related to the console device.

Command Line Arguments
The console device does not use any command-line arguments.

Hooks
The console device does not provide any hooks.

Additional Tcl Procedures
The console device does not provide any additional Tcl procedures that can be used by other scripts.

580

System Calls

Name
cyg_hal_sys_xyz — Access Linux system facilities

Synopsis

#include <cyg/hal/hal_io.h >

int cyg_hal_sys_xyzzy (...);

Description
On a real embedded target eCos interacts with the hardware by peeking and poking various registers, manip-
ulating special regions of memory, and so on. The synthetic target does not access hardware directly. Instead
I/O and other operations are emulated by making appropriate Linux system calls. The HAL package exports a
number of functions which allow other packages, or even application code, to make these same system calls.
However this facility must be used with care: any code which calls, for example,cyg_hal_sys_write will
only ever run on the synthetic target; that functionality is obviously not provided on any real hardware because
there is no underlying Linux kernel to implement it.

The synthetic target only provides a subset of the available system calls, specifically those calls which have
proved useful to implement I/O emulation. This subset can be extended fairly easily if necessary. All of the
available calls, plus associated data structures and macros, are defined in the header filecyg/hal/hal_io.h .
There is a simple convention: given a Linux system call such asopen , the synthetic target will prefix
cyg_hal_sys and provide a function with that name. The second argument to theopen system call is a set of
flags such asO_RDONLY, and the header file will define a matching constantCYG_HAL_SYS_O_RDONLY. There
are also data structures such as cyg_hal_sys_sigset_t, matching the Linux data structure sigset_t.

In most cases the functions provided by the synthetic target behave as per the documentation for the Linux sys-
tem calls, and section 2 of the Linux man pages can be consulted for more information. There is one important
difference: typically the documentation will say that a function returns-1 to indicate an error, with the actual
error code held inerrno ; the actual underlying system call and hence thecyg_hal_sys_xyz provided by eCos
instead returns a negative number to indicate an error, with the absolute value of that number corresponding
to the error code; usually it is the C library which handles this and manipulates errno, but of course synthetic
target applications are not linked with that Linux library.

However, there are some exceptions. The Linux kernel has evolved over the years, and some of the original
system call interfaces are no longer appropriate. For example the originalselect system call has been su-
perseded by_newselect , and that is what theselect function in the C library actually uses. The old call
is still available to preserve binary compatibility but, like the C library, eCos makes use of the new one be-
cause it provides the appropriate functionality. In an attempt to reduce confusion the eCos function is called
cyg_hal_sys__newselect , in other words it matches the official system call naming scheme. The authoritive
source of information on such matters is the Linux kernel sources themselves, and especially its header files.

eCos packages and applications should never#include Linux header files directly. For example, doing a
#include </usr/include/fcntl.h > to access additional macros or structure definitions, or alternatively
manipulating the header file search path, will lead to problems because the Linux header files are likely to

581

System Calls

duplicate and clash with definitions in the eCos headers. Instead the appropriate functionality should be ex-
tracted from the Linux headers and moved into eithercyg/hal/hal_io.h or into application code, with suit-
able renaming to avoid clashes with eCos names. Users should be aware that large-scale copying may involve
licensing complications.

Adding more system calls is usually straightforward and involves adding one or more lines to the platform-
specific file in the appropriate platform HAL, for examplesyscall-i386-linux-1.0.S . However it is neces-
sary to do some research first about the exact interface implemented by the system call, because of issues such
as old system calls that have been superseded. The required information can usually be found fairly easily by
searching through the Linux kernel sources and possibly the GNU C library sources.

582

Writing New Devices - target

Name
Writing New Devices — extending the synthetic target, target-side

Synopsis

#include <cyg/hal/hal_io.h >

int synth_auxiliary_instantiate (const char* package , const char* version , const char*
device , const char* instance , const char* data);
void synth_auxiliary_xchgmsg (int device_id , int request , int arg1 , int arg2 , const
unsigned char* txdata , int txlen , int* reply , unsigned char* rxdata , int* rxlen , int
max_rxlen);

Description
In some ways writing a device driver for the synthetic target is very similar to writing one for a real target. Ob-
viously it has to provide the standard interface for that class of device, so for example an ethernet device has to
providecan_send , send , recv and similar functions. Many devices will involve interrupts, so the driver con-
tains ISR and DSR functions and will callcyg_drv_interrupt_create , cyg_drv_interrupt_acknowledge ,
and related functions.

In other ways writing a device driver for the synthetic target is very different. Usually the driver will not have
any direct access to the underlying hardware. In fact for some devices the I/O may not involve real hardware,
instead everything is emulated by widgets on the graphical display. Therefore the driver cannot just peek and
poke device registers, instead it must interact with host-side code by exchanging message. The synthetic target
HAL provides a functionsynth_auxiliary_xchgmsg for this purpose.

Initialization of a synthetic target device driver is also very different. On real targets the device hardware
already exists when the driver’s initialization routine runs. On the synthetic target it is first necessary to instan-
tiate the device inside the I/O auxiliary, by a call tosynth_auxiliary_instantiate . That function performs
a special message exchange with the I/O auxiliary, causing it to load a Tcl script for the desired type of device
and run an instantiation procedure within that script.

Use of the I/O auxiliary is optional: if the user does not specify--io on the command line then the auxiliary
will not be started and hence most I/O operations will not be possible. Device drivers should allow
for this possibility, for example by just discarding any data that gets written. The HAL exports a flag
synth_auxiliary_running which should be checked.

Instantiating a Device
Device instantiation should happen during the C++ prioritized static constructor phase of system initialization,
before control switches tocyg_user_start and general application code. This ensures that there is a clearly
defined point at which the I/O auxiliary knows that all required devices have been loaded. It can then per-
form various consistency checks and clean-ups, run the user’smainrc.tcl script, and make the main window
visible.

583

Writing New Devices - target

For standard devices generic eCos I/O code will call the device initialization routines at the right time, iterating
through theDEVTABtable in a static constructor. The same holds for network devices and file systems. For more
custom devices code like the following can be used:

#include <cyg/infra/cyg_type.h >

class mydev_init {
public:

mydev_init() {
...

}
};
static mydev_init mydev_init_object CYGBLD_ATTRIB_INIT_PRI(CYG_INIT_IO);

Some care has to be taken because the objectmydev_init_object will typically not be referenced by other
code, and hence may get eliminated at link-time. If the code is part of an eCos package then problems can be
avoided by putting the relevant file inlibextras.a :

cdl_package CYGPKG_DEVS_MINE {
...
compile -library=libextras.a init.cxx

}

For devices inside application code the same can be achieved by linking the relevant module as a.o file rather
than putting it in a.a library.

In the device initialization routine the main operation is a call tosynth_auxiliary_instantiate . This takes
five arguments, all of which should be strings:

package

For device drivers which are eCos packages this should be a directory path relative to the eCos repository,
for exampledevs/eth/synth/ecosynth . This will allow the I/O auxiliary to find the various host-side
support files for this package within the install tree. If the device is application-specific and not part of an
eCos package then a NULL pointer can be used, causing the I/O auxiliary to search for the support files
in the current directory and then in~/.ecos/synth instead.

version

For eCos packages this argument should be the version of the package that is being used, for example
current . A simple way to get this version is to use theSYNTH_MAKESTRINGmacro on the package name.
If the device is application-specific then a NULL pointer should be used.

device

This argument specifies the type of device being instantiated, for exampleethernet . More specifically
the I/O auxiliary will append a.tcl suffix, giving the name of a Tcl script that will handle all I/O requests
for the device. If the application requires several instances of a type of device then the script will only
be loaded once, but the script will contain an instantiation procedure that will be called for each device
instance.

instance

If it is possible to have multiple instances of a device then this argument identifies the particular instance,
for exampleeth0 or eth1 . Otherwise a NULL pointer can be used.

data

This argument can be used to pass additional initialization data from eCos to the host-side support. This is
useful for devices where eCos configury must control certain aspects of the device, rather than host-side

584

Writing New Devices - target

configury such as the target definition file, because eCos has compile-time dependencies on some or all
of the relevant options. An example might be an emulated frame buffer where eCos has been statically
configured for a particular screen size, orientation and depth. There is no fixed format for this string, it
will be interpreted only by the device-specific host-side Tcl script. However the string length should be
limited to a couple of hundred bytes to avoid possible buffer overflow problems.

Typical usage would look like:

if (!synth_auxiliary_running) {
return;

}
id = synth_auxiliary_instantiate("devs/eth/synth/ecosynth",

SYNTH_MAKESTRING(CYGPKG_DEVS_ETH_ECOSYNTH),
"ethernet",
"eth0",
(const char*) 0);

The return value will be a device identifier which can be used for subsequent calls to
synth_auxiliary_xchgmsg . If the device could not be instantiated then-1 will be returned. It is the
responsibility of the host-side software to issue suitable diagnostics explaining what went wrong, so normally
the target-side code should fail silently.

Once the desired device has been instantiated, often it will be necessary to do some additional initialization
by a message exchange. For example an ethernet device might need information from the host-side about the
MAC address, theinterrupt vector, and whether or not multicasting is supported.

Communicating with a Device
Once a device has been instantiated it is possible to perform I/O by sending messages to the appropriate Tcl
script running inside the auxiliary, and optionally getting back replies. I/O operations are always initiated by
the eCos target-side, it is not possible for the host-side software to initiate data transfers. However the host-side
can raise interrupts, and the interrupt handler inside the target can then exchange one or more messages with
the host.

There is a single function to perform I/O operations,synth_auxiliary_xchgmsg . This takes the following
arguments:

device_id

This should be one of the identifiers returned by a previous call tosynth_auxiliary_instantiate ,
specifying the particular device which should perform some I/O.

request

Request are just signed 32-bit integers that identify the particular I/O operation being requested. There is
no fixed set of codes, instead each type of device can define its own.

arg1

arg2

For some requests it is convenient to pass one or two additional parameters alongside the request code. For
example an ethernet device could define a multicast-all request, witharg1 controlling whether this mode
should be enabled or disabled. Botharg1 andarg2 should be signed 32-bit integers, and their values are
interpreted only by the device-specific Tcl script.

585

Writing New Devices - target

txdata

txlen

Some I/O operations may involve sending additional data, for example an ethernet packet. Alternatively
a control operation may require many more parameters than can easily be encoded inarg1 andarg2 ,
so those parameters have to be placed in a suitable buffer and extracted at the other end.txdata is an
arbitrary buffer oftxlen bytes that should be sent to the host-side. There is no specific upper bound on
the number of bytes that can be sent, but usually it is a good idea to allocate the transmit buffer statically
and keep transfers down to at most several kilobytes.

reply

If the host-side is expected to send a reply message thenreply should be a pointer to an integer variable
and will be updated with a reply code, a simple 32-bit integer. The synthetic target HAL code assumes
that the host-side and target-side agree on the protocol being used: if the host-side will not send a reply
to this message then thereply argument should be a NULL pointer; otherwise the host-side must always
send a reply code and thereply argument must be valid.

rxdata

rxlen

Some operations may involve additional data coming from the host-side, for example an incoming ethernet
packet.rxdata should be a suitably-sized buffer, andrxlen a pointer to an integer variable that will end
up containing the number of bytes that were actually received. These arguments will only be used if the
host-side is expected to send a reply and hence thereply argument was not NULL.

max_rxlen

If a reply to this message is expected and that reply may involve additional data,max_rxlen limits the
size of that reply. In other words, it corresponds to the size of therxdata buffer.

Most I/O operations involve only some of the arguments. For example transmitting an ethernet packet would
use therequest , txdata andtxlen fields (in addition todevice_id which is always required), but would not
involve arg1 or arg2 and no reply would be expected. Receiving an ethernet packet would involverequest ,
rxdata , rxlen andmax_rxlen ; in addition reply is needed to get any reply from the host-side at all, and
could be used to indicate whether or not any more packets are buffered up. A control operation such as enabling
multicast mode would involverequest andarg1 , but none of the remaining arguments.

Interrupt Handling
Interrupt handling in the synthetic target is much the same as on a real target. An interrupt object is created
usingcyg_drv_interrupt_create , attached, and unmasked. The emulated device - in other words the Tcl
script running inside the I/O auxiliary - can raise an interrupt. Subject to interrupts being disabled and the
appropriate vector being masked, the system will invoke the specified ISR function. The synthetic target HAL
implementation does have some limitations: there is no support for nested interrupts, interrupt priorities, or a
separate interrupt stack. Supporting those might be appropriate when targetting a simulator that attempts to
model real hardware accurately, but not for the simple emulation provided by the synthetic target.

Of course the actual implementation of the ISR and DSR functions will be rather different for a synthetic
target device driver. For real hardware the device driver will interact with the device by reading and
writing device registers, managing DMA engines, and the like. A synthetic target driver will instead call
synth_auxiliary_xchgmsg to perform the I/O operations.

There is one other significant difference between interrupt handling on the synthetic target and on real hard-
ware. Usually the eCos code will know which interrupt vectors are used for which devices. That information is
fixed when the target hardware is designed. With the synthetic target interrupt vectors are assigned to devices

586

Writing New Devices - target

on the host side, either via the target definition file or dynamically when the device is instantiated. Therefore
the initialization code for a target-side device driver will need to request interrupt vector information from the
host-side, via a message exchange. Such interrupt vectors will be in the range 1 to 31 inclusive, with interrupt
0 being reserved for the real-time clock.

587

Writing New Devices - target

588

Writing New Devices - host

Name
Writing New Devices — extending the synthetic target, host-side

Description
On the host-side adding a new device means writing a Tcl/Tk script that will handle instantiation and subse-
quent requests from the target-side. These scripts all run in the same full interpreter, extended with various
commands provided by the main I/O auxiliary code, and running in an overall GUI framework. Some knowl-
edge of programming with Tcl/Tk is required to implement host-side device support.

Some devices can be implemented entirely using a Tcl/Tk script. For example, if the final system will have
some buttons then those can be emulated in the synthetic target using a few Tk widgets. A simple emulation
could just have the right number of buttons in a row. A more advanced emulation could organize the but-
tons with the right layout, perhaps even matching the colour scheme, the shapes, and the relative sizes. With
other devices it may be necessary for the Tcl script to interact with an external program, because the required
functionality cannot easily be accessed from a Tcl script. For example interacting with a raw ethernet device
involves someioctl calls, which is easier to do in a C program. Therefore theethernet.tcl script which
implements the host-side ethernet support spawns a separate programrawether , written in C, that performs
the low-level I/O. Raw ethernet access usually also requires root privileges, and running a small program
rawether with such privileges is somewhat less of a security risk than the whole eCos application, the I/O
auxiliary, and various dynamically loaded Tcl scripts.

Because all scripts run in a single interpreter, some care has to be taken to avoid accidental sharing of global
variables. The best way to avoid problems is to have each script create its own Tcl namespace, so for example
the ethernet.tcl script creates a namespaceethernet:: and all variables and procedures reside in this
namespace. Similarly the I/O auxiliary itself makes use of asynth:: namespace.

Building and Installation
When an eCos device driver or application code instantiates a device, the I/O auxiliary will attempt to load a
matching Tcl script. The third argument tosynth_auxiliary_instantiate specifies the type of device, for
exampleethernet , and the I/O auxiliary will append a.tcl suffix and look for a scriptethernet.tcl .

If the device being instantiated is application-specific rather than part of an eCos package, the I/O auxiliary will
look first in the current directory, then in~/.ecos/synth . If it is part of an eCos package then the auxiliary will
expect to find the Tcl script and any support files belowlibexec/ecos in the install tree - note that the same
install tree must be used for the I/O auxiliary itself and for any device driver support. The directory hierarchy
below libexec/ecos matches the structure of the eCos repository, allowing multiple versions of a package to
be installed to allow for incompatible protocol changes.

The preferred way to build host-side software is to useautoconf andautomake. Usually this involves little
more than copying theacinclude.m4 , configure.in andMakefile.am files from an existing package, for ex-
ample the synthetic target ethernet driver, and then making minor edits. Inacinclude.m4 it may be necessary
to adjust the path to the root of the repository.configure.in may require a similar change, and theAC_INIT

macro invocation will have to be changed to match one of the files in the new package. A critical macro in
this file isECOS_PACKAGE_DIRSwhich will set up the correct install directory.Makefile.am may require some
more changes, for example to specify the data files that should be installed (including the Tcl script). These
files should then be processed usingaclocal, autoconfandautomake in that order. Actually building the soft-

589

Writing New Devices - host

ware then just involvesconfigure, makeandmake install, as per the instructions in the toplevelREADME.host

file.

To assist developers, if the environment variable ECOSYNTH_DEVEL is set then a slightly different algorithm
is used for locating device Tcl scripts. Instead of looking only in the install tree the I/O auxiliary will also look
in the source tree, and if the script there is more recent than the installed version it will be used in preference.
This allows developers to modify the master copy without having to runmake install all the time.

If a script needs to know where it has been installed it can examine the Tcl variable
synth::device_install_dir . This variable gets updated whenever a script is loaded, so if the value may
be needed later it should be saved away in a device-specific variable.

Instantiation
The I/O auxiliary will sourcethe device-specific Tcl script when the eCos application first attempts to instan-
tiate a device of that type. The script should return a procedure that will be invoked to instantiate a device.

namespace eval ethernet {
...
proc instantiate { id instance data } {

...
return ethernet::handle_request

}
}
return ethernet::instantiate

The id argument is a unique identifier for this device instance. It will also be supplied on subsequent calls to
the request handler, and will match the return value ofsynth_auxiliary_instantiate on the target side.
A common use for this value is as an array index to support multiple instances of this types of device. The
instance anddata arguments match the corresponding arguments tosynth_auxiliary_instantiate on
the target side, so a typical value forinstance would beeth0 , anddata is used to pass arbitrary initialization
parameters from target to host.

The actual work done by the instantiation procedure is obviously device-specific. It may involve allocating an
interrupt vector, adding a device-specific subwindow to the display, opening a real Linux device, establishing
a socket connection to some server, spawning a separate process to handle the actual I/O, or a combination of
some or all of the above.

If the device is successfully instantiated then the return value should be a handler for subsequent
I/O requests. Otherwise the return value should be an empty string, and on the target-side the
synth_auxiliary_instantiate call will return -1 . The script is responsible for providingdiagnostics
explaining why the device could not be instantiated.

Handling Requests
When the target-side callssynth_auxiliary_xchgmsg , the I/O auxiliary will end up calling the request han-
dler for the appropriate device instance returned during instantiation:

namespace eval ethernet {
...
proc handle_request { id request arg1 arg2 txdata txlen max_rxlen } {

...
if { <some condition > } {

synth::send_reply <error code > 0 ""
return

590

Writing New Devices - host

}
...
synth::send_reply <reply code > $packet_len $packet

}
...

}

The id argument is the same device id that was passed to the instantiate function, and is typically used as
an array index to access per-device data. Therequest , arg1 , arg2 , andmax_rxlen are the same values that
were passed tosynth_auxiliary_xchgmsg on the target-side, although since this is a Tcl script obviously
the numbers have been converted to strings. Thetxdata buffer is raw data as transmitted by the target, or an
empty string if the I/O operation does not involve any additional data. The Tcl proceduresbinary scan, string
index andstring range may be found especially useful when manipulating this buffer.txlen is provided for
convenience, althoughstring length $txdata would give the same information.

The code for actually processing the request is of course device specific. If the target does not expect a reply
then the request handler should just return when finished. If a reply is expected then there should be a call to
synth::send_reply. The first argument is the reply code, and will be turned into a 32-bit integer on the target
side. The second argument specifies the length of the reply data, and the third argument is the reply data itself.
For some devices the Tcl procedurebinary format may prove useful. If the reply involves just a code and no
additional data, the second and third arguments should be0 and an empty string respectively.

Attempts to send a reply when none is expected, fail to send a reply when one is expected, or send a reply
that is larger than the target-side expects, will all be detected by the I/O auxiliary and result in run-time error
messages.

It is not possible for the host-side code to send unsolicited messages to the target. If host-side code needs
attention from the target, for example because some I/O operation has completed, then an interrupt should be
raised.

Interrupts
The I/O auxiliary provides a number of procedures for interrupt handling.

synth::interrupt_allocate <name>
synth::interrupt_get_max
synth::interrupt_get_devicename <vector >

synth::interrupt_raise <vector >

synth::interrupt_allocate is normally called during device instantiation, and returns the next free interrupt
vector. This can be passed on to the target-side device driver in response to a suitable request, and it can then
install an interrupt handler on that vector. Interrupt vector0 is used within the target-side code for the real-time
clock, so the allocated vectors will start at1. The argument identifies the device, for exampleeth0 . This is not
actually used internally, but can be accessed by user-initialization scripts that provide some sort of interrupt
monitoring facility (typically via theinterrupt hook). It is possible for a single device to allocate multiple
interrupt vectors, but the synthetic target supports a maximum of 32 such vectors.

synth::interrupt_get_max returns the highest interrupt vector that has been allocated, or0 if there have been
no calls tosynth::interrupt_allocate . synth::interrupt_get_devicenamereturns the string that was passed
to synth::interrupt_allocate when the vector was allocated.

synth::interrupt_raise can be called any time after initialization. The argument should be the vector returned
by synth::interrupt_allocate for this device. It will activate the normal eCos interrupt handling mechanism
so, subject to interrupts being enabled and this particular interrupt not being masked out, the appropriate ISR
will run.

591

Writing New Devices - host

Note: At this time it is not possible for a device to allocate a specific interrupt vector. The order in which
interrupt vectors are assigned to devices effectively depends on the order in which the eCos devices get
initialized, and that may change if the eCos application is rebuilt. A future extension may allow devices to
allocate specific vectors, thus making things more deterministic. However that will introduce new problems,
in particular the code will have to start worrying about requests for vectors that have already been allocated.

Flags and Command Line Arguments
The generic I/O auxiliary code will process the standard command line arguments, and will set various flag
variables accordingly. Some of these should be checked by device-specific scripts.

synth::flag_gui

This is set when the I/O auxiliary is operating in graphical mode rather than text mode. Some functionality
such as filters and the GUI layout are only available in graphical mode.

if { $synth::flag_gui } {
...

}

synth::flag_verbose

The user has requested additional information during startup. Each device driver can decide how much
additional information, if any, should be produced.

synth::flag_keep_going

The user has specified-k or --keep-going , so even if an error occurs the I/O auxiliary and the various
device driver scripts should continue running if at all possible. Diagnostics should still be generated.

Some scripts may want to support additional command line arguments. This facility should be used with care
since there is no way to prevent two different scripts from trying to use the same argument. The following Tcl
procedures are available:

synth::argv_defined <name>
synth::argv_get_value <name>

synth::argv_defined returns a boolean to indicate whether or not a particular argument is present. If the
argument is the name part of a name/value pair, an= character should be appended. Typical uses might be:

if { [synth::argv_defined "-o13"] } {
...

}

if { [synth::argv_defined "-mark="] } {
...

}

The first call checks for a flag-o13 or --o13 - the code treats options with single and double hyphens inter-
changeably. The second call checks for an argument of the form-mark= <value > or a pair of arguments-mark

<value >. The value part of a name/value pair can be obtained usingsynth::argv_get_value;

variable speed 1
if { [synth::argv_defined "-mark="] } {

set mark [synth::argv_get_value "-mark="]

592

Writing New Devices - host

if { ![string is integer $mark] || ($mark < 1) || ($mark > 9) } {
<issue diagnostic >

} else {
set speed $mark

}
}

synth::argv_get_valueshould only be used after a successful call tosynth::argv_defined. At present there is
no support for some advanced forms of command line argument processing. For example it is not possible to
repeat a certain option such as-v or --verbose , with each occurrence increasing the level of verbosity.

If a script is going to have its own set of command-line arguments then it should give appropriate details if the
user specifies--help . This involves a hook function:

namespace eval my_device {
proc help_hook { } {

puts " -o13 : activate the omega 13 device"
puts " -mark <speed > : set speed. Valid values are 1 to 9."

}

synth::hook_add "help" my_device::help_hook
}

The Target Definition File
Most device scripts will want to check entries in the target definition file for run-time configuration information.
The Tcl procedures for this are as follows:

synth::tdf_has_device <name>
synth::tdf_get_devices
synth::tdf_has_option <devname> <option >

synth::tdf_get_option <devname> <option >

synth::tdf_get_options <devname> <option >

synth::tdf_get_all_options <devname>

synth::tdf_has_device can be used to check whether or not the target definition file had an entry
synth_device <name>. Usually the name will match the type of device, so theconsole.tcl script will
look for a target definition file entryconsole . synth::tdf_get_devicesreturns a list of all device entries in the
target definition file.

Once it is known that the target definition file has an entry for a certain device, it is possible to check for options
within the entry.synth::tdf_has_option just checks for the presence, returning a boolean:

if { [synth::tdf_has_option "console" "appearance"] } {
...

}

synth::tdf_get_option returns a list of all the arguments for a given option. For example, if the target definition
file contains an entry:

synth_device console {
appearance -foreground white -background black
filter trace {^TRACE:.*} -foreground HotPink1 -hide 1
filter xyzzy {.*xyzzy.*} -foreground PapayaWhip

}

A call synth::tdf_get_option console appearancewill return the list {-foreground white -background

black} . This list can be manipulated using standard Tcl routines such asllength andlindex. Some options can

593

Writing New Devices - host

occur multiple times in one entry, for examplefilter in theconsole entry.synth::tdf_get_optionsreturns a
list of lists, with one entry for each option occurrence.synth::tdf_get_all_optionsreturns a list of lists of all
options. This time each entry will include the option name as well.

The I/O auxiliary will not issue warnings about entries in the target definition file for devices which were not
loaded, unless the-v or --verbose command line argument was used. This makes it easier to use a single
target definition file for different applications. However the auxiliary will issue warnings about options within
an entry that were ignored, because often these indicate a typing mistake of some sort. Hence a script should
always callsynth::tdf_has_option, synth:;tdf_get_option or synth::tdf_get_options for all valid options,
even if some of the options preclude the use of others.

Hooks
Some scripts may want to take action when particular events occur, for example when the eCos application has
exited and there is no need for further I/O. This is supported using hooks:

namespace eval my_device {
...
proc handle_ecos_exit { arg_list } {

...
}
synth::hook_add "ecos_exit" my_device::handle_ecos_exit

}

It is possible for device scripts to add their own hooks and call all functions registered for those hooks. A
typical use for this is by user initialization scripts that want to monitor some types of I/O. The available Tcl
procedures for manipulating hooks are:

synth::hook_define <name>
synth::hook_defined <name>
synth::hook_add <name> <function >

synth::hook_call <name> <args >

synth::hook_define creates a new hook with the specified name. This hook must not already exist.
synth::hook_definedcan be used to check for the existence of a hook.synth::hook_add allows other scripts
to register a callback function for this hook, andsynth::hook_call allows the owner script to invoke all such
callback functions. A hook must already be defined before a callback can be attached. Therefore typically
device scripts will only use standard hooks and their own hooks, not hooks created by some other device,
because the order of device initialization is not sufficiently defined. User scripts run frommainrc.tcl can
use any hooks that have been defined.

synth::hook_call takes an arbitrary list of arguments, for example:

synth::hook_call "ethernet_rx" "eth0" $packet

The callback function will always be invoked with a single argument, a list of the arguments that were passed
to synth::hook_call:

proc rx_callback { arg_list } {
set device [lindex $arg_list 0]
set packet [lindex $arg_list 1]

}

Although it might seem more appropriate to use Tcl’seval procedure and have the callback functions invoked
with the right number of arguments rather than a single list, that would cause serious problems if any of the

594

Writing New Devices - host

data contained special characters such as[or $. The current implementation of hooks avoids such problems,
at the cost of minor inconvenience when writing callbacks.

A number of hooks are defined as standard. Some devices will add additional hooks, and the device-specific
documentation should be consulted for those. User scripts can add their own hooks if desired.

exit

This hook is called just before the I/O auxiliary exits. Hence it provides much the same functionality as
atexit in C programs. The argument list passed to the callback function will be empty.

ecos_exit

This hook is called when the eCos application has exited. It is used mainly to shut down I/O operations: if
the application is no longer running then there is no point in raising interrupts or storing incoming packets.
The callback argument list will be empty.

ecos_initialized

The synthetic target HAL will send a request to the I/O auxiliary once the static constructors have been
run. All devices should now have been instantiated. A script could now check how many instances there
are of a given type of device, for example ethernet devices, and create a little monitor window showing
traffic on all the devices. Theecos_initialized callbacks will be run just before the user’smainrc.tcl

script. The callback argument list will be empty.

help

This hook is also invoked once static constructors have been run, but only if the user specified-h or
--help . Any scripts that add their own command line arguments should add a callback to this hook
which outputs details of the additional arguments. The callback argument list will be empty.

interrupt

Whenever a device callssynth::interrupt_raise the interrupt hook will be called with a single argu-
ment, the interrupt vector. The main use for this is to allow user scripts to monitor interrupt traffic.

Output and Filters
Scripts can use conventional facilities for sending text output to the user, for example callingputs or directly
manipulating the central text widget.main.centre.text . However in nearly all cases it is better to use output
facilities provided by the I/O auxiliary itself:

synth::report <msg>

synth::report_warning <msg>

synth::report_error <msg>

synth::internal_error <msg>

synth::output <msg> <filter >

synth::report is intended for messages related to the operation of the I/O auxiliary itself, especially additional
output resulting from-v or --verbose . If running in text mode the output will go to standard output. If running
in graphical mode the output will go to the central text window. In both modes, use of-l or --logfile will
modify the behaviour.

synth::report_warning , synth::report_error andsynth::internal_error have the obvious meaning, includ-
ing prepending strings such asWarning: andError: . When the eCos application informs the I/O auxiliary that
all static constructors have run, if at that point there have been any calls tosynth::error then the I/O auxiliary
will exit. This can be suppressed with command line arguments-k or --keep-going . synth::internal_error

595

Writing New Devices - host

will output some information about the current state of the I/O auxiliary and then exit immediately. Of course
it should never be necessary to call this function.

synth::output is the main routine for outputting text. The second argument identifies a filter. If running in text
mode the filter is ignored, but if running in graphical mode the filter can be used to control the appearance of
this output. A typical use would be:

synth::output $line "console"

This outputs a single line of text using theconsole filter. If running in graphical mode the default appearance of
this text can be modified with theappearance option in thesynth_device consoleentry of the target definition
file. TheSystem filters menu option can be used to change the appearance at run-time.

Filters should be created before they are used. The procedures available for this are:

synth::filter_exists <name>
synth::filter_get_list
synth::filter_add <name> [options]
synth::filter_parse_options <options > <parsed_options > <message>

synth::filter_add_parsed <name> <parsed_options >

synth::filter_exists can be used to check whether or not a particular filter already exists: creating two fil-
ters with the same name is not allowed.synth::filter_get_list returns a list of the current known filters.
synth::filter_add can be used to create a new filter. The first argument names the new filter, and the remaining
arguments control the initial appearance. A typical use might be:

synth::filter_add "my_device_tx" -foreground yellow -hide 1

It is assumed that the supplied arguments are valid, which typically means that they are hard-wired in the
script. If instead the data comes out of a configuration file and hence may be invalid, the I/O auxiliary provides
a parsing utility. Typical usage would be:

array set parsed_options [list]
set message ""
if { ![synth::filter_parse_options $console_appearance parsed_options message] } {

synth::report_error \
"Invalid entry in target definition file $synth::target_definition\

\n synth_device \"console\", entry \"appearance\"\n$message"
} else {

synth::filter_add_parsed "console" parsed_options
}

On successparsed_options will be updated with an internal representation of the desired appearance, which
can then be used in a call tosynth::filter_add_parsed. On failuremessage will be updated with details of the
parsing error that occurred.

The Graphical Interface
When the I/O auxiliary is running in graphical mode, many scripts will want to update the user interface
in some way. This may be as simple as adding another entry to the help menu for the device, or adding a
new button to the toolbar. It may also involve adding new subwindows, or even creating entire new toplevel
windows. These may be simple monitor windows, displaying additional information about what is going on
in the system in a graphical format. Alternatively they may emulate actual I/O operations, for example button
widgets could be used to emulate real physical buttons.

The I/O auxiliary does not provide many procedures related to the graphical interface. Instead it is expected
that scripts will just update the widget hierarchy directly.

596

Writing New Devices - host

So adding a new item to theHelp menu involves a.menubar.help addoperation with suitable arguments.
Adding a new button to the toolbar involves creating a child window in.toolbar and packing it appropriately.
Scripts can create their own subwindows and then pack it into one of.main.nw , .main.n , .main.ne , .main.w ,
.main.e , .main.sw , .main.s or .main.se . Normally the user should be allowed tocontrolthis via the target
definition file. The central window.main.centre should normally be left alone by other scripts since it gets
used for text output.

The following graphics-related utilities may be found useful:

synth::load_image <image name > <filename >

synth::register_ballon_help <widget > <message>

synth::handle_help <URL>

synth::load_imagecan be used to add a new image to the current interpreter. If the specified file has a.xbm

extension then the image will be a monochrome bitmap, otherwise it will be a colour image of some sort. A
boolean will be returned to indicate success or failure, and suitable diagnostics will be generated if necessary.

synth::register_balloon_helpprovides balloon help for a specific widget, usually a button on the toolbar.

synth::handle_help is a utility routine that can be installed as the command for displaying online help, for
example:

.menubar.help add command -label "my device" -command \
[list synth::handle_help "file://$path"]

597

Writing New Devices - host

598

Porting

Name
Porting — Adding support for other hosts

Description
The initial development effort of the eCos synthetic target happened on x86 Linux machines. Porting to other
platforms involves addressing a number of different issues. Some ports should be fairly straightforward, for
example a port to Linux on a processor other than an x86. Porting to Unix or Unix-like operating systems other
than Linux may be possible, but would involve more effort. Porting to a completely different operating system
such as Windows would be very difficult. The text below complements the eCos Porting Guide.

Other Linux Platforms
Porting the synthetic target to a Linux platform that uses a processor other than x86 should be straightforward.
The simplest approach is to copy the existingi386linux directory tree in thehal/synth hierarchy, then
rename and edit the ten or so files in this package. Most of the changes should be pretty obvious, for example
on a 64-bit processor some new data types will be needed in thebasetype.h header file. It will also be
necessary to update the toplevelecos.db database with an entry for the new HAL package, and a new target
entry will be needed.

Obviously a different processor will have different register sets and calling conventions, so the code for saving
and restoring thread contexts and for implementingsetjmp and longjmp will need to be updated. The exact
way of performing Linux system calls will vary: on x86 linux this usually involves pushing some registers on
the stack and then executing anint 0x080 trap instruction, but on a different processor the arguments might
be passed in registers instead and certainly a different trap instruction will be used. The startup code is written
in assembler, but needs to do little more than extract the process’ argument and environment variables and then
jump to the mainlinux_entry function provided by the architectural synthetic target HAL package.

The header filehal_io.h provided by the architectural HAL package provides various structure definitions,
function prototypes, and macros related to system calls. These are correct for x86 linux, but there may be
problems on other processors. For example a structure field that is currently defined as a 32-bit number may in
fact may be a 64-bit number instead.

The synthetic target’s memory map is defined in two files in theinclude/pkgconf subdirectory. For x86 the
default memory map involves eight megabytes of read-only memory for the code at location 0x1000000 and
another eight megabytes for data at 0x2000000. These address ranges may be reserved for other purposes on
the new architecture, so may need changing. There may be some additional areas of memory allocated by
the system for other purposes, for example the startup stack and any environment variables, but usually eCos
applications can and should ignore those.

Other HAL functionality such as interrupt handling, diagnostics, and the system clock are provided by the ar-
chitectural HAL package and should work on different processors with few if any changes. There may be some
problems in the code that interacts with the I/O auxiliary because of lurking assumptions about endianness or
the sizes of various data types.

When porting to other processors, a number of sources of information are likely to prove useful. Obviously the
Linux kernel sources and header files constitute the ultimate authority on how things work at the system call
level. The GNU C library sources may also prove very useful: for a normal Linux application it is the C library
that provides the startup code and the system call interface.

599

Porting

Other Unix Platforms
Porting to a Unix or Unix-like operating system other than Linux would be somewhat more involved. The first
requirement is toolchains: the GNU compilers, gcc and g++, must definitely be used; use of other GNU tools
such as the linker may be needed as well, because eCos depends on functionality such as prioritizing C++ static
constructors, and other linkers may not implement this or may implement it in a different and incompatible
way. A closely related requirement is the use of ELF format for binary executables: if the operating system
still uses an older format such as COFF then there are likely to be problems because they do not provide the
flexibility required by eCos.

In the architectural HAL there should be very little code that is specific to Linux. Instead the code should work
on any operating system that provides a reasonable implementation of the POSIX standard. There may be some
problems with program startup, but those could be handled at the architectural level. Some changes may also
be required to the exception handling code. However one file which will present a problem ishal_io.h , which
contains various structure definitions and macros used with the system call interface. It is likely that many of
these definitions will need changing, and it may well be appropriate to implement variant HAL packages for
the different operating systems where this information can be separated out. Another possible problem is that
the generic code assumes that system calls such ascyg_hal_sys_write are available. On an operating system
other than Linux it is possible that some of these are not simple system calls, and instead wrapper functions
will need to be implemented at the variant HAL level.

The generic I/O auxiliary code should be fairly portable to other Unix platforms. However some of the device
drivers may contain code that is specific to Linux, for example thePF_PACKETsocket address family and the
ethertap virtual tunnelling interface. These may prove quite difficult to port.

The remaining porting task is to implement one or more platform HAL packages, one per processor type that
is supported. This should involve much the same work as a port toanother processor running Linux.

When using other Unix operating systems the kernel source code may not be available, which would make any
porting effort more challenging. However there is still a good chance that the GNU C library will have been
ported already, so its source code may contain much useful information.

Windows Platforms
Porting the current synthetic target code to some version of Windows or to another non-Unix platform is likely
to prove very difficult. The first hurdle that needs to be crossed is the file format for binary executables: current
Windows implementations do not use ELF, instead they use their own format PE which is a variant of the rather
old and limited COFF format. It may well prove easier to first write an ELF loader for Windows executables,
rather than try to get eCos to work within the constraints of PE. Of course that introduces new problems, for
example existing source-level debuggers will still expect executables to be in PE format.

Under Linux a synthetic target application is not linked with the system’s C library or any other standard
system library. That would cause confusion, for example both eCos and the system’s C library might try to
define theprintf function, and introduce complications such as working with shared libraries. For much the
same reasons, a synthetic target application under Windows should not be linked with any Windows DLL’s. If
an ELF loader has been specially written then this may not be much of a problem.

The next big problem is the system call interface. Under Windows system calls are generally made via DLL’s,
and it is not clear that the underlying trap mechanism is well-documented or consistent between different
releases of Windows.

The current code depends on the operating system providing an implementation of POSIX signal handling.
This is used for I/O purposes, for exampleSIGALRMis used for the system clock, and for exceptions. It is not
known what equivalent functionality is available under Windows.

600

Porting

Given the above problems a port of the synthetic target to Windows may or may not be technically feasible,
but it would certainly require a very large amount of effort.

601

Porting

602

XXXII. SA11X0 USB Device Driver

603

Porting

604

SA11X0 USB Device Driver

Name
SA11X0 USB Support — Device driver for the on-chip SA11X0 USB device

SA11X0 USB Hardware
The Intel StrongARM SA11x0 family of processors is supplied with an on-chip USB slave device, the UDC
(USB Device Controller). This supports three endpoints. Endpoint 0 can only be used for control messages.
Endpoint 1 can only be used for bulk transfers from host to peripheral. Endpoint 2 can only be used for bulk
transfers from peripheral to host. Isochronous and interrupt transfers are not supported.

Caution
Different revisions of the SA11x0 silicon have had various problems with the USB sup-
port. The device driver has been tested primarily against stepping B4 of the SA1110 pro-
cessor, and may not function as expected with other revisions. Application developers
should obtain the manufacturer’s current errata sheets and specification updates. The
B4 stepping still has a number of problems, but the device driver can work around these.
However there is a penalty in terms of extra code, extra cpu cycles, and increased dis-
patch latency because extra processing is needed at DSR level. Interrupt latency should
not be affected.

There is one specific problem inherent in the UDC design of which application devel-
opers should be aware: the hardware cannot fully implement the USB standard for bulk
transfers. A bulk transfer typically consists of some number of full-size 64-byte packets
and is terminated by a packet less than the full size. If the amount of data transferred
is an exact multiple of 64 bytes then this requires a terminating packet of 0 bytes of
data (plus header and checksum). The SA11x0 USB hardware does not allow a 0-byte
packet to be transmitted, so the device driver is forced to substitute a 1-byte packet and
the host receives more data than expected. Protocol support is needed so that the ap-
propriate host-side device driver can allow buffer space for the extra byte, detect when
it gets sent, and discard it. Consequently certain standard USB class protocols cannot
be implemented using the SA11x0, and therefore custom host-side device drivers will
generally have to be provided, rather than re-using existing ones that understand the
standard protocol.

Endpoint Data Structures
The SA11x0 USB device driver can provide up to three data structures corresponding to the three end-
points: a usbs_control_endpoint structureusbs_sa11x0_ep0 ; a usbs_rx_endpointusbs_sa11x0_ep1 ; and a
usbs_tx_endpointusbs_sa11x0_ep2 . The header filecyg/io/usb/usbs_sa11x0.h provides declarations for
these.

Not all applications will require support for all the endpoints. For example, if the intended use of the UDC
only involves peripheral to host transfers thenusbs_sa11x0_ep1 is redundant. The device driver provides
configuration options to control the presence of each endpoint:

1. Endpoint 0 is controlled by CYGFUN_DEVS_USB_SA11X0_EP0. This defaults to enabled if
there are any higher-level packages that require USB hardware or if the global preference
CYGGLO_IO_USB_SLAVE_APPLICATIONis enabled, otherwise it is disabled. Usually this has the desired

605

SA11X0 USB Device Driver

effect. It may be necessary to override this in special circumstances, for example if the target board uses
an external USB chip in preference to the UDC and it is that external chip’s device driver that should be
used rather than the on-chip UDC. It is not possible to disable endpoint 0 and at the same time enable one
or both of the other endpoints, since a USB device is only usable if it can process the standard control
messages.

2. Endpoint 1 is controlled byCYGPKG_DEVS_USB_SA11X0_EP1. By default it is enabled whenever endpoint
0 is enabled, but it can be disabled manually when not required.

3. Similarly endpoint 2 is controlled byCYGPKG_DEVS_USB_SA11X0_EP2. This is also enabled by default
whenever endpoint 0 is enabled, but it can be disabled manually.

The SA11X0 USB device driver implements the interface specified by the common eCos USB Slave Support
package. The documentation for that package should be consulted for further details. There is only one major
deviation: when there is a peripheral to host transfer on endpoint 2 which is an exact multiple of the bulk
transfer packet size (usually 64 bytes) the device driver has to pad the transfer with one extra byte. This is
because of a hardware limitation: the UDC is incapable of transmitting 0-byte packets as required by the USB
specification. Higher-level code, including the host-side device driver, needs to be aware of this and adapt
accordingly.

The device driver assumes a bulk packet size of 64 bytes, so this value should be used in the endpoint descrip-
tors in the enumeration data provided by application code. There is experimental code for running withDMA
disabled, in which case the packet size will be 16 bytes rather than 64.

Devtab Entries
In addition to the endpoint data structures the SA11X0 USB device driver can also provide devtab
entries for each endpoint. This allows higher-level code to use traditional I/O operations such as
open /read /write rather than the USB-specific non-blocking functions likeusbs_start_rx_buffer . These
devtab entries are optional since they are not always required. The relevant configuration options are
CYGVAR_DEVS_USB_SA11X0_EP0_DEVTAB_ENTRY, CYGVAR_DEVS_USB_SA11X0_EP1_DEVTAB_ENTRYand
CYGVAR_DEVS_USB_SA11X0_EP2_DEVTAB_ENTRY. By default these devtab entries are provided if the global
preferenceCYGGLO_USB_SLAVE_PROVIDE_DEVTAB_ENTRIESis enabled, which is usually the case. Obviously
a devtab entry for a given endpoint will only be provided if the underlying endpoint is enabled. For example,
there will not be a devtab entry for endpoint 1 ifCYGPKG_DEVS_USB_SA11X0_EP1is disabled.

The names for the three devtab entries are determined by using a configurable base name
and appending 0c , 1r or 2w. The base name is determined by the configuration option
CYGDAT_DEVS_USB_SA11X0_DEVTAB_BASENAMEand has a default value of/dev/usbs , so the devtab entry
for endpoint 1 would default to/dev/usbs1r . If the target hardware involves multiple USB devices then
application developers may have to change the base name to prevent a name clash.

DMA Engines
The SA11X0 UDC provides only limited fifos for bulk transfers on endpoints 1 and 2; smaller than the normal
64-byte bulk packet size. Therefore a typical transfer requires the use of DMA engines. The SA11x0 provides
six DMA engines that can be used for this, and the endpoints require one each (assuming both endpoints are
enabled). At the time of writing there is no arbitration mechanism to control access to the DMA engines. By
default the device driver will use DMA engine 4 for endpoint 1 and DMA engine 5 for endpoint 2, and it
assumes that no other code uses these particular engines.

The exact DMA engines that will be used are determined by the configuration options
CYGNUM_DEVS_USB_SA11X0_EP1_DMA_CHANNELand CYGNUM_DEVS_USB_SA11X0_EP2_DMA_CHANNEL.

606

SA11X0 USB Device Driver

These options have the booldata flavor, allowing the use of DMA to be disabled completely in addition to
controlling which DMA engines are used. If DMA is disabled then the device driver will attempt to work
purely using the fifos, and the packet size will be limited to only 16 bytes. This limit should be reflected in the
appropriate endpoint descriptors in the enumeration data. The code for driving the endpoints without DMA
should be considered experimental. At best it will be suitable only for applications where the amount of data
transferred is relatively small, because four times as many interrupts will be raised and performance will
suffer accordingly.

607

SA11X0 USB Device Driver

608

XXXIII. NEC uPD985xx USB Device
Driver

609

SA11X0 USB Device Driver

610

NEC uPD985xx USB Device Driver

Name
NEC uPD985xx USB Support — Device driver for the on-chip NEC uPD985xx USB device

NEC uPD985xx USB Hardware
The NEC uPD985xx family of processors is supplied with an on-chip USB slave device, the UDC (USB Device
Controller). This supports seven endpoints. Endpoint 0 can only be used for control messages. Endpoints 1
and 2 are for isochronous transmits and receives respectively. Endpoints 3 and 4 support bulk transmits and
receives. Endpoints 5 and 6 normally support interrupt transmits and receives, but endpoint 5 can also be
configured to support bulk transmits. At this time only the control endpoint 0, the bulk endpoints 3 and 4, and
the interrupt endpoint 5 are supported.

Endpoint Data Structures
The uPD985xx USB device driver can provide up to four data structures corresponding to the four
supported endpoints: a usbs_control_endpoint structureusbs_upd985xx_ep0 ; usbs_tx_endpoint structures
usbs_upd985xx_ep3 and usbs_upd985xx_ep5 ; and a usbs_rx_endpointusbs_upd985xx_ep4 . The header
file cyg/io/usb/usbs_nec_upd985xx.h provides declarations for these.

Not all applications will require support for all the endpoints. For example, if the intended use of the UDC
only involves peripheral to host transfers thenusbs_upd985xx_ep4 is redundant. The device driver provides
configuration options to control the presence of each endpoint:

1. Endpoint 0 is controlled byCYGFUN_DEVS_USB_UPD985XX_EP0. This defaults to enabled if
there are any higher-level packages that require USB hardware or if the global preference
CYGGLO_IO_USB_SLAVE_APPLICATIONis enabled, otherwise it is disabled. Usually this has the desired
effect. It may be necessary to override this in special circumstances, for example if the target board uses
an external USB chip in preference to the UDC and it is that external chip’s device driver that should be
used rather than the on-chip UDC. It is not possible to disable endpoint 0 and at the same time enable one
or both of the other endpoints, since a USB device is only usable if it can process the standard control
messages.

2. Endpoint 3 is controlled byCYGPKG_DEVS_USB_UPD985XX_EP3. By default this endpoint is disabled: ac-
cording to NEC erratum U3 there may be problems when attempting bulk transfers of 192 bytes or greater.
As an alternative the device driver provides support for endpoint 5, configured to allow bulk transfers.
Endpoint 3 can be enabled if the application only requires bulk transfers of less than 192 bytes, or if this
erratum is not applicable to the system being developed for other reasons.

3. Endpoint 4 is controlled byCYGPKG_DEVS_USB_UPD985XX_EP4. This is enabled by default whenever end-
point 0 is enabled, but it can be disabled manually.

4. Endpoint 5 is controlled byCYGPKG_DEVS_USB_UPD985XX_EP5. This is enabled by default whenever
endpoint 0 is enabled, but it can be disabled manually. There is also a configuration option
CYGIMP_DEVS_USB_UPD985XX_EP5_BULK, enabled by default. This option allows the endpoint to be used
for bulk transfers rather than interrupt transfers.

The uPD985xx USB device driver implements the interface specified by the common eCos USB Slave Support
package. The documentation for that package should be consulted for further details.

611

NEC uPD985xx USB Device Driver

The device driver assumes a bulk packet size of 64 bytes, so this value should be used in the endpoint descrip-
tors in the enumeration data provided by application code. The device driver also assumes a control packet
size of eight bytes, and again this should be reflected in the enumeration data. If endpoint 5 is configured for
interrupt rather than bulk transfers then the maximum packet size is limited to 64 bytes by the USB standard.

Devtab Entries
In addition to the endpoint data structures the uPD985xx USB device driver can also
provide devtab entries for each endpoint. This allows higher-level code to use traditional I/O
operations such asopen /read /write rather than the USB-specific non-blocking functions like
usbs_start_rx_buffer . These devtab entries are optional since they are not always required.
The relevant configuration options are CYGVAR_DEVS_USB_UPD985XX_EP0_DEVTAB_ENTRY,
CYGVAR_DEVS_USB_UPD985XX_EP3_DEVTAB_ENTRY, CYGVAR_DEVS_USB_UPD985XX_EP4_DEVTAB_ENTRY, and
CYGVAR_DEVS_USB_UPD985XX_EP5_DEVTAB_ENTRY. By default these devtab entries are provided if the global
preferenceCYGGLO_USB_SLAVE_PROVIDE_DEVTAB_ENTRIESis enabled, which is usually the case. Obviously
a devtab entry for a given endpoint will only be provided if the underlying endpoint is enabled. For example,
there will not be a devtab entry for endpoint 4 ifCYGPKG_DEVS_USB_UPD985XX_EP4is disabled.

The names for the devtab entries are determined by using a configurable base name and
appending 0c , 3w, 4r or 5w. The base name is determined by the configuration option
CYGDAT_DEVS_USB_UPD985XX_DEVTAB_BASENAMEand has a default value of/dev/usbs , so the devtab entry
for endpoint 4 would default to/dev/usbs4r . If the target hardware involves multiple USB devices then
application developers may have to change the base name to prevent a name clash with other USB device
drivers.

Restrictions
The current device driver imposes a restriction on certain bulk receives on endpoint 4. If the protocol being
used involves variable-length transfers, in other words if the host is allowed to send less data than a maximum-
sized transfer, then the buffer passed to the device driver for receives must be aligned to a 16-byte cacheline
boundary and it must be a multiple of this 16-byte cacheline size. This restriction does not apply if the protocol
only involves fixed-size transfers.

Optional Hardware Workarounds
The NEC errata list a number of other problems that affect the USB device driver. The device driver contains
workarounds for these, which are enabled by default but can be disabled if the application developer knows
that the errata are not relevant to the system being developed.

Erratum S1 lists a possible problem if the device driver attempts multiple writes to the USB hardware. This
is circumvented by a dummy read operation after every write. If the workaround is not required then the
configuration optionCYGIMP_DEVS_USB_UPD985XX_IBUS_WRITE_LIMITcan be disabled.

Errata U3 and U4 describe various problems related to concurrent transmissions on different endpoints. By
default the device driver works around this by serializing all transmit operations. For example if the device
driver needs to send a response to a control message on endpoint 0 while there is an ongoing bulk transfer on
endpoint 5, the response is delayed until the bulk transfer has completed. Under typical operating conditions
this does not cause any problems: endpoint 0 traffic usually happens only during initialization, when the target
is connected to the host, while endpoint 5 traffic only happens after initialization. However if transmit serial-

612

NEC uPD985xx USB Device Driver

ization is inappropriate for the system being developed then it can be disabled using the configuration option
CYGIMP_DEVS_USB_UPD985XX_SERIALIZE_TRANSMITS.

Platform Dependencies
On some platforms it is necessary for the low-level USB device driver to perform some additional operations
during start-up. For example it may be necessary to manipulate one of the processor’s GPIO lines before the
host can detect a new USB peripheral and attempt to communicate with it. This avoids problems if the target
involves a significant amount of work prior to device driver initialization, for example a power-on self-test
sequence. If the USB host attempted to contact the target before the USB device driver had been initialized, it
would fail to get the expected responses and conclude that the target was not a functional USB peripheral.

Platform-specific initialization code can be provided via a macroUPD985XX_USB_PLATFORM_INIT. Typically
this macro would be defined in the platform HAL’s header filecyg/hal/plf_io.h . If the current platform
defines such a macro, the USB device driver will invoke it during the endpoint 0 start-up operation.

613

NEC uPD985xx USB Device Driver

614

XXXIV. Synthetic Target Ethernet
Driver

615

NEC uPD985xx USB Device Driver

616

Synthetic Target Ethernet Driver

Name
Synthetic Target Ethernet Support — Allow synthetic target applications to perform ethernet
I/O

Overview
The synthetic target ethernet package can provide up to four network devices,eth0 to eth3 . These can be used
directly by the eCos application or, more commonly, by a TCP/IP stack that is linked with the eCos application.
Each eCos device can be mapped on to a real Linux network device. For example, if the Linux PC has two
ethernet cards andeth1 is not currently being used by Linux itself, then one of the eCos devices can be mapped
on to this Linux device. Alternatively, it is possible to map some or all of the eCos devices on to the ethertap
support provided by the Linux kernel.

The ethernet package depends on the I/O auxiliary provided by the synthetic target architectural HAL package.
During initialization the eCos application will attempt to instantiate the desired devices, by sending a request
to the auxiliary. This will load a Tcl scriptethernet.tcl that is responsible for handling the instantiation
request and subsequent I/O operations, for example transmitting an ethernet packet. However, some of the
low-level I/O operations cannot conveniently be done by a Tcl script soethernet.tcl will actually run a
separate programrawether to interact with the Linux network device.

On the target-side there are configuration options to control which network devices should be present. For
many applications a single device will be sufficient, but if the final eCos application is something like a network
bridge then the package can support multiple devices. On the host-side each eCos network device needs to be
mapped on to a Linux one, either a real ethernet device or an ethertap device. This is handled by an entry in
the target definition file:

synth_device ethernet {
eth0 real eth1
eth1 ethertap tap3 00:01:02:03:FE:05
...

}

The ethernet package also comes with support for packet logging, and provides various facilities for use by
user Tcl scripts.

Installation
Before a synthetic target eCos application can access ethernet devices it is necessary to build and install host-
side support. The relevant code resides in thehost subdirectory of the synthetic target ethernet package, and
building it involves the standardconfigure, makeandmake install steps. The build involves a new executable
rawether which must be able to access a raw Linux network device. This is achieved by installing it suid root,
so themake install step has to be run with superuser privileges.

617

Synthetic Target Ethernet Driver

Caution
Installing rawether suid root introduces a potential security problem. Although normally
rawether is executed only by the I/O auxiliary, theoretically it can be run by any program.
Effectively it gives any user the ability to monitor all ethernet traffic and to inject arbitrary
packets into the network. Also, as with any suid root programs there may be as yet
undiscovered exploits. Users and system administrators should consider the risks before
running make install .

There are two main ways of building the host-side software. It is possible to build both the generic host-side
software and all package-specific host-side software, including the ethernet support, in a single build tree. This
involves using theconfigure script at the toplevel of the eCos repository. For more information on this, see
theREADME.host file at the top of the repository. Note that if you have an existing build tree which does not
include the synthetic target ethernet support then it will be necessary to rerun the toplevel configure script: the
search for appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This requires a separate build directory, building
directly in the source tree is disallowed. Theconfigure options are much the same as for a build from the
toplevel, and theREADME.host file can be consulted for more details. It is essential that the ethernet support
be configured with the same--prefix option as other eCos host-side software, especially the I/O auxiliary
provided by the architectural synthetic target HAL package, otherwise the I/O auxiliary will be unable to locate
the ethernet support.

Target-side Configuration Options
The target-side code can be configured to support up to four ethernet devices,eth0 to eth3 . By defaulteth0

is enabled if the configuration includes a TCP/IP stack, otherwise it is disabled. The other three devices are
always disabled by default. If any of the devices are enabled then there will also be the usual configuration
options related to building this package. Other options related to network devices, for example whether or not
to use DHCP, are provided by the generic network device package.

Real Ethernet
One obvious way of providing a synthetic target eCos application with ethernet I/O is to use a real ethernet
device in the PC: transmitted packets go out on a real network, and packets on the network addressed to the
right MAC address are passed on to eCos. This way synthetic target networking behaves just like networking
on a real target with ethernet hardware. For example, if there is a DHCP server anywhere on the network then
eCos will be able to contact it during networking startup and get hold of IP address information.

Configuring the ethernet support to use a real ethernet device requires a simple entry in the target definition
file:

synth_device ethernet {
<eCos device > real <linux device >

...
}

For example, to map the eCos network deviceeth0 to the Linux deviceeth1 :

synth_device ethernet {
eth0 real eth1
...

}

618

Synthetic Target Ethernet Driver

It is not possible for an ethernet device to be shared by both the eCos TCP/IP stack and the Linux one: there
would be no simple way to work out which stack incoming packets are intended for. In theory it might be
possible to do some demultiplexing using distinct IP addresses, but it would be impossible to support some
functionality such as DHCP. Therefore therawether program will refuse to access any ethernet device already
in use. On a typical Linux systemeth0 will be used for Linux networking, and the PC will have to be equipped
with additional ethernet devices for use by eCos.

The rawether program will access the hardware via the appropriate Linux device driver, so it is important
that the system is set up such that the relevant module will be automatically loaded or is already loaded. The
details of this will depend on the installed distribution and version, but typically it will involve an entry in
/etc/modules.conf .

Ethertap
The Linux kernel’s ethertap facility provides a virtual network interface. A Linux application, for example the
rawether program, can open a special character device/dev/net/tun , perform variousioctl calls, and then
write and read ethernet packets. When the device is opened the Linux kernel automatically creates a new
network interface, for exampletap0 . The Linux TCP/IP stack can be made to use this network interface like
any other interface, receiving and transmitting ethernet packets. The net effect is a virtual network connecting
just the Linux and eCos TCP/IP stacks, with no other nodes attached. By default all traffic remains inside this
virtual network and is never forwarded to a real network.

Support for the ethertap facility may or may not be provided automatically, depending on
your Linux distribution and version. If your system does not have a device/dev/net/tun or
a module tun.o then the appropriate kernel documentation should be consulted, for example
/usr/src/linux-2.4/Documentation/networking/tuntap.txt . If you are using an old Linux kernel
then the ethertap functionality may be missing completely. When therawether program is configured and
built, theconfigure script will check for a file/usr/include/linux/if_tun.h . If that file is missing then
rawether will be built without ethertap functionality, and only real ethernet interfaces will be supported.

The target definition file is used to map eCos network devices on to ethertap devices. The simplest usage is:

synth_device ethernet {
eth0 ethertap
...

}

The Linux kernel will automatically allocate the next available tap network interface. Usually this will betap0

but if other software is using the ethertap facility, for example to implement a VPN, then a different number
may be allocated. Usually it will be better to specify the particular tap device that should be used for each eCos
device, for example:

synth_device ethernet {
eth0 ethertap tap3
eth1 ethertap tap4
...

}

The user now knows exactly which eCos device is mapped onto which Linux device, avoiding much potential
confusion. Because the virtual devices are emulated ethernet devices, they require MAC addresses. There is no
physical hardware to provide these addresses, so normally MAC addresses will be invented. That means that
each time the eCos application is run it will have different MAC addresses, which makes it more difficult to
compare the results of different runs. To get more deterministic behaviour it is possible to specify the MAC
addresses in the target definition file:

619

Synthetic Target Ethernet Driver

synth_device ethernet {
eth0 ethertap tap3 00:01:02:03:FE:05
eth1 ethertap tap4 00:01:02:03:FE:06
...

}

During the initialization phase the eCos application will instantiate the various network devices. This will cause
the I/O auxiliary to load theethernet.tcl script and spawnrawether processes, which in turn willopen

/dev/net/tun and perform the appropriateioctl calls. On the Linux side there will now be new network
interfaces such astap3 , and these can be configured like any other network interface using commands such as
ifconfig. In addition, if the Linux system is set up with hotplug support then it may be possible to arrange for
the network interface to become active automatically. On a Red Hat Linux system this would require files such
as/etc/sysconfig/network-scripts/ifcfg-tap3 , containing data like:

DEVICE="tap3"
BOOTPROTO="none"
BROADCAST=10.2.2.255
IPADDR="10.2.2.1"
NETMASK="255.255.255.0"
NETWORK=10.2.2.0
ONBOOT="no"

This gives the Linux interface the address10.2.2.1 on the network10.2.2.0 . The eCos network
device should be configured with a compatible address. One way of doing this would be to enable
CYGHWR_NET_DRIVER_ETH0_ADDRS, set CYGHWR_NET_DRIVER_ETH0_ADDRS_IPto 10.2.2.2 , and similarly
update theNETMASK, BROADCAST, GATEWAYandSERVERconfiguration options.

It should be noted that the ethertap facility provides a virtual network, and any packets transmitted by the eCos
application will not appear on a real network. Therefore usually there will no accessible DHCP server, and
eCos cannot use DHCP or BOOTP to obtain IP address information. Instead the eCos configuration should use
manual or static addresses.

Whenrawether exits, the tap interface is removed by the kernel. By adding the parameter persistentrawether
will set the persistent flag on the tap device.

synth_device ethernet {
eth0 ethertap tap3 00:01:02:03:FE:05
eth1 ethertap tap4 00:01:02:03:FE:06 persistent
...

}

With this flag set the kernel will not remove the interface whenrawether exits. This means applications such as
dhcpd, radvd, andtcpdump will continue to run on the interface between invocations of synthetic targets. As
a result the target can dynamically obtain its IP addresses from these daemons. Note it is a good idea to specify
a MAC address otherwise a different random MAC address will be used each time and the dhcpd daemon will
not be able to reissue the same IP address.

Host daemons like dhcpd, ntpd, radvd etc are started at boot time. Since the tap device does not exists at this
point in time it is not possible for these daemons to bind to the tap device. A simple solution is to use the
programinstall/bin/mktap . This takes one parameter, the name of the tap device it should create. eg,tap3 .

An alternative approach would be to set up the Linux box as a network bridge, using commands likebrctl
to connect the virtual network interfacetap3 to a physical network interface such aseth0 . Any packets sent
by the eCos application will get forwarded automatically to the real network, and some packets on the real
network will get forwarded over the virtual network to the eCos application. Note that the eCos application
might also get some packets that were not intended for it, but usually those will just be discarded by the eCos
TCP/IP stack. The exact details of setting up a network bridge are left as an exercise to the reader.

620

Synthetic Target Ethernet Driver

Packet Logging
The ethernet support comes with support for logging the various packets that are transferred, including a simple
protocol analyser. This generates simple text output using the filter mechanisms provided by the I/O auxiliary,
so it is possible to control the appearance and visibility of different types of output. For example the user might
want to see IPv4 headers and all ICMPv4 and ARP operations, but not TCP headers or any of the packet data.

The protocol analyser is not intended to be a fully functional analyser with knowledge of many different
TCP/IP protocols, advanced search facilities, graphical traffic displays, and so on. Functionality like that is
already provided by other tools such as ethereal and tcpdump. Achieving similar levels of functionality would
require a lot of work, for very little gain. It is still useful to have some protocol analysis functionality available
because the output will be interleaved with other output, for exampleprintf calls from the application. That
may make it easier to understand the sequence of events.

One problem with logging ethernet traffic is that it can involve very large amounts of data. If the application is
expected to run for a long time or is very I/O intensive then it is easy to end up with many megabytes. When
running in graphical mode all the logging data will be held in memory, even data that is not currently visible.
At some point the system will begin to run low on memory and performance will suffer. To avoid problems,
the ethernet script maintains a flag that controls whether or not packet logging is active. The default is to run
with logging disabled, but this can be changed in the target definition file:

synth_device ethernet {
...
logging 1

}

The ethernet script will add a toolbar button that allows this flag to be changed at run-time, allowing the user
to capture traffic for certain periods of time while the application continues running.

The target definition file can contain the following entries for the various packet logging filters:

synth_device ethernet {
...
filter ether -hide 0 -background LightBlue -foreground "#000080"
filter arp -hide 0 -background LightBlue -foreground "#000050"
filter ipv4 -hide 0 -background LightBlue -foreground "#000040"
filter ipv6 -hide 1 -background LightBlue -foreground "#000040"
filter icmpv4 -hide 0 -background LightBlue -foreground "#000070"
filter icmpv6 -hide 1 -background LightBlue -foreground "#000070"
filter udp -hide 0 -background LightBlue -foreground "#000030"
filter tcp -hide 0 -background LightBlue -foreground "#000020"
filter hexdata -hide 1 -background LightBlue -foreground "#000080"
filter asciidata -hide 1 -background LightBlue -foreground "#000080"

}

All output will show the eCos network device, for exampleeth0 , and the direction relative to the eCos applica-
tion. Some of the filters will show packet headers, for exampleether gives details of the ethernet packet header
andtcp gives information about TCP headers such as whether or not the SYN flag is set. The TCP and UDP
filters will also show source and destination addresses, using numerical addresses and if possible host names.
However, host names will only be shown if the host appears in/etc/hosts : doing full DNS lookups while
the data is being captured would add significantly to complexity and overhead. Thehexdata andasciidata

filters show the remainder of the packets after the ethernet, IP and TCP or UDP headers have been stripped.

Some of the filters will provide raw dumps of some of the packet data. Showing up to 1500 bytes of data for
each packet would be expensive, and often the most interesting information is near the start of the packet.
Therefore it is possible to set a limit on the number of bytes that will be shown using the target definition file.
The default limit is 64 bytes.

621

Synthetic Target Ethernet Driver

synth_device ethernet {
...
max_show 128

}

User Interface Additions
When running in graphical mode the ethernet script extends the user interface in two ways: a button is added
to the toolbar so that users can enable or disable packet logging; and an entry is added to theHelp menu for
the ethernet-specific documentation.

Command Line Arguments
The synthetic target ethernet support does not use any command line arguments. All configuration is handled
through the target definition file.

Hooks
The ethernet support defines two hooks that can be used by other scripts, especially user scripts:ethernet_tx

and ethernet_rx . The tx hook is called whenever eCos tries to transmit a packet. The rx hook is called
whenever an incoming packet is passed to the eCos application. Note that this may be a little bit after the
packet was actually received by the I/O auxiliary since it can buffer some packets. Both hooks are called with
two arguments, the name of the network device and the packet being transferred. Typical usage might look
like:

proc my_tx_hook { arg_list } {
set dev [lindex $arg_list 0]
incr ::my_ethernet_tx_packets($dev)
incr ::my_ethernet_tx_bytes($dev) [string length [lindex $arg_list 1]]

}
proc my_rx_hook { arg_list } {

set dev [lindex $arg_list 0]
incr ::my_ethernet_rx_packets($dev)
incr ::my_ethernet_rx_bytes($dev) [string length [lindex $arg_list 1]]

}
synth::hook_add "ethernet_tx" my_tx_hook
synth::hook_add "ethernet_rx" my_rx_hook

The global arraysmy_ethernet_tx_packets etc. will now be updated whenever there is ethernet traffic. Other
code, probably running at regular intervals by use of the Tclafter procedure, can then use this information to
update a graphical monitor of some sort.

Additional Tcl Procedures
The ethernet support provides one additional Tcl procedure that can be used by other scripts;

ethernet::devices_get_list

This procedure returns a list of the ethernet devices that have been instantiated, for example{eth0 eth1} .

622

XXXV. Synthetic Target Watchdog
Device

623

Synthetic Target Ethernet Driver

624

Synthetic Target Watchdog Device

Name
Synthetic Target Watchdog Device — Emulate watchdog hardware in the synthetic target

Overview
Some target hardware comes equipped with a watchdog timer. Application code can start this timer and after a
certain period of time, typically a second, the watchdog will trigger. Usually this causes the hardware to reboot.
The application can prevent this by regularly resetting the watchdog. An automatic reboot can be very useful
when deploying hardware in the field: a hardware glitch could cause the unit to hang; or the software could
receive an unexpected sequence of inputs, never seen in the laboratory, causing the system to lock up. Often
the hardware is still functional, and a reboot sorts out the problem with only a brief interruption in service.

The synthetic target watchdog package emulates watchdog hardware. During system initialization watchdog
device will be instantiated, and thewatchdog.tcl script will be loaded by the I/O auxiliary. When the eCos
application starts the watchdog device, thewatchdog.tcl script will start checking the state of the eCos
application at one second intervals. A watchdog reset call simply involves a message to the I/O auxiliary. If
thewatchdog.tcl script detects that a second haselapsedwithout a reset then it will send aSIGPWRsignal to
the eCos application, causing the latter to terminate. If gdb is being used to run the application, the user will
get a chance to investigate what is happening. This behaviour is different from real hardware in that there is no
automatic reboot, but the synthetic target is used only for development purposes, not deployment in the field:
if a reboot is desired then this can be achieved very easily by using gdb commands to run another instance of
the application.

Installation
Before a synthetic target eCos application can use a watchdog device it is necessary to build and install host-
side support. The relevant code resides in thehost subdirectory of the synthetic target watchdog package, and
building it involves the standardconfigure, makeandmake install steps. The implementation of the watchdog
support does not require any executables, just a Tcl scriptwatchdog.tcl and some support files, so themake
step is a no-op.

There are two main ways of building the host-side software. It is possible to build both the generic host-side
software and all package-specific host-side software, including the watchdog support, in a single build tree.
This involves using theconfigure script at the toplevel of the eCos repository. For more information on this,
see theREADME.host file at the top of the repository. Note that if you have an existing build tree which does not
include the synthetic target watchdog support then it will be necessary to rerun the toplevel configure script:
the search for appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This requires a separate build directory, building
directly in the source tree is disallowed. Theconfigure options are much the same as for a build from the
toplevel, and theREADME.host file can be consulted for more details. It is essential that the watchdog support
be configured with the same--prefix option as other eCos host-side software, especially the I/O auxiliary
provided by the architectural synthetic target HAL package, otherwise the I/O auxiliary will be unable to locate
the watchdog support.

625

Synthetic Target Watchdog Device

Target-side Configuration
The watchdog device depends on the generic watchdog support,CYGPKG_IO_WATCHDOG: if the generic support
is absent then the watchdog device will be inactive. Some templates include this generic package by default,
but not all. If the configuration does not include the generic package then it can be added using the eCos
configuration tools, for example:

$ ecosconfig add CYGPKG_IO_WATCHDOG

By default the configuration will use the hardware-specific support, i.e. this package. However the generic
watchdog package contains an alternative implementation using the kernel alarm facility, and that implemen-
tation can be selected if desired. However usually it will be better to rely on an external watchdog facility as
provided by the I/O auxiliary and thewatchdog.tcl script: if there are serious problems within the application,
for example memory corruption, then an internal software-only implementation will not be reliable.

The watchdog resolution is currently fixed to one second: if the device does not receive a reset signal at least
once a second then the watchdog will trigger and the eCos application will be terminated with aSIGPWRsignal.
The current implementation does not allow this resolution to be changed.

On some targets the watchdog device does not perform a hard reset. Instead the device works more or less
via the interrupt subsystem, allowing application code to install action routines that will be called when the
watchdog triggers. The synthetic target watchdog support effectively does perform a hard reset, by sending a
SIGPWRsignal to the eCos application, and there is no support for action routines.

The synthetic target watchdog package provides some configuration options for manipulating the compiler
flags used for building the target-side code. That code is fairly simple, so for nearly all applications the default
flags will suffice.

It should be noted that the watchdog device is subject to selective linking. Unless some code explicitly refer-
ences the device, for example by calling the start and reset functions, the watchdog support will not appear in
the final executable. This is desirable because a watchdog device has no effect until started.

Wallclock versus Elapsed Time
On real hardware the watchdog device uses wallclock time: if the device does not receive a reset signal within
a set period of time then the watchdog will trigger. When developing for the synthetic target this is not always
appropriate. There may be other processes running, using up some or most of the cpu time. For example, the
application may be written such that it will issue a reset after some calculations which are known to complete
within half a second, well within the one-second resolution of the watchdog device. However if other Linux
processes are running then the synthetic target application may get timesliced, and half a second of computation
may take several seconds of wallclock time.

Another problem with using wallclock time is that it interferes with debugging: if the application hits a break-
point then it is unlikely that the user will manage to restart it in less than a second, and the watchdog will not
get reset in time.

To avoid these problems the synthetic target watchdog normally uses consumed cpu time rather than wallclock
time. If the application is timesliced or if it is halted inside gdb then it does not consume any cpu time. The
application actually has to spend a whole second’s worth of cpu cycles without issuing a reset before the
watchdog triggers.

However using consumed cpu time is not a perfect solution either. If the application makes blocking system
calls then it is not using cpu time. Interaction with the I/O auxiliary involves system calls, but these should take
only a short amount of time so their effects can be ignored. If the application makes direct system calls such
ascyg_hal_sys_read then the system behaviour becomes undefined. In addition by default the idle thread
will make blockingselect system calls, effectively waiting until an interrupt occurs. If an application spends

626

Synthetic Target Watchdog Device

much of its time idle then the watchdog device may take much longer to trigger than expected. It may be
desirable to enable the synthetic target HAL configuration optionCYGIMP_HAL_IDLE_THREAD_SPIN, causing
the idle thread to spin rather than block, at the cost of wasted cpu cycles.

The default is to use consumed cpu time, but this can be changed in the target definition file:

synth_device watchdog {
use wallclock_time
...

}

User Interface
When the synthetic target is run in graphical mode the watchdog device extends the user interface in two ways.
TheHelp menu is extended with an entry for the watchdog-specific documentation. There is also a graphical
display of the current state of the watchdog. Initially the watchdog is asleep:

When application code starts the device the watchdog will begin to keep an eye on things (or occasionally both
eyes).

If the watchdog triggers the display will change again, and optionally the user can receive an audible alert. The
location of the watchdog display within the I/O auxiliary’s window can be controlled via awatchdog_pack
entry in the target definition file. For example the following can be used to put the watchdog display to the
right of the central text window:

synth_device watchdog {
watchdog_pack -in .main.e -side top
...

}

The user interface section of the generic synthetic target HAL documentation can be consulted for more infor-
mation on window packing.

By default the watchdog support will not generate an audible alert when the watchdog triggers, to avoid an-
noying colleagues. Sound can be enabled in the target definition file, and two suitable filessound1.au and
sound2.au are supplied as standard:

synth_device watchdog {
sound sound1.au
...

}

627

Synthetic Target Watchdog Device

An absolute path can be specified if desired:

synth_device watchdog {
sound /usr/share/emacs/site-lisp/emacspeak/sounds/default-8k/alarm.au
...

}

Sound facilities are not built into the I/O auxiliary itself, instead an external program is used. The default player
is play, a front-end to the sox application shipped with some Linux distributions. If another player should be
used then this can be specified in the target definition file:

synth_device watchdog {
...
sound_player my_sound_player

The specified program will be run in the background with a single argument, the sound file.

Command Line Arguments
The watchdog support does not use any command line arguments. All configuration is handled through the
target definition file.

Hooks
The watchdog support does not provide any hooks for use by other scripts. There is rarely any need for cus-
tomizing the system’s behaviour when a watchdog triggers because those should be rare events, even during
application development.

Additional Tcl Procedures
The watchdog support does not provide any additional Tcl procedures or variables for use by other scripts.

628

XXXVI. Dallas DS1307 Wallclock
Device Driver

629

Synthetic Target Watchdog Device

630

Dallas DS1307 Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307— eCos Support for the Dallas DS1307 Serial Real-Time
Clock

Description
This packageCYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307provides a device driver for the wallclock device
in the Dallas DS1307 Serial Real-Time Clock chips. This combines a real-time clock and 56 bytes of battery-
backed RAM in a single package. The driver can also be used with any other chips that provide the same
interface to the clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which
contains a compatible chip. By default it will provide the standard eCos wallclock device, although another
implementation such as software emulation may be selected if desired. The only other configuration options
related to this package allow users to change the compiler flags. If the application does not actually use the
wallclock device, directly or indirectly, then the code should get removed automatically at link-time to ensure
that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock
supportCYGPKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by
the C library time package to implement standard calls such astime andgmtime . The eCos C library also
provides a non-standard functioncyg_libc_time_settime for changing the current wallclock setting. In
addition RedBoot provides adatecommand which interacts with the wallclock device.

Porting
DS1307 platform support can be implemented in one of two ways. The preferred approach involves
the generic I2C API, as defined by the packageCYGPKG_IO_I2C. The platform HAL can just
provide a cyg_i2c_device structurecyg_i2c_wallclock_ds1307 and implement the CDL interface
CYGINT_DEVICES_WALLCLOCK_DALLAS_DS1307_I2C. The DS1307 driver will now use I2C rx and tx
operations to interact with the chip.

Alternatively the DS1307 driver can use macros or functions provided by another package to access the
chip. This is intended primarily for older platforms that predate theCYGPKG_IO_I2C package. The other
package should export a header file containing macrosDS_GETand DS_PUT that transfer the eight bytes
corresponding to the chip’s clock registers. It should also export the name of this header via a#define

CYGDAT_DEVS_WALLCLOCK_DS1307_INLin the global configuration headerpkgconf/system.h . For full de-
tails see the source code.

In addition the DS1307 device driver packageCYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307should be in-
cluded in the CDL target entry so that it gets loaded automatically whenever eCos is configured for that target.

631

Dallas DS1307 Wallclock Device Driver

632

	eCos Reference Manual
	Table of Contents
	List of Tables
	I. The eCos Kernel
	Kernel Overview
	Name
	Description
	Schedulers
	Synchronization Primitives
	Threads and Interrupt Handling
	Calling Contexts
	Error Handling and Assertions

	SMP Support
	Name
	Description
	System Startup
	Scheduling
	SMP Interrupt Handling

	Thread creation
	Name
	Synopsis
	Description
	Thread Entry Point
	Thread Priorities
	Stacks and Stack Sizes
	Valid contexts
	Example
	Thread Entry Points and C++

	Thread information
	Name
	Synopsis
	Description
	Valid contexts
	Examples

	Thread control
	Name
	Synopsis
	Description
	Yield
	Delay
	Suspend and Resume
	Releasing a Blocked Thread
	Valid contexts

	Thread termination
	Name
	Synopsis
	Description
	Valid contexts

	Thread priorities
	Name
	Synopsis
	Description
	Valid contexts

	Perthread data
	Name
	Synopsis
	Description
	Valid contexts

	Thread destructors
	Name
	Synopsis
	Description
	Valid contexts

	Exception handling
	Name
	Synopsis
	Description
	Valid contexts

	Counters
	Name
	Synopsis
	Description
	Valid contexts

	Clocks
	Name
	Synopsis
	Description
	Clock Resolutions and Ticks
	Valid contexts

	Alarms
	Name
	Synopsis
	Description
	Valid contexts

	Mutexes
	Name
	Synopsis
	Description
	Priority Inversion
	Alternatives
	Recursive Mutexes
	Valid contexts

	Condition Variables
	Name
	Synopsis
	Description
	Valid contexts

	Semaphores
	Name
	Synopsis
	Description
	Valid contexts

	Mail boxes
	Name
	Synopsis
	Description
	Valid contexts

	Event Flags
	Name
	Synopsis
	Description
	Valid contexts

	Spinlocks
	Name
	Synopsis
	Description
	Valid contexts

	Scheduler Control
	Name
	Synopsis
	Description
	Valid contexts

	Interrupt Handling
	Name
	Synopsis
	Description
	Interrupt Handlers
	Controlling Interrupts
	SMP Support
	VSR Support
	Valid contexts

	Kernel Realtime Characterization
	Name
	Description
	Methodology
	Using these Measurements
	Influences on Performance
	Measured Items
	Thread Primitives
	Scheduler Primitives
	Mutex Primitives
	Mailbox Primitives
	Semaphore Primitives
	Counters
	Alarms

	II. The eCos Hardware Abstraction Layer (HAL)
	Chapter 1. Introduction
	Chapter 2. Architecture, Variant and Platform
	Chapter 3. General principles
	Chapter 4. HAL Interfaces
	Base Definitions
	Byte order
	Label Translation
	Base types
	Atomic types

	Architecture Characterization
	Register Save Format
	Thread Context Initialization
	Thread Context Switching
	Bit indexing
	Idle thread activity
	Reorder barrier
	Breakpoint support
	GDB support
	Setjmp and longjmp support
	Stack Sizes
	Address Translation
	Global Pointer

	Interrupt Handling
	Vector numbers
	Interrupt state control
	ISR and VSR management
	Interrupt controller management

	Clocks and Timers
	Clock Control
	Microsecond Delay
	Clock Frequency Definition

	HAL I/O
	Register address
	Register read
	Register write

	Cache Control
	Cache Dimensions
	Global Cache Control
	Cache Line Control

	Linker Scripts
	Diagnostic Support
	SMP Support
	Target Hardware Limitations
	HAL Support
	CPU Control
	Testandset Support
	Spinlocks
	Scheduler Lock
	Interrupt Routing

	Chapter 5. Exception Handling
	HAL Startup
	Vectors and VSRs
	Default Synchronous Exception Handling
	Default Interrupt Handling

	Chapter 6. Porting Guide
	Introduction
	HAL Structure
	HAL Classes
	File Descriptions
	Common HAL
	Architecture HAL
	Variant HAL
	Platform HAL
	Auxiliary HAL

	Virtual Vectors (eCos/ROM Monitor Calling Interface)
	Virtual Vectors
	Initialization (or Mechanism vs. Policy)
	Pros and Cons of Virtual Vectors
	Available services

	The COMMS channels
	Console and Debugging Channels
	Mangling
	Controlling the Console Channel
	Footnote: Design Reasoning for Control of Console Channel

	The calling Interface API
	Implemented Services
	Compatibility
	Implementation details
	New Platform Ports
	New architecture ports

	IO channels
	Available Procedures
	Usage
	Compatibility
	Implementation Details
	New Platform Ports

	HAL Coding Conventions
	Implementation issues
	Source code details
	Nested Headers

	Platform HAL Porting
	HAL Platform Porting Process
	Brief overview
	Stepbystep
	Minimal requirements
	Adding features

	Hints

	HAL Platform CDL
	eCos Database
	CDL File Layout
	Startup Type
	Build options
	Common Target Options

	Platform Memory Layout
	Layout Files
	Reserved Regions

	Platform Serial Device Support

	Variant HAL Porting
	HAL Variant Porting Process
	HAL Variant CDL
	Cache Support

	Architecture HAL Porting
	HAL Architecture Porting Process
	CDL Requirements

	Chapter 7. Future developments
	III. The ISO Standard C and Math Libraries
	Chapter 8. C and math library overview
	Included nonISO functions
	Math library compatibility modes
	matherr()
	Threadsafety and reentrancy

	Some implementation details
	Thread safety
	C library startup

	IV. I/O Package (Device Drivers)
	Chapter 9. Introduction
	Chapter 10. User API
	Chapter 11. Serial driver details
	Raw Serial Driver
	Runtime Configuration
	API Details
	cygiowrite
	cygioread
	cygiogetconfig
	cygiosetconfig

	TTY driver
	Runtime configuration
	API details

	Chapter 12. How to Write a Driver
	Arguments
	Arguments

	How to Write a Serial Hardware Interface Driver
	DevTab Entry
	Arguments

	Serial Channel Structure
	Arguments

	Serial Functions Structure
	Arguments

	Callbacks

	Serial testing with serfilter
	Rationale
	The Protocol
	The Serial Tests
	Serial Filter Usage
	A Note on Failures
	Debugging

	Chapter 13. Device Driver Interface to the Kernel
	Interrupt Model
	Synchronization
	SMP Support
	Device Driver Models
	Synchronization Levels
	The API
	cygdrvisrlock
	cygdrvisrunlock
	cygdrvspinlockinit
	cygdrvspinlockdestroy
	cygdrvspinlockspin
	cygdrvspinlockclear
	cygdrvspinlocktry
	cygdrvspinlocktest
	cygdrvspinlockspinintsave
	cygdrvspinlockclearintsave
	cygdrvdsrlock
	cygdrvdsrunlock
	cygdrvmutexinit
	cygdrvmutexdestroy
	cygdrvmutexlock
	cygdrvmutextrylock
	cygdrvmutexunlock
	cygdrvmutexrelease
	cygdrvcondinit
	cygdrvconddestroy
	cygdrvcondwait
	cygdrvcondsignal
	cygdrvcondbroadcast
	cygdrvinterruptcreate
	cygdrvinterruptdelete
	cygdrvinterruptattach
	cygdrvinterruptdetach
	cygdrvinterruptmask
	cygdrvinterruptmaskintunsafe
	cygdrvinterruptunmask
	cygdrvinterruptunmaskintunsafe
	cygdrvinterruptacknowledge
	cygdrvinterruptconfigure
	cygdrvinterruptlevel
	cygdrvinterruptsetcpu
	cygdrvinterruptgetcpu
	cygISRt
	cygDSRt

	V. File System Support Infrastructure
	Chapter 14. Introduction
	Chapter 15. File System Table
	Chapter 16. Mount Table
	Chapter 17. File Table
	Chapter 18. Directories
	Chapter 19. Synchronization
	Chapter 20. Initialization and Mounting
	Chapter 21. Sockets
	Chapter 22. Select
	Chapter 23. Devices
	Chapter 24. Writing a New Filesystem
	VI. PCI Library
	Chapter 25. The eCos PCI Library
	PCI Library
	PCI Overview
	Initializing the bus
	Scanning for devices
	Generic config information
	Specific config information
	Allocating memory
	Interrupts
	Activating a device
	Links

	PCI Library reference
	PCI Library API
	Definitions
	Types and data structures
	Functions
	Resource allocation
	PCI Library Hardware API
	HAL PCI support

	VII. FLASH Library
	Chapter 26. The eCos FLASH Library
	FLASH Library
	Initializing the FLASH library
	Retrieving information about the FLASH
	Reading from FLASH
	Erasing areas of FLASH
	Programming the FLASH
	Locking and unlocking blocks
	Return values and errors
	Notes on using the FLASH library
	Danger, Will Robinson! Danger!

	VIII. SPI Support
	Overview
	Name
	Description
	eCos Support for SPI

	SPI Interface
	Name
	Synopsis
	Description
	Simple Transfers
	Additional Clock Ticks
	Transactions
	Device Configuration

	Porting to New Hardware
	Name
	Description
	Adding a Device
	Adding Bus Support

	IX. I2C Support
	Overview
	Name
	Description
	eCos Support for I2C

	I2C Interface
	Name
	Synopsis
	Description
	Simple Transfers
	Transactions
	Initialization

	Porting to New Hardware
	Name
	Description
	Adding a Device
	Bitbanged Bus
	Full Bus Driver

	X. eCos POSIX compatibility layer
	Chapter 27. POSIX Standard Support
	Process Primitives POSIX Section 3
	Functions Implemented
	Functions Omitted
	Notes

	Process Environment POSIX Section 4
	Functions Implemented
	Functions Omitted
	Notes

	Files and Directories POSIX Section 5
	Functions Implemented
	Functions Omitted
	Notes

	Input and Output POSIX Section 6
	Functions Implemented
	Functions Omitted
	Notes

	Device and Class Specific Functions POSIX Section 7
	Functions Implemented
	Functions Omitted
	Notes

	C Language Services POSIX Section 8
	Functions Implemented
	Functions Omitted
	Notes

	System Databases POSIX Section 9
	Functions Implemented
	Functions Omitted
	Notes

	Data Interchange Format POSIX Section 10
	Synchronization POSIX Section 11
	Functions Implemented
	Functions Omitted
	Notes

	Memory Management POSIX Section 12
	Functions Implemented
	Functions Omitted
	Notes

	Execution Scheduling POSIX Section 13
	Functions Implemented
	Functions Omitted
	Notes

	Clocks and Timers POSIX Section 14
	Functions Implemented
	Functions Omitted
	Notes

	Message Passing POSIX Section 15
	Functions Implemented
	Functions Omitted
	Notes

	Thread Management POSIX Section 16
	Functions Implemented
	Functions Omitted
	Notes

	ThreadSpecific Data POSIX Section 17
	Functions Implemented
	Functions Omitted
	Notes

	Thread Cancellation POSIX Section 18
	Functions Implemented
	Functions Omitted
	Notes

	NonPOSIX Functions
	General IO Functions
	Socket Functions
	Notes
	References and Bibliography

	XI. ITRON
	Chapter 28. ITRON API
	Introduction to ITRON
	ITRON and eCos
	Task Management Functions
	Error checking

	TaskDependent Synchronization Functions
	Error checking

	Synchronization and Communication Functions
	Error checking

	Extended Synchronization and Communication Functions
	Interrupt management functions
	Error checking

	Memory pool Management Functions
	Error checking

	Time Management Functions
	Error checking

	System Management Functions
	Error checking

	Network Support Functions
	ITRON Configuration FAQ

	XII. TCP/IP Stack Support for eCos
	Chapter 29. Ethernet Driver Design
	Chapter 30. Sample Code
	Chapter 31. Configuring IP Addresses
	Chapter 32. Tests and Demonstrations
	Loopback tests
	Building the Network Tests
	Standalone Tests
	Performance Test
	Interactive Tests
	Maintenance Tools

	Chapter 33. Support Features
	TFTP
	DHCP

	Chapter 34. TCP/IP Library Reference
	getdomainname
	gethostname
	byteorder
	ethers
	getaddrinfo
	gethostbyname
	getifaddrs
	getnameinfo
	getnetent
	getprotoent
	getrrsetbyname
	getservent
	ifnametoindex
	inet
	inet6optionspace
	inet6rthdrspace
	inetnet
	ipx
	isoaddr
	linkaddr
	netaddrcmp
	ns
	resolver
	accept
	bind
	connect
	getpeername
	getsockname
	getsockopt
	ioctl
	poll
	select
	send
	shutdown
	socket
	socketpair

	XIII. FreeBSD TCP/IP Stack port for eCos
	Chapter 35. Networking Stack Features
	Chapter 36. Freebsd TCP/IP stack port
	Targets
	Building the Network Stack

	Chapter 37. APIs
	Standard networking
	Enhanced Select()

	XIV. OpenBSD TCP/IP Stack port for eCos
	Chapter 38. Networking Stack Features
	Introduction

	Chapter 39. OpenBSD TCP/IP stack port
	Targets
	Building the Network Stack
	Inclusion of bridge code

	Chapter 40. APIs
	Standard networking
	Enhanced Select()
	OpenBSD networking facilities
	Bridging
	Spanning Tree Protocol

	XV. DNS for eCos and RedBoot
	Chapter 41. DNS
	DNS API
	DNS Client Testing

	XVI. IPSEC for eCos
	Chapter 42. Installation and Configuration
	Chapter 43. libipsec Reference
	ipsecsetpolicy
	ipsecstrerror

	XVII. eCos PPP User Guide
	Chapter 44. Features
	Chapter 45. Using PPP
	Chapter 46. PPP Interface
	cygpppoptionsinit()
	Name
	Synopsis
	Description

	cygpppup()
	Name
	Synopsis
	Description

	cygpppdown()
	Name
	Synopsis
	Description

	cygpppwaitup()
	Name
	Synopsis
	Description

	cygpppwaitdown()
	Name
	Synopsis
	Description

	cygpppchat()
	Name
	Synopsis
	Description

	Chapter 47. Installing and Configuring PPP
	Including PPP in a Configuration
	Configuring PPP

	Chapter 48. CHAT Scripts
	Chat Script
	ABORT Strings
	TIMEOUT
	Sending EOT
	Escape Sequences

	Chapter 49. PPP Enabled Device Drivers
	Chapter 50. Testing
	Test Programs
	Test Script

	XVIII. Ethernet Device Drivers
	Chapter 51. Generic Ethernet Device Driver
	Generic Ethernet API
	Review of the functions
	Init function
	Start function
	Stop function
	Control function
	Available Operations:

	Cansend function
	Send function
	Deliver function
	Receive function
	Poll function
	Interruptvector function

	Upper Layer Functions
	Callback Init function
	Callback TxDone function
	Callback Receive function

	Calling graph for Transmission and Reception
	Transmission
	Receive

	XIX. Ethernet PHY Device Support
	Chapter 52. Ethernet PHY Device Support
	Ethernet PHY Device API

	XX. SNMP
	Chapter 53. SNMP for eCos
	Version
	SNMP packages in the eCos source repository
	MIBs supported
	Changes to eCos sources
	Starting the SNMP Agent
	Configuring eCos
	Version usage (v1, v2 or v3)
	Traps
	snmpd.conf file

	Test cases
	SNMP clients and package use
	Unimplemented features
	MIB Compiler
	snmpd.conf

	XXI. Embedded HTTP Server
	Chapter 54. Embedded HTTP Server
	Intrduction
	Server Organization
	Server Configuration
	CYGNUMHTTPDSERVERPORT
	CYGDATHTTPDSERVERID
	CYGNUMHTTPDTHREADCOUNT
	CYGNUMHTTPDTHREADPRIORITY
	CYGNUMHTTPDTHREADSTACKSIZE
	CYGNUMHTTPDSERVERBUFFERSIZE
	CYGNUMHTTPDSERVERAUTOSTART
	CYGNUMHTTPDSERVERDELAY

	Support Functions and Macros
	HTTP Support
	General HTML Support
	Table Support
	Forms Support
	Predefined Handlers

	System Monitor

	XXII. FTP Client for eCos TCP/IP Stack
	Chapter 55. FTP Client Features
	FTP Client API
	ftpget
	ftpput
	ftpclientprintf

	XXIII. Simple Network Time Protocol Client
	Chapter 56. The SNTP Client
	Starting the SNTP client
	What it does
	Configuring the unicast list of NTP servers
	Warning: timestamp wrap around
	The SNTP test program

	XXIV. Memory Allocation
	Chapter 57. eCos Memory Pools
	eCos Memory pools
	Variable Size Allocation Pools
	Name
	Synopsis
	Description

	Fixed Size Allocation Pools
	Name
	Synopsis
	Description

	stdlib malloc Pools
	Name
	Synopsis
	Description

	XXV. CRC Algorithms
	Chapter 58. CRC Functions
	CRC API
	cygposixcrc32
	cygcrc32
	cygethercrc32
	cygcrc16

	XXVI. CPU load measurements
	Chapter 59. CPU Load Measurements
	CPU Load API
	cygcpuloadcalibrate
	cygcpuloadcreate
	cygcpuloaddelete
	cygcpuloadget
	Implementation details

	XXVII. gprof Profiling Support
	Profiling
	Name
	Description
	Building Applications for Profiling
	Extracting the Data
	Configuration Options
	Implementing the HAL Support

	XXVIII. eCos Power Management Support
	Introduction
	Name
	Introduction
	Including Power Management
	Power Modes
	Power Controllers
	Basic Operation

	Power Management Information
	Name
	Synopsis
	Accessing Power Controllers
	Global Power Modes
	Individual Controller Power Modes
	Power Controller Identification
	The Power Management Thread

	Changing Power Modes
	Name
	Synopsis
	Changing the Global Power Mode
	Manipulating an Individual Power Controller
	Direct Manipulation of a Power Controller

	Support for Policy Modules
	Name
	Synopsis
	Policy Callbacks
	Policyspecific Controller Data

	Attached and Detached Controllers
	Name
	Synopsis
	Detaching Power Controllers

	Implementing a Power Controller
	Name
	Implementing a Power Controller

	XXIX. eCos USB Slave Support
	Introduction
	Name
	Introduction
	USB Concepts
	eCos USB I/O Facilities
	Enabling the USB code

	USB Enumeration Data
	Name
	Synopsis
	USB Enumeration Data
	usbdevicedescriptor
	usbconfigurationdescriptor
	usbinterfacedescriptor
	usbendpointdescriptor
	Strings
	usbsenumerationdata

	Starting up a USB Device
	Name
	Synopsis
	Description

	Devtab Entries
	Name
	Synopsis
	Devtab Entries
	write operations
	read operations
	select operations
	getconfig and setconfig operations
	Presence

	Receiving Data from the Host
	Name
	Synopsis
	Description

	Sending Data to the Host
	Name
	Synopsis
	Description

	Halted Endpoints
	Name
	Synopsis
	Description

	Control Endpoints
	Name
	Synopsis
	usbscontrolendpoint Data Structure
	Initialization
	State
	Standard Control Messages
	Other Control Messages
	Buffer Management
	Polling Support

	Data Endpoints
	Name
	Synopsis
	Receive and Transmit Data Structures

	Writing a USB Device Driver
	Name
	Introduction
	The Control Endpoint
	Data Endpoints
	Devtab Entries
	Interrupt Handling
	Support for USB Testing

	Testing
	Name
	Introduction
	Building and Running the Targetside Code
	Building and Running the Hostside Code
	Writing a Test
	Available Hardware
	Testing Bulk Transfers
	Data
	I/O Mechanism
	Transmit Size
	Receive Size
	Transmit and Receive Delays

	Other Types of Transfer
	Starting a Test and Collecting Results
	Existing Test Scripts
	Possible Problems

	XXX. eCos Support for Developing USBethernet Peripherals
	Introduction
	Name
	Introduction
	Usage Scenarios

	Initializing the USBethernet Package
	Name
	Synopsis
	Description

	USBethernet Data Transfers
	Name
	Synopsis
	Description

	USBethernet State Handling
	Name
	Synopsis
	Description

	Network Device for the eCos TCP/IP Stack
	Name
	Description

	Example Hostside Device Driver
	Name
	Description

	Communication Protocol
	Name
	Description

	XXXI. eCos Synthetic Target
	Overview
	Name
	Description

	Installation
	Name
	Hostside Software
	Toolchain
	Hardware Preparation

	Running a Synthetic Target Application
	Name
	Description
	Commandline Arguments
	The Target Definition File
	User Configuration Files
	Session Information

	The I/O Auxiliary's User Interface
	Name
	Description
	Menus and the Toolbar
	The Main Text Window
	Positioning Optional Windows
	Global Settings

	The Console Device
	Name
	Description
	Installation
	Target Definition File
	Targetside Configuration Options
	Command Line Arguments
	Hooks
	Additional Tcl Procedures

	System Calls
	Name
	Synopsis
	Description

	Writing New Devices target
	Name
	Synopsis
	Description
	Instantiating a Device
	Communicating with a Device
	Interrupt Handling

	Writing New Devices host
	Name
	Description
	Building and Installation
	Instantiation
	Handling Requests
	Interrupts
	Flags and Command Line Arguments
	The Target Definition File
	Hooks
	Output and Filters
	The Graphical Interface

	Porting
	Name
	Description
	Other Linux Platforms
	Other Unix Platforms
	Windows Platforms

	XXXII. SA11X0 USB Device Driver
	SA11X0 USB Device Driver
	Name
	SA11X0 USB Hardware
	Endpoint Data Structures
	Devtab Entries
	DMA Engines

	XXXIII. NEC uPD985xx USB Device Driver
	NEC uPD985xx USB Device Driver
	Name
	NEC uPD985xx USB Hardware
	Endpoint Data Structures
	Devtab Entries
	Restrictions
	Optional Hardware Workarounds
	Platform Dependencies

	XXXIV. Synthetic Target Ethernet Driver
	Synthetic Target Ethernet Driver
	Name
	Overview
	Installation
	Targetside Configuration Options
	Real Ethernet
	Ethertap
	Packet Logging
	User Interface Additions
	Command Line Arguments
	Hooks
	Additional Tcl Procedures

	XXXV. Synthetic Target Watchdog Device
	Synthetic Target Watchdog Device
	Name
	Overview
	Installation
	Targetside Configuration
	Wallclock versus Elapsed Time
	User Interface
	Command Line Arguments
	Hooks
	Additional Tcl Procedures

	XXXVI. Dallas DS1307 Wallclock Device Driver
	Dallas DS1307 Wallclock Device Driver
	Name
	Description
	Functionality
	Porting

