/*============================================================================= // // hal_diag.c // // HAL diagnostic output code // //============================================================================= //####COPYRIGHTBEGIN#### // // ------------------------------------------- // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://www.redhat.com/ // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations under // the License. // // The Original Code is eCos - Embedded Configurable Operating System, // released September 30, 1998. // // The Initial Developer of the Original Code is Red Hat. // Portions created by Red Hat are // Copyright (C) 1998, 1999, 2000 Red Hat, Inc. // All Rights Reserved. // ------------------------------------------- // //####COPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): nickg, gthomas // Contributors:nickg, gthomas // Date: 1998-03-02 // Purpose: HAL diagnostic output // Description: Implementations of HAL diagnostic output support. // //####DESCRIPTIONEND#### // //===========================================================================*/ #include #include // board specifics #include // base types #include // tracing macros #include // assertion macros #include // basic machine info #include // interrupt macros #include // IO macros #include #include #include // interface API #include // Helper functions #include // CPU Frequency macros /*---------------------------------------------------------------------------*/ #define UART0_BASE 0x1d00000 #define UART1_BASE 0x1d04000 #define UART_LINE 0x0 #define UART_CONTROL 0x4 #define UART_FIFO_CTL 0x8 #define UART_MODEM_CTL 0xc #define UART_TRX_STATUS 0x10 #define UART_ERR_STATUS 0x14 #define UART_FIFO_STATUS 0x18 #define UART_MODEM_STATUS 0x1c #define UART_TRANS_HOLD 0x20 #define UART_RECV_HOLD 0x24 #define UART_BAUD_RATE_DIV 0x28 extern void led_display( int); //----------------------------------------------------------------------------- typedef struct { cyg_uint32 base; cyg_int32 msec_timeout; int isr_vector_r; int isr_vector_s; } channel_data_t; static channel_data_t smdk_ser_channels[2] = { { UART0_BASE, 1000, CYGNUM_HAL_INTERRUPT_URXD0, CYGNUM_HAL_INTERRUPT_UTXD0 }, { UART1_BASE, 1000, CYGNUM_HAL_INTERRUPT_URXD1, CYGNUM_HAL_INTERRUPT_UTXD1 } }; #define GET_UART_RATE( baud ) ( (int) (CYGHWR_MCLK/(16*baud)+0.5) - 1 ) //----------------------------------------------------------------------------- static void cyg_hal_plf_serial_init_channel(void* __ch_data) { channel_data_t* pchannels = (channel_data_t*)__ch_data; cyg_uint32 base; base= pchannels->base; // 8-bit 1-stop no-parity normal mode operation */ HAL_WRITE_UINT32( base + UART_LINE , 0x03 ); /* UART control register, default value */ /* * tx=level, rx=edge, disable timeout int., enable rx error int., normal operation, * normal transmit ,interrupt or polling */ HAL_WRITE_UINT32( base + UART_CONTROL , 0x245 ); /* disable FIFO mode */ HAL_WRITE_UINT32( base + UART_FIFO_CTL , 0x0 ); /* UART modem control register */ HAL_WRITE_UINT32( base + UART_MODEM_CTL , 0x0 ); /* initialize UART baud rate division register */ HAL_WRITE_UINT32( base + UART_BAUD_RATE_DIV , GET_UART_RATE( CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD ) ); } void cyg_hal_plf_serial_putc(void *__ch_data, char c) { cyg_uint32 base = ((channel_data_t*)__ch_data)->base; cyg_uint32 status; CYGARC_HAL_SAVE_GP(); do { HAL_READ_UINT32( base + UART_TRX_STATUS, status ); } while ( ( status & 0x04 ) == 0 ); //wait until buffer is empty HAL_WRITE_UINT8( base + UART_TRANS_HOLD, c); CYGARC_HAL_RESTORE_GP(); } static cyg_bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch) { static ndollar = 0 ; cyg_uint32 base = ((channel_data_t*)__ch_data)->base; cyg_uint32 status; HAL_READ_UINT32( base + UART_TRX_STATUS, status ); if ( ( status & 0x01 ) == 0 ) return false; HAL_READ_UINT8( base + UART_RECV_HOLD , *ch ); if ( *ch == '$' ) { ndollar++; led_display(ndollar); } return true; } cyg_uint8 cyg_hal_plf_serial_getc(void* __ch_data) { cyg_uint8 ch; CYGARC_HAL_SAVE_GP(); while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch)); CYGARC_HAL_RESTORE_GP(); return ch; } static void cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) cyg_hal_plf_serial_putc(__ch_data, *__buf++); CYGARC_HAL_RESTORE_GP(); } static void cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) *__buf++ = cyg_hal_plf_serial_getc(__ch_data); CYGARC_HAL_RESTORE_GP(); } cyg_bool cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch) { int delay_count; channel_data_t* chan = (channel_data_t*)__ch_data; cyg_bool res; CYGARC_HAL_SAVE_GP(); delay_count = chan->msec_timeout * 10; // delay in .1 ms steps for(;;) { res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch); if (res || 0 == delay_count--) break; CYGACC_CALL_IF_DELAY_US(100); } CYGARC_HAL_RESTORE_GP(); return res; } static int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...) { static int irq_state = 0; channel_data_t* chan = (channel_data_t*)__ch_data; int ret = 0; CYGARC_HAL_SAVE_GP(); switch (__func) { case __COMMCTL_IRQ_ENABLE: irq_state = 1; HAL_INTERRUPT_UNMASK(chan->isr_vector_r); HAL_INTERRUPT_UNMASK(chan->isr_vector_s); break; case __COMMCTL_IRQ_DISABLE: ret = irq_state; irq_state = 0; HAL_INTERRUPT_MASK(chan->isr_vector_r); HAL_INTERRUPT_MASK(chan->isr_vector_s); break; case __COMMCTL_DBG_ISR_VECTOR: ret = chan->isr_vector_r; /* receive vector */ break; case __COMMCTL_SET_TIMEOUT: { va_list ap; va_start(ap, __func); ret = chan->msec_timeout; chan->msec_timeout = va_arg(ap, cyg_uint32); va_end(ap); } default: break; } CYGARC_HAL_RESTORE_GP(); return ret; } static int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector, CYG_ADDRWORD __data) { int res = 0; char c; cyg_uint32 status; channel_data_t* chan = (channel_data_t*)__ch_data; CYGARC_HAL_SAVE_GP(); cyg_drv_interrupt_acknowledge(chan->isr_vector_r); *__ctrlc = 0; HAL_READ_UINT32( chan->base + UART_TRX_STATUS, status ); if ( ( status & 0x01 ) != 0 ) { HAL_READ_UINT8( chan->base + UART_RECV_HOLD , c ); if( cyg_hal_is_break( &c , 1 ) ) *__ctrlc = 1; res = CYG_ISR_HANDLED; } CYGARC_HAL_RESTORE_GP(); return res; } static void cyg_hal_plf_serial_init(void) { hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); // Disable interrupts. HAL_INTERRUPT_MASK(smdk_ser_channels[0].isr_vector_r); HAL_INTERRUPT_MASK(smdk_ser_channels[0].isr_vector_s); HAL_INTERRUPT_MASK(smdk_ser_channels[1].isr_vector_r); HAL_INTERRUPT_MASK(smdk_ser_channels[1].isr_vector_s); // Init channels cyg_hal_plf_serial_init_channel(&smdk_ser_channels[0]); cyg_hal_plf_serial_init_channel(&smdk_ser_channels[1]); // Setup procs in the vector table // Set channel 0 CYGACC_CALL_IF_SET_CONSOLE_COMM(0); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &smdk_ser_channels[0]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Set channel 1 CYGACC_CALL_IF_SET_CONSOLE_COMM(1); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &smdk_ser_channels[1]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); } void cyg_hal_plf_comms_init(void) { static int initialized = 0; if (initialized) return; initialized = 1; cyg_hal_plf_serial_init(); } /*---------------------------------------------------------------------------*/ void hal_diag_led(int n) { led_display(n); } //============================================================================= // Compatibility with older stubs //============================================================================= #ifndef CYGSEM_HAL_VIRTUAL_VECTOR_DIAG #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS #include // cyg_hal_gdb_interrupt #endif #if CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL==0 // This is the base address of the A-channel #define CYG_DEV_SERIAL_BASE 0x1d00000 #define CYG_DEVICE_SERIAL_INT CYGNUM_HAL_INTERRUPT_URXD0 #else // This is the base address of the B-channel #define CYG_DEV_SERIAL_BASE 0x1d04000 #define CYG_DEVICE_SERIAL_INT CYGNUM_HAL_INTERRUPT_URXD1 #endif static channel_data_t pid_ser_channel = { CYG_DEV_SERIAL_BASE, 0, 0 }; // Assumption: all diagnostic output must be GDB packetized unless this is a ROM (i.e. // totally stand-alone) system. #if defined(CYG_HAL_STARTUP_ROM) || !defined(CYGDBG_HAL_DIAG_TO_DEBUG_CHAN) #define HAL_DIAG_USES_HARDWARE #endif #ifndef HAL_DIAG_USES_HARDWARE #if (CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL != CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL) #define HAL_DIAG_USES_HARDWARE #endif #endif #ifdef HAL_DIAG_USES_HARDWARE void hal_diag_init(void) { static int init = 0; char *msg = "\n\rARM eCos\n\r"; if (init++) return; cyg_hal_plf_serial_init_channel(&pid_ser_channel); while (*msg) cyg_hal_plf_serial_putc(&pid_ser_channel, *msg++); } #ifdef DEBUG_DIAG #if defined(CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS) #define DIAG_BUFSIZE 32 #else #define DIAG_BUFSIZE 2048 #endif static char diag_buffer[DIAG_BUFSIZE]; static int diag_bp = 0; #endif void hal_diag_write_char(char c) { hal_diag_init(); cyg_hal_plf_serial_putc(&pid_ser_channel, c); #ifdef DEBUG_DIAG diag_buffer[diag_bp++] = c; if (diag_bp == DIAG_BUFSIZE) diag_bp = 0; #endif } void hal_diag_read_char(char *c) { *c = cyg_hal_plf_serial_getc(&pid_ser_channel); } #else // HAL_DIAG relies on GDB // Initialize diag port - assume GDB channel is already set up void hal_diag_init(void) { if (0) cyg_hal_plf_serial_init_channel(&pid_ser_channel); // avoid warning } // Actually send character down the wire static void hal_diag_write_char_serial(char c) { hal_diag_init(); cyg_hal_plf_serial_putc(&pid_ser_channel, c); } static bool hal_diag_read_serial(char *c) { long timeout = 1000000000; // A long time... while (!cyg_hal_plf_serial_getc_nonblock(&pid_ser_channel, c)) if (0 == --timeout) return false; return true; } void hal_diag_read_char(char *c) { while (!hal_diag_read_serial(c)) ; } void hal_diag_write_char(char c) { static char line[100]; static int pos = 0; // No need to send CRs if( c == '\r' ) return; line[pos++] = c; if( c == '\n' || pos == sizeof(line) ) { CYG_INTERRUPT_STATE old; // Disable interrupts. This prevents GDB trying to interrupt us // while we are in the middle of sending a packet. The serial // receive interrupt will be seen when we re-enable interrupts // later. #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS CYG_HAL_GDB_ENTER_CRITICAL_IO_REGION(old); #else HAL_DISABLE_INTERRUPTS(old); #endif while(1) { static char hex[] = "0123456789ABCDEF"; cyg_uint8 csum = 0; int i; char c1; hal_diag_write_char_serial('$'); hal_diag_write_char_serial('O'); csum += 'O'; for( i = 0; i < pos; i++ ) { char ch = line[i]; char h = hex[(ch>>4)&0xF]; char l = hex[ch&0xF]; hal_diag_write_char_serial(h); hal_diag_write_char_serial(l); csum += h; csum += l; } hal_diag_write_char_serial('#'); hal_diag_write_char_serial(hex[(csum>>4)&0xF]); hal_diag_write_char_serial(hex[csum&0xF]); // Wait for the ACK character '+' from GDB here and handle // receiving a ^C instead. This is the reason for this clause // being a loop. if (!hal_diag_read_serial(&c1)) continue; // No response - try sending packet again if( c1 == '+' ) break; // a good acknowledge #ifdef CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT cyg_drv_interrupt_acknowledge(CYG_DEVICE_SERIAL_INT); if( c1 == 3 ) { // Ctrl-C: breakpoint. cyg_hal_gdb_interrupt ((target_register_t)__builtin_return_address(0)); break; } #endif // otherwise, loop round again } pos = 0; // And re-enable interrupts #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS CYG_HAL_GDB_LEAVE_CRITICAL_IO_REGION(old); #else HAL_RESTORE_INTERRUPTS(old); #endif } } #endif #endif // CYGSEM_HAL_VIRTUAL_VECTOR_DIAG /*---------------------------------------------------------------------------*/ /* End of hal_diag.c */