
Getting Started with eCos
NEC VR4300

edition

March 2000

Copyright © 1998, 1999, 2000, Red Hat Inc

Copying terms
The contents of this manual are subject to the Red Hat eCos Public License Version
1.1 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.redhat.com/
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.
The Original Code is eCos - Embedded Configurable Operating System, released
September 30, 1998.
The Initial Developer of the Original Code is Red Hat. Portions created by Red Hat
are Copyright©) 1998, 1999, 2000 Red Hat, Inc. All Rights Reserved.

Trademarks
Java , Sun, and Solaris are trademarks and registered trademarks of Sun
Microsystems, Inc.
SPARC is a registered trademark of SPARC International, Inc.
UNIX is a trademark of The Open Group.
Microsoft, Windows NT, Windows 95, Windows 98 and Windows 2000 are
registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds.
Intel is a registered trademark of Intel Corporation.
eCos is a trademark of Red Hat, Inc.
Red Hat is a registered trademark of Red Hat, Inc.

300-400-1010049-03
2 ■ Getting Started with eCos eCos

Contents

Getting Started with eCos ...1
Copying terms ...2
Trademarks ...2

Foreword ..7
Documentation Roadmap ...11

Getting Started with eCos ..11
eCos User’s Guide..11
eCos Reference Manual ...12

Part I: Release Notes.. 13

Notation and Conventions...14
GDB and GCC Command Notation ...14
Directory and File System Conventions...14

Overview of the Release ..16
Hardware Abstraction ..16
Embedded Kernel ...17
Configurability ...17
µITRON and Other Operating Systems ...18
ISO C Library ...18
Serial Device Drivers ...19
ROM Monitor Image..19
Tests and Examples ..19
GNU Tools and their Documentation ..19
eCos Documentation ..20

Package Contents...21
eCos Net Release..21
eCos Getting Started with eCos ■ 3

eCos Developers’ Kit ...21
System Requirements ..23

Required ...23
Recommended ..24

Reporting Problems...25
How to Report Problems ..25

Part II: Installation Guide... 29

Software Installation ...30
Software Installation on Windows ...30
Software Installation on UNIX ..31

Target Setup...34
Connecting To A Target Via Serial..34
Connecting To A Target Via Ethernet ...35
Connecting To A Simulator Target ..35
Connecting To A Synthetic Target...36

 VR4300 Hardware Setup ..36
i386/Linux Synthetic Target Setup ..36

Running Applications on the Target..38

Part III: Programming Tutorial 40

Programming with eCos ...41
Configuring and Building eCos from Source......................................44

eCos Start-up Configurations ...44
Using the Configuration Tool on Windows ...45
Using ecosconfig on UNIX ..50
Architectural Notes ..55

Test Suites...56
Using the Configuration Tool ..57
Using the command line...57
Testing Filters...58

Building and Running Sample Applications59
eCos Hello World ...59
A Sample Program with Two Threads ...60

More Features — Clocks and Alarm Handlers64
A Sample Program with Alarms ..64
4 ■ Getting Started with eCos eCos

Appendixes..69

Appendix 1: Real-time characterization..70
Sample numbers: ..70

 Appendix 2: eCos Licensing...73
RED HAT ECOS PUBLIC LICENSE
Version 1.1 ...73

Appendix 3: The eCos Copyright Assignment Form, Revision 1.1...80

Index ...86
eCos Getting Started with eCos ■ 5

6 ■ Getting Started with eCos eCos

What’s New in 1.3.1?
Foreword

Welcome to the 1.3.1 release of Red Hat eCos(TM) - the Embedded Configurable
Operating System.

What’s New in 1.3.1?
In this, the third major public release of eCos, we have added a wealth of new features,
enhancements, and have further extended the target platform coverage.

The configuration system has been completely revised and updated. Major new
elements include:

■ Package management that supports the extension of eCos functionality via third
party add-on packages.

■ A standardized configuration save file format that is human readable and editable,
and compatible between both GUI and command line configuration tools.

■ Enhanced web based help and component documentation system integrated into
the GUI configuration tool.

■ The Component Definition Language (CDL) has been radically revised and has
now been implemented as a TCL extension for maximum flexibility. CDL is now
fully documented in the Component Writers Guide.

■ Template support for straightforward control of multiple configuration elements,
which can be used to provide easy access to standard eCos configurations such as
a debug stub boot ROM.

■ Best of all, the source of the new configuration tools and underlying libCDL
technology has been open sourced under the GNU Public License (GPL).

A companion beta version of the eCos TCP/IP stack has been released in conjunction
with 1.3.1. The stack is derived from the OpenBSD source base and provides UDP,
TCP, ICMP and BOOTP protocol support on an IPv4 standards base. Device driver
support for Cirrus Logic EP72xx evaluation boards and Motorola MBX is included.
The stack, ethernet core support, and device drivers are all distributed as configurable
eCos packages.
eCos Getting Started with eCos ■ 7

eCos in a Nutshell
A PCI bus support library has also been added that provides generic PCI bus based
device initialization, discovery, and configuration. The library has been ported to both
the VR4300 DDB-VRC4373 and StrongARM EBSA285 development boards.

New architectures and platforms added in this release include:

■ ARM Thumb

■ ARM9

■ Cirrus Logic CL-PS7111 and EP72xx

■ Cogent CMA222 and CMA230 ARM boards

■ Hitachi SH3

■ Intel StrongARM

■ Intel x86 PC

■ Matsushita AM33

■ Motorola MBX evaluation board

■ NEC MIPS VR4300

For further details of all the changes see the NEWS file in the eCos sources.

This is the first release of eCos since the merger of Red Hat and Cygnus Solutions was
completed. Red Hat is dedicated to continued enhancement and maintenance of the
eCos system. Developers can look forward to upcoming releases that further expand
the architectural and board coverage, extend the functionality of the TCP/IP stack, add
a Linux version of the GUI configuration tool, and add major new features such as a
Linux/Posix compatibility layer based on the upcoming EL/IX standard - see

http://sourceware.cygnus.com/elix/
for more details.

The merger has brought about some minor changes to eCos’s Mozilla-derived public
license, the most fundamental of which is simply the change of name from Cygnus
eCos Public License (CEPL) to Red Hat eCos Public License (RHEPL). The license
terms themselves have not changed in any material way other than alterations
necessary to accommodate the change in company details.

eCos in a Nutshell
eCos is an open source, configurable, portable, and royalty-free embedded real-time
operating system. The following text expands on these core aspects that define eCos.

eCos is provided as an open source runtime system supported by the Red Hat GNUPro
and GNU open source development tools. Developers have full and unfettered access
to all aspects of the runtime system. No parts of it are proprietary or hidden, and you
are at liberty to examine, add to, and modify the code as you deem necessary. These
8 ■ Getting Started with eCos eCos

eCos in a Nutshell
rights are granted to you and protected by the Red Hat eCos Public License (RHEPL).
It also grants you the right to freely develop and distribute applications based on eCos.
You are not expected or required to make your embedded applications or any
additional components that you develop freely available, although we do require that
you make publicly available any modifications to the eCos code itself. Red Hat of
course welcomes all contributions back to eCos such as board ports, device drivers
and other components, as this helps the growth and development of eCos, and is of
benefit to the entire eCos community.

One of the key technological innovations in eCos is our configuration system. The
configuration system allows the application writer to impose their requirements on the
run-time components, both in terms of their functionality and implementation,
whereas traditionally the operating system has constrained the application’s own
implementation. Essentially, this enables eCos developers to create their own
application-specific operating system and makes eCos suitable for a wide range of
embedded uses. Configuration also ensures that the resource footprint of eCos is
minimized as all unnecessary functionality and features are removed. The
configuration system also presents eCos as a component architecture. This provides a
standardized mechanism for component suppliers to extend the functionality of eCos
and allows applications to be built from a wide set of optional configurable run-time
components. Components can be provided from a variety of sources including: the
standard eCos release; commercial third party developers; open source contributors;
or additional optional components from Red Hat.

The royalty-free nature of eCos means that you can develop and deploy your
application using the standard eCos release without incurring any royalty charges. In
addition, there are no up-front license charges for the eCos runtime source code and
associated tools. We provide, without charge, everything necessary for basic
embedded applications development.

eCos is designed to be portable to a wide range of target architectures and target
platforms including 16, 32, and 64 bit architectures, MPUs, MCUs and DSPs. The
eCos kernel, libraries and runtime components are layered on the Hardware
Abstraction Layer (HAL), and thus will run on any target once the HAL and relevant
device drivers have been ported to the target’s processor architecture and board.
Currently eCos supports seven different target architectures (ARM, Hitachi SH3, Intel
x86, MIPS, Matsushita AM3x, PowerPC and SPARC) including many of the popular
variants of these architectures and evaluation boards. Many new ports are in
development and will be released as they become available.

eCos has been designed to support applications with real-time requirements, providing
features such as full preemptability, minimal interrupt latencies, and all the necessary
synchronization primitives, scheduling policies, and interrupt handling mechanisms
eCos Getting Started with eCos ■ 9

eCos in a Nutshell
needed for these type of applications. eCos also provides all the functionality required
for general embedded application support including device drivers, memory
management, exception handling, C, math libraries, etc. In addition to runtime
support, the eCos system includes all the tools necessary to develop embedded
applications, including eCos software configuration and build tools, and GNU based
compilers, assemblers, linkers, debuggers, and simulators.

To get the most out of eCos you should visit the eCos open source developers site:
http://sourceware.cygnus.com/ecos/

The site is dedicated to the eCos developer community and contains a rich set of
resources including news, FAQ, online documentation, installation guide, discussion
and announcement mailing lists, online problem report form, and runtime and
development tools downloads. We also support anonymous CVS and WEBCVS
access to provide you with direct access to the very latest eCos source base.
Complementing the open source developers site is an eCos product site, featuring
news, press releases, details of our commercial engineering and support services,
products, and third party partner offerings. This is located at

http://www.redhat.com/services/ecos/

We have released eCos as open source software because we believe that this is the
most effective software development model, and that it provides the greatest benefit to
the embedded developer community as a whole. As part of this endeavor, we seek the
input and participation of eCos developers in its continuing evolution. Participation
can take many forms including:

■ providing us with feedback on how eCos might be made more useful to you - by
taking part in the ongoing mailing list discussions and by submitting problem
reports covering bugs, documentation issues, and missing features

■ contributing bug fixes and enhancement patches

■ contributing new code including device drivers, board ports, libraries, and other
runtime components

Our long term aim is to make eCos a rich and ubiquitous standard infrastructure for
the development of deeply embedded applications. This will be achieved in part by
Red Hat’s own efforts, but also with the assistance of the eCos developer community
cooperating to improve eCos for all. I would like to take this opportunity to extend our
thanks to the many eCos developers who have already contributed feedback, ideas,
patches, and code that have augmented and improved this release.

On behalf of the eCos team, welcome to the eCos developer community.

Paul Beskeen,
Director of Engineering,
eCos March 2000
10 ■ Getting Started with eCos eCos

Getting Started with eCos
Documentation Roadmap

Getting Started with eCos
Release Notes

Description of this release.

Installation Guide

Hardware and software installation instructions, including instructions on how to
execute some prebuilt tests to verify the installation.

Programming Tutorial

A tutorial that gets you started running programs with eCos.

Appendixes

Extra information about the licensing terms for eCos.

eCos User’s Guide
The eCos Configuration Tool

A description of all features of the Configuration Tool.

Programming concepts and techniques

An explanation of the eCos programming cycle, and a description of some
debugging facilities that eCos offers.

Configuration and the Package Repository

1

eCos Getting Started with eCos ■ 11

eCos Reference Manual
Information on how to configure eCos manually, including a reference on the
ecosconfig command, memory layouts, and information on how to manage a
package repository using the eCos Package Administration Tool.

eCos Reference Manual
Preliminaries

An overview of the eCos kernel and configurability system.

Kernel APIs

In-depth description of eCos’s native C kernel API, the µITRON API, the ISO
standard C library, and the eCos Hardware Abstraction Layer (HAL). Important
considerations are given for programming the eCos kernel. The semantics for
each kernel function are described, including how they are affected by
configuration.

eCos Device Drivers

A description of the philosophy behind eCos device drivers, as well as a
presentation of the C language API for using the current device drivers.

The ISO Standard C and Math Libraries

eCos comes with an implementation of the ISO C library specification. This
section gives details about the implementation, lists the few functions that are not
yet implemented, and gives a complete reference for configuring the C library.
12 ■ Getting Started with eCos eCos

Part I: Release Notes

eCos 1.3.1 supports the following architectures:

This release of eCos supports the following architectures:

■ NEC VR4300

■ Linux i386—synthetic Linux target

This release of eCos supports the following target platforms:

■ NEC DDB-VRC4373 (VR4300)

■ Linux (i386) - synthetic Linux target

This release of eCos supports the following host operating systems:

■ UNIX —support for UNIX is still “beta”. Redhat Linux and Solaris are the
only tested UNIX variants.

Microsoft® Windows NT®, Windows 95®, Windows 98®, Windows 2000®—
support for Windows 95, 98 and 2000 is still “beta”.
eCos Getting Started with eCos ■ 13

GDB and GCC Command Notation
Notation and Conventions

Since there are many supported target architectures, notation conventions will be used
to avoid repeating instructions which are very similar.

GDB and GCC Command Notation
Cross-development commands like gcc and gdb will be shown without prefixed
information about the platform for which you are cross-compiling. You need to add
the necessary prefix before you execute the commands, so instead of typing ‘gcc’ and
‘gdb’ as in the examples, use:
mips64vr4300-elf-gcc and mips64vr4300-elf-gdb for MIPS vr4300

i686-pc-linux-gnu-gcc and i686-pc-linux-gnu-gdb for i386

Note that the GCC cross compiler generates executable files with the .exe suffix on
Windows, but not on UNIX. The suffix .exe will be omitted from executable file
names, so you will see hello instead of hello.exe.

Directory and File System
Conventions

The default directory for installing eCos on Windows (usually C:/Program Files/
Red Hat/eCos) is different from that on UNIX (usually /usr/local/ecos-v1_3_1).
Since many command line examples in the tutorials use these paths, this default (base)
directory will be shown as BASE_DIR.

2

14 ■ Getting Started with eCos eCos

Directory and File System Conventions
Windows and UNIX have similar file system syntax, but the MS-DOS command
interpreter on Windows uses the backslash character (\) as a path separator, while
UNIX and POSIX shells (including the Cygwin bash shell for windows) use the
forward slash (/).

This document will use the POSIX shell convention of forward slashes.
eCos Getting Started with eCos ■ 15

Hardware Abstraction
Overview of the Release

The Embedded Configurable Operating System (eCos) software is a set of tools and a
run-time environment for developing embedded applications. eCos is a configurable,
open source system that allows you to build a run-time system that closely matches
the needs of your application.

eCos is aimed at embedded software developers using architectures with tight
memory requirements, who want a portable framework for developing their
applications.

This chapter outlines the features of eCos version 1.3.1. The initial release version was
1.3, and additional 1.3 releases will incorporate an additional number, represented in
this manual by “x”. Please note the exact version number of the version that you are
using, because it is incorporated in certain file paths.

If you want to start programming eCos immediately, see “Part II: Installation Guide”
on page 29 and “Part III: Programming Tutorial” on page 40.

Hardware Abstraction
eCos includes a Hardware Abstraction Layer (HAL) that hides the specific features of
each CPU and platform so that the kernel and other run-time components can be
implemented in a portable fashion.

The eCos HAL has now been ported to numerous architectures, and to one synthetic
target, Linux i386. Notes on porting the HAL to new platforms are provided in the
eCos Reference Manual, part: The eCos Hardware Abstraction Layer, section: Kernel
porting notes.

3

16 ■ Getting Started with eCos eCos

Embedded Kernel
Embedded Kernel
The core of eCos is a full-featured, flexible, and configurable embedded kernel.

The kernel provides, among other features, multi-threading, a choice of schedulers, a
full set of synchronization primitives, memory allocation primitives, and thread
manipulation functions (see the eCos Reference Manual for the full kernel API).

The kernel is designed so that some parts of it can be changed or replaced without
affecting other kernel components.

The following is a partial list of kernel features:

■ choice of memory allocation algorithm

■ choice of scheduling algorithm

■ a rich set of synchronization primitives

■ timers, counters, and alarms

■ interrupt handling

■ exception handling

■ cache control

■ thread support

■ kernel support for multi-threaded debugging with GDB

■ trace buffers

■ infrastructure and instrumentation

The kernel API and configuration are described in the eCos Reference Manual.

Configurability
The eCos kernel and other components can be configured in great detail at compile
time, avoiding the addition of unwanted code to the library to be linked with your
application code. There is no performance penalty for configuration.

Configuration is fine-grained, so that very small details of eCos’ behavior can be
tuned by selecting configuration options.

eCos is organized as a component architecture, with a language to describe the
constraints between components and individual configuration options. These
constraints are necessary to resolve inconsistent configurations, such as disabling the
code which handles the real-time clock, while enabling per-thread timers.
eCos Getting Started with eCos ■ 17

µITRON and Other Operating Systems
The designer of a component or general-purpose library should write configurable
code using a component definition language (CDL). Once that has been done there is
no additional burden on the end user (i.e. an embedded systems programmer), who
will be able to use eCos’ graphical Configuration Tool to configure the kernel and
basic libraries without needing to understand how the configuration infrastructure
works.

A tutorial on how to configure eCos is located in “Configuring and Building eCos
from Source” on page 44. The eCos User’s Guide has complete information on
running the Configuration Tool and CDL.

µITRON and Other Operating
Systems

eCos’ configurability is the key to simulating different operating systems by using
compatibility layers on top of eCos’ kernel, because the semantics of basic kernel
functions can be configured to match the semantics of other operating systems.

The specification for the µITRON operating system has been implemented on top of
eCos. µITRON is configured by selecting appropriate options in the kernel (a real-
time clock, the mlqueue scheduler, and no timeslicing); and writing a thin layer to
map the µITRON system calls.

The µITRON port implements the complete µITRON 3.02 “Standard functionality”
(level S) specification, as well as some of the “Extended” (level E) functions. The
µITRON implementation is described in more detail in the eCos Reference Manual.

ISO C Library
The ISO C and math library shipped with eCos was written to be configurable and
tightly integrated with the kernel and the HAL.

By carefully selecting configuration options in the C library, you can significantly
reduce the size of the final executable image.
18 ■ Getting Started with eCos eCos

Serial Device Drivers
Serial Device Drivers
eCos provides serial device drivers for all supported eCos platforms, with the
exception of the i386 Linux synthetic target and most simulator platforms. The serial
drivers provide an API (documented in the eCos Reference Manual) to control serial
ports directly. The standard I/O library can be configured to use them as a transport
layer.

ROM Monitor Image
For the VRC4373 and i386 PC, the ROM images include a GDB stub. This allows
GDB to connect to the board and download eCos programs.

No ROM image is required for the synthetic Linux target.

Please note that previous releases of CygMon are incompatible with eCos. You must
use the version of CygMon that is provided with eCos rather than an older version of
CygMon.

Tests and Examples
Test suites are included for every portion of eCos shipped in this release; these are
brief programs that test the behavior of most system calls and libraries in eCos. “Test
Suites” on page 56 describes how to build and run these test suites.

The last chapters in “Part III: Programming Tutorial” on page 40 give examples that
guide you through running eCos applications, starting from a “Hello world” program
and then moving on to more complex programs that use additional kernel features.

GNU Tools and their Documentation
Red Hat’s GNUPro Toolkit, which includes the GCC and G++ compilers and the
GDB debugger, is needed to build eCos applications. It is bundled with the CDROM
distribution of the eCos Developer’s Kit, and is also available on the net at http://
sourceware.cygnus.com/ecos/.

Online HTML versions of the full GNUPro documentation are included with eCos, as
well as a specific GNUPro tools reference guide for your hardware architecture,
customized for use with eCos. The full GNUPro documentation can also be found on
the web at http://www.redhat.com/support/manuals/gnupro.html
eCos Getting Started with eCos ■ 19

http://www.redhat.com/support/manuals/gnupro.html
http://sourceware.cygnus.com/ecos/
http://sourceware.cygnus.com/ecos/

eCos Documentation
NOTE The Linux synthetic i386 target is an exception, as there is (currently) no
GNUPro manual. However, the GNUPro source archive contains
documentation for the tools. This documentation is usually also included as
part of a default Red Hat Linux installation, accessible with the info program.

eCos Documentation
The eCos documentation set includes Getting Started with eCos, the eCos User’s
Guide, the eCos Reference Manual, and a GNUPro Reference Manual for your
specific architecture.

For users of the eCos Net releases, these are available online in HTML format at
http://sourceware.cygnus.com/ecos/.
20 ■ Getting Started with eCos eCos

http://www.redhat.com/support/manuals/gnupro.html
http://sourceware.cygnus.com/ecos/
http://sourceware.cygnus.com/ecos/

eCos Net Release
Package Contents

eCos Net Release
The eCos Net release consists of the archive files for GNUPro and eCos, which are
located on the Red Hat eCos web site

http://sourceware.cygnus.com/ecos/

The eCos Net release, because it is digitally distributed only, does not provide ROM
images for the various development boards. However, the ROM images for the
supported hardware platforms are included in the distribution, so you can burn your
own ROM/Flash ICs to work with eCos.

HTML versions of the GNUPro and eCos manuals are included in the distribution,
and are also available online.

eCos Developers’ Kit
If you have a CD distribution of the eCos Developer’s Kit, you will find the following
items in your package:

■ A card to request printed eCos documentation (Getting Started with eCos, the
eCos User’s Guide, and the eCos Reference Manual), and the complete GNUPro
documentation suite, including an eCos-specific reference manual for your
architecture.

With the card you can also request a copy of µITRON 3.0 An Open and Portable
Real-Time Operating System for Embedded Systems, a book by Dr. Ken

4

eCos Getting Started with eCos ■ 21

http://sourceware.cygnus.com/ecos/
http://sourceware.cygnus.com/ecos/

VR4300 Package
Sakamura.

■ eCos version 1.3.1 CDROM with source code and precompiled binaries.

VR4300 Package
The VR4300 package contains an eCos-specific PROM for the NEC VRC4373
evaluation board.
22 ■ Getting Started with eCos eCos

Required
System Requirements

Required
■ Standard Intel architecture PC running Linux (tested on Red Hat Linux

distributions 5.0-6.1). Other versions of Red Hat distributions, or Linux
distributions from other vendors should work as well. Also, English or Japanese
versions of Microsoft Windows NT version 4.0 (service pack 3 or above must be
installed), Windows 95, Windows 98, or Windows 2000.

Sun workstation running Solaris 2.5.1 or later for the SPARC .

Support for any platform except for Windows NT 4.0 and Solaris 2.5.1 is beta. In
particular, it is only possible to rebuild the GNUPro compiler toolchain on
Windows NT 4.0, Solaris 2.5.1, and Linux.

■ Enough disk space for the installed distribution. The eCos installation process will
detail the various components of eCos and the GNUPro toolkit that can be
installed, and their disk space requirements.

■ 64MB of RAM and a 350MHz or faster Pentium processor.

If you are downloading the eCos Net Release distribution from Red Hat’s
Sourceware site, you will also need space to store that image and to compile
GNUPro and eCos from source.

If you will be using the NEC VRC4373 evaluation board, you will also need:

■ One (16550 based) serial port on the PC

■ NEC4373 evaluation board with eCos “GDB stubs” ROM installed.

5

eCos Getting Started with eCos ■ 23

Recommended
■ Straight-thru cable to connect the serial port on the PC to the serial I/O connector
J1 on the evaluation board

If you will be using the Linux synthetic target, you will also need:

■ An ix86 PC with an installed Linux distribution (tested with Red Hat Linux
distributions 5.0 - 6.1).

Recommended
■ We recommend that Windows NT users install Internet Explorer 4.0 or later, since

this will allow the Configuration Tool’s documentation panel to be searchable.

■ A Pentium II computer and 64MB or more of RAM are recommended for best
build performance.

The system has been tested only in the recommended configuration above, although
other configurations are expected to work.
24 ■ Getting Started with eCos eCos

How to Report Problems
Reporting Problems

Reporting bugs and other problems is very important: it allows Red Hat to solve your
problem quickly, and improves the eCos product. The effort you make in reporting
problems is appreciated.

To submit a problem report, please use the web interface. If you have a CD
distribution of the eCos Developer’s Kit, you should use the address:

http://support.cygnus.com.

You will need a login name and an ID, provided by your administrator.

If you are using the eCos Net release you should use the address

http://sourceware.cygnus.com/ecos/problemreport.html.

Known Bugs in eCos and GNUPro
Before filing and bug reports, however, please read the README provided with this
release. It describes known problems and possible workarounds in eCos or with the
GNUPro Toolkit. The file is at the base of the distribution.

How to Report Problems
For documentation discussing the means to report on, edit and query problems, see the
following Accessing Red Hat Web Support to report problems, or Additional options
in this chapter.

6

eCos Getting Started with eCos ■ 25

http://support.cygnus.com
http://sourceware.cygnus.com/ecos/problemreport.html

Accessing Red Hat Web Support to Report Problems
This documentation serves only as a guide and it is not meant to supercede the Help
documentation on the Web Support site. We have tried to make our software as
trouble-free as possible. If you do encounter problems, we’d like to diagnose and fix
the problem as quickly as possible.

Accessing Red Hat Web Support to Report Problems
If you have a CD distribution, use the following instructions to access the Red Hat
Support website.

■ Use the following URL in your web browser’s address or location dialog box.

 http://support.cygnus.com

■ Click on the Case Management System icon, enter your ID and password, and the
Welcome page will be displayed.

Access the Welcome page at any time by using the Welcome link (in the
navigation bar on the left side of each Web Support page).

If you have the CD distribution, your details will have been entered in the
database, and will be displayed on the Welcome page. If you wish to alter these
details, select the Profile link in the navigation bar on the left side of the page.

■ Use the links included in the navigation bar on the left side of the page to perform
any of the following Red Hat Web Support activities.

❒ New Case (see Submitting a support request, and the Red Hat Support
website)

❒ Query Case (see Additional options, and the Red Hat Support website)

❒ Add Notes (see Additional options, and the Red Hat Support website)

❒ Find Solutions (see Additional options, and the Red Hat Support website)

❒ Profile (see Additional options, and the Red Hat Support website)

❒ Help documentation see Additional options, and the Red Hat Support
website)

❒ Close Case (see Additional options, and the Red Hat Support website)

Submitting a Support Request
Use the following instructions to submit a support request, once you have a valid ID
established.

■ Click on New Case to create a new reported problem case.

The New Case page allows you to complete the creation of a new case. If there is
more than one site, select the site relating to your problem.

■ Click on Use This Site ID button to display a list of the relevant products.
26 ■ Getting Started with eCos eCos

http://support.cygnus.com
http://support.cygnus.com/

Additional Options
■ Select a product from the list and then click on the Create Case for Selected
Product button.

Each customer has a valid list of parts of Red Hat products for which they can
submit problem reports. These components are part of the Web Support database.

■ Type a brief description of the case in the Case Title field. You can enter up to
80 characters in this field.

■ Select a case type from the Type drop-down menu that best describes the case.

■ Select a customer severity level from the Severity drop-down menu that best
describes how severe you view this problem.

■ Select a case priority level from the Priority drop-down menu that best
describes the priority of this case to Red Hat.

■ Type a complete description of your case in the Problem Description field.

Use the scrollbars to scroll text in this field. You can add up to 30 kilobytes of text
in this field.

■ Click on the Create Case button at the bottom of the page to create the case in the
Red Hat Web Support database. Alternatively, clear the input fields on the New
Case page, using the Clear button.

After you create your case, the Case Details page displays, which includes the Case ID
number that the support database assigns to your case.

To create a new case for a different site and/or part, click the New Case link in the
navigation bar; then use the previous instructions.

Additional Options
The following documentation discusses the other features for the Red Hat Web
Support site. Red Hat has a database to help in determining when problems developed,
tracking the problems case from their first report through analysis and resolution. The
database can also be used for correlation with other products as well as to other related
problems.

■ Click on Query Case to find an existing problem case in our database.

You may examine problem cases in the Red Hat Web Support database, searching
by solution ID or by entering keywords and/or a key phrase. There are options on
this page enabling you to control how your search works.

At this point, view a problem case’s details, check its status, add notes or close a
problem.

■ Click on Add Notes to add additional data to an existing case in our database.
eCos Getting Started with eCos ■ 27

Additional Options
■ Click on Find Solutions to search for problem solutions in the database. The
search will provide a list of the current problem cases in the Red Hat Web Support
database.

■ Click on Profile to change your profile information and/or your Web Support
password in our database. A Profile page wil be displayed.

■ Click on Help for questions about using the Web Support page. The online help
documentation for the Web Support site supercedes this guide; it is not meant to
supercede the more updated Help documentation for the Web Support site.

■ Click on Close Case link to close a case. Closing a case brings the problem to its
resolution.

Updating your profile
Clicking on Profile allows you to enter the following details.

■ Your contact name

■ The primary phone number where Red Hat Support can contact you

■ FAX number Red Hat Support can use to send you information

■ Your e-mail address

■ Your site ID, used to identify your primary site in the Web Support database
(a Red Hat representative will provide this information)

■ Your site name
28 ■ Getting Started with eCos eCos

Additional Options
Part II: Installation Guide
eCos Getting Started with eCos ■ 29

Software Installation on Windows
Software Installation

Software Installation on Windows
If you have a CD distribution of the eCos Developer’s Kit, you have received the eCos
software and its supporting utilities on a single CDROM for installation on a PC-
compatible computer running Windows NT 4.0, Windows 95, or Windows 98. If you
use NT you must apply the NT 4.0 Service Pack 3 or above before installing eCos.
Support is only for Windows NT 4.0. Installations on other Windows platforms are
beta.

The following components are provided on the eCos CDROM:

■ eCos source code

■ Prebuilt eCos libraries and tests

■ eCos documentation

■ Red Hat GNUPro compiler toolchain for eCos source code compilation

■ Red Hat Cygwin environment: this product provides a POSIX compatibility layer
on top of Windows NT, and supports the GNUPro tools on Windows NT.

■ The GNU user tools—a collection of utilities that developers, particularly those
with a UNIX background, will find useful. However, they are not supported by
Red Hat.

■ Documentation for the GNUPro tools, including a Reference Manual for the
particular evaluation board being used to run eCos.

7

30 ■ Getting Started with eCos eCos

Software Installation on UNIX
If you have obtained the Net release of eCos for Windows, you will have the
distribution in a self-extracting archive. Apart from the difference in medium, the
installation procedure for eCos itself will be the same as for the CDROM-based
distribution.

The software installation process involves a number of installation utilities. Some
familiarity with Windows is assumed.

1. Invoke the file Setup.exe on the CDROM. This will start the installation
procedure. If you have the autorun feature enabled, Windows will run Setup.exe
automatically when the CDROM is inserted into the drive.

2. The setup program will offer to install the GNU user tools. Click Ok.

3. You will be prompted for a path in which to install the GNU user tools. The
default will be in the /cygnus/gnupro/i686-cygwin32/i686-cygwin32
hierarchy (usually on drive C). It will then offer to install the source code and
documentation for the GNU user tools. It is recommended that you install the
documentation, but not the source code, unless you are interested in modifying or
recompiling the GNU user tools.

4. At this point the setup program will begin installing eCos. Click Ok.

5. The default path offered for eCos installation will be in the /Program Files/Red
Hat hierarchy (usually on drive C). You may change this path, and indeed you
will need to change it if that partition does not have sufficient free disk space
available. It is recommended that you accept the default selection of software
components for installation.

6. You will be asked to select the program folder under which the eCos menu items
will be placed. The default folder name is Red Hat eCos.

7. The installation should finish normally, offering to show you the README file that
contains any last minute information and a list of known problems detected after
this document was printed. Once the installation is finished, you can start eCos or
view the online documentation by selecting Start -> Programs -> Red Hat eCos,
and then choosing an option within this folder, e.g Configuration Tool, Package
Administration Tool, etc.

At this point you are ready to configure and build a customized eCos kernel as
described in “Configuring and Building eCos from Source” on page 44.

Software Installation on UNIX
Installation and build instructions for the eCos Net release are available on the Red
Hat eCos web site http://sourceware.cygnus.com/ecos/
eCos Getting Started with eCos ■ 31

http://sourceware.cygnus.com/ecos/

Software Installation on UNIX
Users of the eCos Developer’s Kit under UNIX should use the following instructions,
which assume that the CD-ROM is available at /cdrom/cdrom0.

1. Extract the eCos repository from the compressed tar archive ecos-131.taz,
located in the root directory of the CD-ROM using the following commands:

mkdir /usr/local
cd /usr/local
zcat < /cdrom/cdrom0/ecos-131.taz | tar xvf -

On completion, the eCos repository may be found in the directory /usr/local/
ecos-1.3.1.

2. Extract the eCos development tools from the compressed tar archive tool-
bin.taz, located in the root directory of the CD-ROM, using the following
commands:

mkdir /usr/cygnus
cd /usr/cygnus
zcat < /cdrom/cdrom0/tool-bin.taz | tar xvf -

On completion, the executable files of the eCos development tools may be found
in the directory /usr/cygnus/ecos-DEVTOOLSVERSION/H-host-triplet/bin.
The source code for the development tools may optionally be installed in the same
way:

$ zcat < /cdrom/cdrom0/tool-src.taz | tar xvf -

3. Add the eCos development tools and any native tools supporting the eCos build
process to the front of your path. Under Solaris, for example, you should modify
the PATH environment variable as follows.

Using sh, ksh, or bash:

$ PATH=/usr/cygnus/ecos-99r1-991015/H-sparc-sun-solaris2.5/bin:/
usr/xpg4/bin:/usr/ucb:$PATH
$ export PATH

Using csh or tcsh:

Note that csh also requires the shell command "rehash" after modifying the path
for the path change to take effect.

% setenv PATH /usr/cygnus/ecos-99r1-991015/H-sparc-sun-solaris2.5/
bin:/usr/xpg4/bin:/usr/ucb:$PATH
32 ■ Getting Started with eCos eCos

http://sourceware.cygnus.com/ecos/

Software Installation on UNIX
At this point you are ready to configure and build a customized eCos kernel as
shown in “Configuring and Building eCos from Source” on page 44.

NOTE The order of directories in the PATH is very important, and build failures may
result if the PATH is not set correctly. If you are having difficulties in
building eCos, please make sure you have set the PATH exactly as above.
eCos Getting Started with eCos ■ 33

Connecting To A Target Via Serial
Target Setup

Connecting To A Target Via Serial
While eCos supports a variety of targets, communication with the targets happens in
one of four ways. These are descibed in general below.

The descriptions are followed by descriptions of each target, providing specific details
of how to set up the target (if hardware) and the necessary communication information
(such as baud rate for hardware targets, or special connection options for simulator
targets).

Most targets will have eCos GDB stubs or CygMon installed. These normally wait for
GDB to connect at 38400 baud, using 8 data bit, no parity bit and 1 stop-bit (no
hardware flow control). Check the section for your target to ensure it uses this speed.
If not, adjust the following instructions accordingly.

The following instructions depend on you to select the appropriate serial port on the
host - the serial port which connects to the target’s (primary) serial port. On Linux this
could be /dev/ttyS0, while the same port on Windows would be named COM1, or
/dev/ttya on Solaris. Substitute the proper serial port name in the below.

Connect to the target by issuing the following commands in GDB console mode:
(gdb) set remotebaud 38400
(gdb) set mips-force-32bit-saved-gpregs
(gdb) target remote /dev/ttyS0

In Insight, connect by opening the File->Target Settings... window and enter:
Target: Remote/Serial
Baud Rate: 38400
Port: /dev/ttyS0

8

34 ■ Getting Started with eCos eCos

Connecting To A Target Via Ethernet
You will also need to open the GDB console window with View->Console and enter
“set mips-force-32bit-saved-gpregs” at the prompt

Set other options according to preference, close the window and select
Run->Connect to target.

Connecting To A Target Via Ethernet
Some targets allow GDB to connect via Ethernet - if so, it will be mentioned in the
section describing the target. Substitute the target’s assigned IP address or hostname
for <hostname> in the following. The <port> is the TCP port which the eCos GDB
stub or CygWin is listening on. It is also listed in the section describing the target.

Connect to the target by issuing the following command in GDB console mode:
(gdb) target remote <hostname>:<port>

In Insight, connect by opening the File->Target Settings... window and enter:
Target: Remote/TCP
Hostname: <hostname>
Port: <port>

Set other options according to preference, close the window and select
Run->Connect to target.

Connecting To A Simulator Target
GDB connects to all simulator targets using the same basic command, although each
simulator may require additional options. These are listed in the section describing the
target, and should be used when connecting.

Connect to the target by issuing the following command in GDB console mode:
(gdb) target sim [target specific options]

In Insight, connect by opening the File->Target Settings... window and enter:
Target: Simulator
Options: [target specific options]

Set other options according to preference, close the window and select
Run->Connect to target.
eCos Getting Started with eCos ■ 35

Connecting To A Synthetic Target
Connecting To A Synthetic Target
Synthetic targets are special in that the built tests and applications actually run as
native applications on the host. This means that there is no target to connect to - the
test or application can be run directly from the GDB console using:
(gdb) run

or from Insight by pressing the Run icon. There is therefore no need to connect to the
target or download the application, so you should ignore GDB “target” and “load”
commands in any instructions found in other places in the documentation.

 VR4300 Hardware Setup

The eCos Developer’s Kit package comes with an EPROM which provides GDB
support for the NEC VRC4373 evaluation board. An image of this EPROM is also
provided at loaders/vr4300-vrc4373/gdbload.bin under the root of your eCos
installation.

The EPROM is installed to socket U12 on the board. Attention should be paid to the
correct orientation of the EPROM during installation. Only replace the board's
existing ROM using a proper PLCC extraction tool, as the socket would otherwise risk
getting damaged.

The GDB stub in the EPROM allows communication with GDB using the serial port
at connector J1. The communication parameters are fixed at 38400 baud, 8 data bits,
no parity bit and 1 stop bit (8-N-1). No flow control is employed. Connection to the
host computer should be made using a straight-through serial cable.

i386/Linux Synthetic Target Setup
When building for the synthetic Linux target, the resulting binaries are native Linux
applications with the HAL providing suitable bindings between the eCos kernel and
the Linux kernel.
NOTE: Please be aware that the current implementation of the Linux synthetic target

does not allow thread-aware debugging.

These Linux applications cannot be run on a Windows system. However, it is possible
to write a similar HAL emulation for the Windows kernel if such a testing target is
desired.
36 ■ Getting Started with eCos eCos

Tools
Tools
For the synthetic target, eCos relies on features not available in native compilers
earlier than gcc-2.95.1. It also requires version 2.9.5 or later of the GNU linker. If you
have gcc-2.95.1 or later and ld version 2.9.5 or later, then you do not need to build
new tools. eCos does not support earlier versions. You can check the compiler version
using gcc -v or egcs -v, and the linker version using ld -v.

If you have native tools that are sufficiently recent for use with eCos, you should be
aware that by default eCos assumes that the tools i686-pc-linux-gnu-gcc, i686-pc-
linux-gnu-ar, i686-pc-linux-gnu-ld, and i686-pc-linux-gnu-objcopy are on your
system and are the correct versions for use with eCos. But instead, you can tell eCos to
use your native tools by editting the configuration value "Global command prefix"
(CYGBLD_GLOBAL_COMMAND_PREFIX) in your eCos configuration. If left
empty (i.e. set to the empty string) eCos will use your native tools when building.

If you have any difficulties, it is almost certainly easiest overall to rebuild the tools as
described on:

http://sourceware.cygnus.com/ecos/getstart.html
eCos Getting Started with eCos ■ 37

http://sourceware.cygnus.com/ecos/getstart.html

Tools
Running Applications on the
Target

To verify both that a hardware target is properly set up, and that the GDB commands
used to connect to the target (hardware, simulator or synthetic) work properly on your
system, you will now be guided through “downloading” and executing a prebuilt
eCos test. The procedure is exactly the same when you want to download and run
applications or tests that you have built yourself.

On Windows you must have the bash command line interpreter running with some
environment variables which are useful for eCos work. If you have purchased the
eCos Developer’s Kit, you can select this by selecting Start->Programs->Red Hat
eCos->eCos Development Environment. If you are using the eCos Net release, you
should set the environment variables as shown in the GNUPro Toolkit Reference
Manual. On Linux, simply open a new shell window.

You will need to change directory to the prebuilt tests that are provided in the eCos
installation. Change directory as follows:
for the VR4300-based NEC VRC4373 board:
 $ cd BASE_DIR/prebuilt/vrc4373/tests/kernel/v1_3_1/tests
for the i386-based Linux synthetic target:
 $ cd BASE_DIR/prebuilt/linux/tests/kernel/v1_3_1/tests

To execute the thread_gdb test case on the desired target, run GDB in command line
mode using the following command, remembering to substitute the appropriate name
for the architecture’s gdb:
$ gdb -nw thread_gdb

9

38 ■ Getting Started with eCos eCos

http://sourceware.cygnus.com/ecos/getstart.html

Tools
GDB will display a copyright banner and then display a prompt (gdb). Connect to the
target according to the instructions given earlier (in “Target Setup” on page 34) - via
serial or ethernet to hardware targets, or directly for simulator and synthetic targets.

Depending on the target type, you will be notified about a successful connection, and
possibly see some output informing you of the current program counter of the target.

Now download the test - effectively loading the test case executable into the memory
of the target - by typing this command:
(gdb) load

Again, depending on the target, you may see some output describing how much data
was downloaded, and at what speed. Next, start the test case running. For hardware
targets this is done with the ‘continue’ command, while ‘run’ must be used on
simulators and synthetic targets:
(gdb) continue

 or
(gdb) run

You should now see a number of text messages appear, such as:
PASS:<GDB Thread test OK>
EXIT:<done>

NOTE eCos has no concept of the application exiting. All eCos test cases complete
and then run in a continuous tight loop. To return control to GDB you must
stop the application.

The usual method of stopping an application is with Ctrl+C, but Ctrl+C may not
work on your platform for the prebuilts. First, make default tests and check that they
work the same way as prebuilts, then modify your config to enable GDB stubs (if
applicable) and break support, so that a Ctrl+C character will interrupt the
application.

Another way to stop the application is by means of a breakpoint. Before running the
application, breakpoint cyg_test_exit() to stop an eCos test case at its end.

The full functionality of GDB is now available to you, including breakpoints and
watchpoints. Please consult the GNUPro GDB documentation for further information.
eCos Getting Started with eCos ■ 39

Tools
Part III: Programming Tutorial
40 ■ Getting Started with eCos eCos

The Development Process
Programming with eCos

The remaining chapters of this document compromise a simple tutorial for
configuring and building eCos, building and running eCos tests, and finally building
three stand-alone example programs which use the eCos API to perform some simple
tasks.

You will need a properly installed eCos system, with the accompanying versions of
the GNUPro tools. On Windows you will be using the bash command line interpreter
that comes with Cygwin, with the environment variables set as described in the
GNUPro documentation.

The Development Process
Most development projects using eCos would contain some (or most) of the
following:

eCos Configuration
eCos is configured to provide the desired API (the inclusion of libc, uitron, and the
disabling certain undesired funtions, etc.), and semantics (selecting scheduler, mutex
behavior, etc.). See “Configuring and Building eCos from Source” on page 44.

It would normally make sense to enable eCos assertion checking at this time as well,
to catch as many programming errors during the development phase as possible.

Note that it should not be necessary to spend much time on eCos configuration
initially. It may be important to perform fine tuning to reduce the memory footprint
and to improve performance when the product reaches a testable state.

10
eCos Getting Started with eCos ■ 41

The Development Process
 Integrity check of the eCos configuration
While Red Hat strive to thoroughly test eCos, the vast number of configuration
permutations mean that the particular configuration parameters used for your project
may not have been tested.

Therefore, we advise running all the eCos tests after the project’s eCos configuration
has been determined. See “Test Suites” on page 56.

Obviously, this should be repeated if the configuration changes later on in the
development process.

 Application Development - Target Neutral Part
While your project is probably targeting a specific architecture and platform, possibly
custom hardware, part of the application development may be possible to do using
simulated or synthetic targets.

There are two primary reasons for doing this:

■ It may be possible (to some extent) to perform application development in parallel
with the design/implementation of the target hardware, thus providing more time
for developing and testing functionality, and reducing time-to-market.

■ The build-run-debug-cycle may be faster when the application does not have to be
downloaded to a target via a serial interface. Debugging is also likely to be more
responsive when not having to communicate with a stub via serial. And finally, it
also removes the need for manually or automatically resetting the target hardware.

This is possible to do since all targets (including simulators and synthetic ones)
provide the same basic API: that is, kernel, libc, libm, uitron, infra, and to some
extent, HAL and IO.

Synthetic targets are especially suitable as they allow you to jury-rig simulations of
elaborate devices by interaction with the host system, where an IO device API can
hide the details from the application. When switching to hardware later in the
development cycle, the IO driver is properly implemented. While this is possible to
do, and has been done, it is not specifically documented or supported by Red Hat. It
may become so later.

Therefore, select a simulator or synthetic target and use it for as long as possible doing
application development. That is, configure for the selected target, build eCos, build
the application and link with eCos, run and debug. Repeat the latter two steps.

Obviously, at some time you will have to switch to the intended target hardware, for
example when adding target specific feature support, for memory footprint/
performance characterization, and for final tuning of eCos and the application.
42 ■ Getting Started with eCos eCos

The Development Process
 Application Development - Target Specific Part
Repeat the build-run-debug-cycle while performing final tuning and debugging of
application. Remember to disable eCos assertion checking, as it reduces performance.

It may be a useful to switch between this and the previous step repeatedly through the
development process; use the simulator/synthetic target for actual development, and
use the target hardware to continually check memory footprint and performance.
There should be little cost in switching between the two targets when using two
separate build trees.
eCos Getting Started with eCos ■ 43

eCos Start-up Configurations
Configuring and Building eCos
from Source

This chapter documents the configuration of eCos, using the ARM PID board as an
example. The process is the same for any of the other supported targets: you may
select a hardware target (if you have a board available), any one of the simulators, or a
synthetic target (if your host platform has synthetic target support).

At the end of the chapter is a section describing special issues for this architecture
which may affect the way you should configure eCos for your target.

eCos Start-up Configurations
There are various ways to download an executable image to a target board, and these
involve different ways of preparing the executable image. In the eCos Hardware
Abstraction Layer (HAL package) there are configuration options to support the
different download methods. The following table summarizes the ways in which an
eCos image can be prepared for different types of download.

Table 1: Configuration for various download methods

11

Download method HAL configuration

Burn hardware ROM ROM start-up

Download to ROM emulator ROM start-up
44 ■ Getting Started with eCos eCos

Using the Configuration Tool on Windows
CAUTION You cannot run an application configured for RAM start-up on the simulator
directly: it will fail during start-up. You can only download it to the simulator
if :

■ you are already running CygMon (or a GDB stub) in the simulator, as
described in the GNUPro documentation

NOTE Configuring eCos’ HAL package for simulation should rarely be needed for
real development; binaries built with such a kernel will not run on target
boards at all. The main use for a “simulation” configuration is if you are
trying to work around problems with the device drivers or with the simulator.

If your chosen architecture does not have simulator support, then the
combinations above that refer to the simulator do not apply. Similarly, if your
chosen platform does not have CygMon or GDB stub ROM support, the
combinations listed above that use CygMon or GDB stub ROMs do not apply.

The debugging environment for most developers will be either a hardware board or
the simulator, in which case they will be able to select a single HAL configuration.

More information on the interactions between CygMon, the simulators, and GDB’s
thread-aware debugging features is available in the GNUPro Reference Manual for
your specific architecture.

Using the Configuration Tool on
Windows

 Note that the use of the Configuration Tool is described in detail in the eCos User’s
Guide.

The Configuration Tool (see Figure 1) has five main elements: the configuration
window, the properties window, the short description window, the memory layout
window, and the output window.

Download to board with CygMon or
GDB stub ROM

RAM start-up

Download to simulator without CygMon
or GDB stub ROM

ROM start-up

Download to simulator with CygMon RAM start-up

Download to simulator ignoring devices SIM configuration

Run synthetic target RAM start-up

Download method HAL configuration
eCos Getting Started with eCos ■ 45

Using the Configuration Tool on Windows
Figure 1: Configuration Tool

Start by opening the templates window via Build->Templates. Select the desired
target (see Figure 2).

Figure 2: Template selection
46 ■ Getting Started with eCos eCos

Using the Configuration Tool on Windows
Make sure that the configuration is correct for the target in terms of endianness, CPU
model, Startup type, etc. (see Figure 3).

Figure 3: Configuring for the target

Next, select the Build->Library menu item to start building eCos (see Figure 4).

Figure 4: Selecting the build Library menu item
eCos Getting Started with eCos ■ 47

Using the Configuration Tool on Windows
The Save As dialog box will appear, asking you to specify a directory in which to
place your save file. You can use the default, but it is a good idea to make a
subdirectory, called ecos-work for example.

Figure 5: Build dialog

The first time you build an eCos library for a specific architecture, the Configuration
Tool may prompt you for the location of the appropriate build tools (including make
and gcc) using a Build Tools dialog box (as shown in Figure 6, page 48). You can
select a location from the drop down list, browse to the directory using the Browse
button, or type in the location of the build tools manually.

Figure 6: Build tools dialog

The Configuration Tool may also prompt you for the location of the user tools (such
as cat and ls) using a User Tools dialog box (as shown in Figure 7, page 49). As with
the Build Tools dialog, you can select a location from the drop down list, browse to
the directory using the Browse button, or type in the location of the user tools
manually.
48 ■ Getting Started with eCos eCos

Using the Configuration Tool on Windows
Figure 7: User tools dialog

When the tool locations have been entered, the Configuration Tool will configure the
sources, prepare a build tree, and build the libtarget.a library, which contains the eCos
kernel and other packages.

The output from the configuration process and the building of libtarget.a will be
shown in the output window.

Once the build process has finished you will have a kernel with other packages in
libtarget.a. You should now build the eCos tests for your particular configuration.

You can do this by selecting Build -> Tests. Notice that you could have selected Tests
instead of Library in the earlier step and it would have built both the library and the
tests, but this would increase the build time substantially, and if you do not need to
build the tests it is unnecessary.

Figure 8: Selecting the build tests menu item

“Test Suites” on page 56 will guide you through running one of the test cases you just
built on the selected target, using GDB.
eCos Getting Started with eCos ■ 49

Using ecosconfig on UNIX
Using ecosconfig on UNIX
On UNIX systems the Configuration Tool is not yet available, but it is still possible
to configure and build a kernel by editing a configuration file manually and using the
ecosconfig command.

Before invoking ecosconfig you need to choose a directory in which to work. For the
purposes of this tutorial, the default path will be BASE_DIR/ecos-work. Create this
directory and change to it by typing:
$ mkdir BASE_DIR/ecos-work
$ cd BASE_DIR/ecos-work

It is also necessary to specify the location of the source repository:
$ ECOS_REPOSITORY=/opt/ecos/ecos-1.3.1/packages
$ export ECOS_REPOSITORY

for sh/ksh/bash users; or
% setenv ECOS_REPOSITORY BASE_DIR/packages

for csh/tcsh users.

Finally, make sure the tools necessary to build eCos are available from your PATH.

For tools installed with the eCos packages (ecosconfig and ser_filter) - the default
RPM installation path is shown - replace as necessary:
$ PATH=/opt/ecos/ecos-1.3.1/tools/bin:$PATH

For the path for the compiler and debugger tools, the path used in the build
instructions is used - replace with the actual path you chose:
$ PATH=/install/H-i686-pc-linux-gnu/bin:$PATH
$ export PATH

csh/tsch users should do this instead:
% set PATH /opt/ecos/ecos-1.3.1/tools/bin:$path
% set PATH /install/H-i686-pc-linux-gnu/bin:$path

To see what options can be used with ecosconfig, type:
$ ecosconfig --help

The available packages, targets and templates may be listed as follows:
$ ecosconfig list

Here is sample output from ecosconfig showing the usage message.

Table 2: Getting help from ecosconfig
$ ecosconfig --help
Usage: ecosconfig [qualifier ...] [command]

commands are:
list : list repository contents
new TARGET [TEMPLATE [VERSION]] : create a configuration
target TARGET : change the target hardware
template TEMPLATE [VERSION] : change the template
50 ■ Getting Started with eCos eCos

Using ecosconfig on UNIX
add PACKAGE [PACKAGE ...] : add package(s)
remove PACKAGE [PACKAGE ...] : remove package(s)
version VERSION PACKAGE [PACKAGE ...] : change version of package(s)
export FILE : export minimal config info
import FILE : import additional config info
check : check the configuration
resolve : resolve conflicts
tree : create a build tree

qualifiers are:
--config=FILE : the configuration file
--prefix=DIRECTORY : the install prefix
--srcdir=DIRECTORY : the source repository

 --no-resolve : disable conflict resolution
--version : show version and copyright

$

Table 3: ecosconfig output — list of available packages, targets and
templates

$ ecosconfig list
Package CYGPKG_CYGMON (CygMon support via eCos):
 aliases: cygmon
 versions: v1_3_1
Package CYGPKG_DEVICES_WALLCLOCK (Wallclock device code):
 aliases: wallclock devices_wallclock device_wallclock
 versions: v1_3_1
Package CYGPKG_DEVICES_WATCHDOG (Watchdog device code):
 aliases: watchdog devices_watchdog device_watchdog
 versions: v1_3_1
Package CYGPKG_ERROR (Common error code support):
 aliases: error errors
 versions: v1_3_1
Package CYGPKG_HAL (eCos common HAL):
 aliases: hal hal_common
 versions: v1_3_1
Package CYGPKG_HAL_ARM (ARM common HAL):
 aliases: hal_arm arm_hal arm_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_ARM_AEB (ARM evaluation board (AEB-1)):
 aliases: hal_arm_aeb arm_aeb_hal
 versions: v1_3_1
Package CYGPKG_HAL_ARM_CMA230 (Cogent CMA230/222 board):
 aliases: hal_arm_cma230 arm_cma230_hal
 versions: v1_3_1
Package CYGPKG_HAL_ARM_EBSA285 (Intel EBSA285 StrongARM board):
 aliases: hal_arm_ebsa285 arm_ebsa285_hal
 versions: v1_3_1
Package CYGPKG_HAL_ARM_EDB7XXX (Cirrus Logic development board):
 aliases: hal_arm_edb7xxx arm_edb7xxx_hal
 versions: v1_3_1
Package CYGPKG_HAL_ARM_PID (ARM development board (PID)):
 aliases: hal_arm_pid arm_pid_hal
 versions: v1_3_1
Package CYGPKG_HAL_I386 (i386 common HAL):
 aliases: hal_i386 i386_hal i386_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_I386_LINUX (Linux synthetic target):
 aliases: hal_i386_linux
eCos Getting Started with eCos ■ 51

Using ecosconfig on UNIX
 versions: v1_3_1
Package CYGPKG_HAL_I386_PC (i386 PC target):
 aliases: hal_i386_pc
 versions: v1_3_1
Package CYGPKG_HAL_MIPS (MIPS common HAL):
 aliases: hal_mips mips_hal mips_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_MIPS_SIM (MIPS simulator):
 aliases: hal_mips_sim mips_sim_hal
 versions: v1_3_1
Package CYGPKG_HAL_MIPS_TX39 (TX39 chip HAL):
 aliases: hal_tx39 tx39_hal tx39_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_MIPS_TX39_JMR3904 (Toshiba JMR-TX3904 board):
 aliases: hal_tx39_jmr3904 tx39_jmr3904_hal
 versions: v1_3_1
Package CYGPKG_HAL_MIPS_VR4300 (VR4300 chip HAL):
 aliases: hal_vr4300 vr4300_hal vr4300_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_MIPS_VR4300_VRC4373 (NEC VRC4373 board):
 aliases: hal_vrc4373 vrc4373_hal
 versions: v1_3_1
Package CYGPKG_HAL_MN10300 (MN10300 common HAL):
 aliases: hal_mn10300 mn10300_hal mn10300_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_MN10300_AM31 (MN10300 AM31 variant HAL):
 aliases: hal_mn10300_am31 mn10300_am31_hal
 versions: v1_3_1
Package CYGPKG_HAL_MN10300_AM31_SIM (MN10300 simulator):
 aliases: hal_mn10300_sim mn10300_sim_hal
 versions: v1_3_1
Package CYGPKG_HAL_MN10300_AM31_STDEVAL1 (Matsushita stdeval1 board):
 aliases: hal_mn10300_stdeval1 mn10300_stdeval1_hal
 versions: v1_3_1
Package CYGPKG_HAL_MN10300_AM33 (MN10300 AM33 variant HAL):
 aliases: hal_mn10300_am33 mn10300_am33_hal
 versions: v1_3_1
Package CYGPKG_HAL_MN10300_AM33_STB (Matsushita STB board):
 aliases: hal_mn10300_am33_stb mn10300_am33_stb_hal
 versions: v1_3_1
Package CYGPKG_HAL_POWERPC (PowerPC common HAL):
 aliases: hal_powerpc powerpc_hal powerpc_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_POWERPC_COGENT (Cogent CMA286/287 board):
 aliases: hal_powerpc_cogent powerpc_cogent_hal
 versions: v1_3_1
Package CYGPKG_HAL_POWERPC_FADS (Motorola MPC8xxFADS board):
 aliases: hal_powerpc_fads powerpc_fads_hal
 versions: v1_3_1
Package CYGPKG_HAL_POWERPC_MBX (Motorola MBX860/821 board):
 aliases: hal_powerpc_mbx powerpc_mbx_hal
 versions: v1_3_1
Package CYGPKG_HAL_POWERPC_MPC8xx (PowerPC 8xx variant HAL):
 aliases: hal_mpc8xx mpc8xx_hal mpc8xx_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_POWERPC_PPC60x (PowerPC 60x variant HAL):
 aliases: hal_ppc60x ppc60x_hal ppc60x_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_POWERPC_SIM (PowerPC simulator):
52 ■ Getting Started with eCos eCos

Using ecosconfig on UNIX
 aliases: hal_powerpc_sim powerpc_sim_hal
 versions: v1_3_1
Package CYGPKG_HAL_QUICC (Motorola MBX860/821 QUICC support):
 aliases: hal_quicc quicc_hal quicc
 versions: v1_3_1
Package CYGPKG_HAL_SH (SH common HAL):
 aliases: hal_sh sh_hal sh_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_SH_EDK7708 (Hitachi SH7708 board):
 aliases: hal_sh_edk sh_edk_hal
 versions: v1_3_1
Package CYGPKG_HAL_SPARCLITE (SPARClite common HAL):
 aliases: hal_sparclite sparclite_hal sparclite_arch_hal
 versions: v1_3_1
Package CYGPKG_HAL_SPARCLITE_SIM (SPARClite simulator):
 aliases: hal_sparclite_sim sparclite_sim_hal
 versions: v1_3_1
Package CYGPKG_HAL_SPARCLITE_SLEB (Fujitsu MB86800-MA01 board):
 aliases: hal_sparclite_sleb sparclite_sleb_hal
 versions: v1_3_1
Package CYGPKG_INFRA (Infrastructure):
 aliases: infra
 versions: v1_3_1
Package CYGPKG_IO (I/O sub-system):
 aliases: io
 versions: v1_3_1
Package CYGPKG_IO_PCI (PCI configuration library):
 aliases: io_pci
 versions: v1_3_1
Package CYGPKG_IO_SERIAL (Serial device drivers):
 aliases: serial io_serial
 versions: v1_3_1
Package CYGPKG_KERNEL (eCos kernel):
 aliases: kernel
 versions: v1_3_1
Package CYGPKG_LIBC (C library):
 aliases: libc clib clibrary
 versions: v1_3_1
Package CYGPKG_LIBM (Math library):
 aliases: libm mathlib mathlibrary
 versions: v1_3_1
Package CYGPKG_UITRON (uITRON compatibility):
 aliases: uitron
 versions: v1_3_1
Target aeb (ARM evaluation board (AEB-1)):
 aliases: aeb1
Target am31_sim (MN10300 AM31 minimal simulator):
 aliases:
Target cma230 (Cogent CMA230/222 board):
 aliases: cma222
Target cma28x (Cogent CMA286/287 board):
 aliases: cma286 cma287
Target ebsa285 (Intel EBSA285 StrongARM board):
 aliases: ebsa
Target edb7xxx (Cirrus Logic development board):
 aliases: edb7211 eb7xxx eb7211
Target fads (Motorola MPC8xxFADS board):
 aliases:
Target jmr3904 (Toshiba JMR-TX3904 board):
eCos Getting Started with eCos ■ 53

Selecting a Target
 aliases: jmr tx39
Target linux (Linux synthetic target):
 aliases:
Target mbx (Motorola MBX860/821 board):
 aliases: mbx860 mbx821
Target pc (i386 PC target):
 aliases:
Target pid (ARM development board (PID)):
 aliases: PID
Target psim (PowerPC simulator):
 aliases: ppc_sim powerpc_sim
Target sh7708 (Hitachi SH7708 board):
 aliases: edk7708
Target sleb (Fujitsu MB86800-MA01 board):
 aliases:
Target sparclite_sim (SPARClite simulator):
 aliases: sl_sim sparcl_sim
Target stb (Matsushita STB board):
 aliases:
Target stdeval1 (Matsushita stdeval1 board):
 aliases:
Target tx39_sim (TX39 minimal simulator):
 aliases:
Target vrc4373 (NEC VRC4373 board):
 aliases:
Template all:
 versions: v1_3_1
Template cygmon:
 versions: v1_3_1
Template default:
 versions: v1_3_1
Template kernel:
 versions: v1_3_1
Template minimal:
 versions: v1_3_1
Template stubs:
 versions: v1_3_1
Template uitron:
 versions: v1_3_1

For detailed information about how to edit the ecos.ecc file, see the CDL Writer’s
Guide.

Selecting a Target
To configure for a listed target, type:
$ ecosconfig new <target>

For example, to configure for the ARM PID development board, type:
$ ecosconfig new pid

Then edit the generated file, ecos.ecc, setting the options as required for the target
(endianess, CPU model, Startup type, etc.)

Create a build tree for the configured target by typing:
$ ecosconfig tree
54 ■ Getting Started with eCos eCos

Architectural Notes
You can now run the command make or make tests, after which you will be at the
same point you would be after running the Configuration Tool on Windows— you
can start developing your own applications, following the steps in “Building and
Running Sample Applications” on page 59.

The procedure shown above allows you to do very coarse-grained configuration of the
eCos kernel: you can select which packages to include in your kernel, and give target
and start-up options. But you cannot select components within a package, or set the
very fine-grained options.

To select fine-grained configuration options you will need to edit the configuration
file ecos.ecc in the current directory and regenerate the build tree.

CAUTION

■ You should follow the manual configuration process described above very
carefully, and you should read the comments in each file to see when one option
depends on other options or packages being enabled or disabled. If you do not,
you might end up with an inconsistently configured kernel which could fail to
build or might execute incorrectly.

Architectural Notes
There are no notes for this architecture.
eCos Getting Started with eCos ■ 55

Architectural Notes
Test Suites

The eCos kernel and other packages have test suites that rigorously exercise the
available features and confirm correct execution. The tests are run on many different
possible configurations, but the high number of configuration permutations makes it
impossible to test them all. The use of test suites is particularly important for
embedded systems, where software robustness is a priority. All eCos software is
tested prior to shipping, but if you define your own configuration, you will probably
want to verify that the test cases work for it.

This release includes test suites for the eCos kernel, kernel C API, C library, µITRON
compatibility, and device driver packages. The use of the test suites is similar for all
packages. The tests are supplied as source code for building with your specific eCos
configurations. The test case source code is located under the base source directory
BASE_DIR/packages/:

■ compat/uitron/v1_3_1/tests

■ hal/common/v1_3_1/tests

■ io/serial/v1_3_1/tests

■ devs/wallclock/v1_3_1/tests

■ devs/watchdog/v1_3_1/tests

■ kernel/v1_3_1/tests

■ language/c/libc/v1_3_1/tests

■ language/c/libm/v1_3_1/tests

 There may be additional tests found in other packages.

12
56 ■ Getting Started with eCos eCos

Using the Configuration Tool
Each test suite consists of a number of test cases which can be executed individually.
A test case may involve one or more individual tests of the package’s features.
Successful completion of each test within the test case is reported as a line of text that
is sent to the diagnostic channel (usually the serial port) for display on a terminal or
terminal emulator.

Each test case runs only once and usually requires target hardware to be reset on
completion. Note that certain test cases may not terminate immediately, especially if
they involve delays and run on a target simulator.

Using the Configuration Tool
Using the eCos Configuration Tool it is possible to automate the downloading and
execution of tests with the appropriately configured eCos packages. To do so, compile
and link the test cases by using the Build->Tests menu item, after which the tests can
be downloaded and executed by selecting Tools->Run Tests.

When a test run is invoked, a resizable property sheet is displayed, comprising three
tabs: Executables, Output and Summary.

Three buttons appear on the property sheet itself: Run/Stop, Close and Properties.

The Run button is used to initiate a test run. Those tests selected on the Executables
tab are run, and the output recorded on the Output and Summary tabs. During the
course of a run, the Run button changes to Stop. This button may be used to interrupt
a test run at any point.

See the eCos User’s Guide for further details.

Using the command line
At the moment, there is no tool for automating testing on Linux, so you will have to
run the tests manually.

It may also be necessary to run tests by hand if the automated tool finds any failing
tests: it may be necessary to diagnose the problem by debugging the test.

Build the tests by typing ‘make tests’ in the root of the build directory. This will cause
the tests to be built and installed under <install-path>/tests/.

Running the test manually is done simply by invoking GDB, connecting to the target,
downloading the test, optionally setting some breakpoints, and then running the test.
All this was covered in “Target Setup” on page 34.
eCos Getting Started with eCos ■ 57

Testing Filters
Testing Filters
While most test cases today run solely in the target environment, some packages may
require external testing infrastructure and/or feedback from the external environment
to do complete testing.

The serial package is an example of this. It is the first package to require external
testing infrastructure, but it will certainly not be the last.

Since the serial line is also used for communication with GDB, a filter is inserted in
the communication pathway between GDB and the serial device which is connected to
the hardware target. The filter forwards all communication between the two, but also
listens for special commands embedded in the data stream from the target.

When such a command is seen, the filter stops forwarding data to GDB from the
target and enters a special mode. In this mode the test case running on the target is able
to control the filter, commanding it to run various tests. While these tests run, GDB is
isolated from the target.

As the test completes (or if the filter detects a target crash) the communication path
between GDB and the hardware target is re-established, allowing GDB to resume
control.

In theory, it is possible to extend the filter to provide a generic framework for other
target-external testing components, thus decoupling the testing infrastructure from the
(possibly limited) communication means provided by the target (serial, JTAG,
Ethernet, etc).

Another advantage is that the host tools will not need to know about the various
testing environments required by the eCos packages, since all contact with the target
will continue to happen via GDB.

It remains to be seen if it will be possible, or sensible, to implement all target-external
testing infrastructure via filters.
58 ■ Getting Started with eCos eCos

eCos Hello World
Building and Running Sample
Applications

The example programs in this tutorial are included, along with a Makefile, in the
examples directory of the eCos distribution. The first program you will run is a hello
world-style application, then you will run a more complex application that
demonstrates the creation of threads and the use of cyg_thread_delay(), and
finally you will run one that uses clocks and alarm handlers.

The Makefile has two variables you will need to adjust: PKG_INSTALL_DIR and
XCC.

Edit the Makefile, setting PKG_INSTALL_DIR to the install tree previously created by
ecosconfig and uncommenting the relevant XCC line for your architecture.

eCos Hello World
The following code is found in the file hello.c in the examples directory:

eCos hello world program listing
/* this is a simple hello world program */
#include <stdio.h>
int main(void)
{
 printf("Hello, eCos world!\n");
 return 0;
}

13
eCos Getting Started with eCos ■ 59

A Sample Program with Two Threads
To compile this or any other program that is not part of the eCos distribution, you can
follow the procedures described below. Type this explicit compilation instruction
(assuming your current working directory is also where you built the eCos kernel):
$ gcc -g -IBASE_DIR/ecos-work/install/include hello.c -LBASE_DIR/
ecos-work/install/lib -Ttarget.ld -nostdlib

The compilation instruction above contains some standard GCC options (for example,
-g enables debugging), as well as some mention of paths (-IBASE_DIR/ecos-work/
install/include allows files like cyg/kernel/kapi.h to be found, and -
LBASE_DIR/ecos-work/install/lib allows the linker to find -Ttarget.ld).

The executable program will be called a.out.
NOTE Some target systems require special options to be passed to gcc to compile

correctly for that system. Please examine the Makefile in the examples
directory to see if this applies to your target.

You can now run the resulting program in the simulator using GDB the way you ran
the test case. The procedure will be the same, but this time run "gdb" specifying "-nw
a.out" on the command line:
$ gdb -nw a.out

For targets other than the synthetic linux target, you should now run the usual GDB
commands described earlier. Once this is done, typing the command "run" at the (gdb)
prompt ("continue" for real hardware) will allow the program to execute and print the
string "Hello, eCos world!" on your screen.

On the synthetic linux target, you may use the "run" command immediately - you do
not need to invoke simulator macros, nor the "load" command.

A Sample Program with Two
Threads

Below is a program that uses some of eCos’ system calls. It creates two threads, each
of which goes into an infinite loop in which it sleeps for a while (using
cyg_thread_delay()). This code is found in the file twothreads.c in the
examples directory.

eCos two-threaded program listing
#include <cyg/kernel/kapi.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

/* now declare (and allocate space for) some kernel objects,
 like the two threads we will use */
cyg_thread thread_s[2];/* space for two thread objects */
60 ■ Getting Started with eCos eCos

A Sample Program with Two Threads
char stack[2][4096];/* space for two 4K stacks */

/* now the handles for the threads */
cyg_handle_t simple_threadA, simple_threadB;

/* and now variables for the procedure which is the thread */
cyg_thread_entry_t simple_program;

/* and now a mutex to protect calls to the C library */
cyg_mutex_t cliblock;

/* we install our own startup routine which sets up threads */
void cyg_user_start(void)
{
 printf("Entering twothreads’ cyg_user_start() function\n");

 cyg_mutex_init(&cliblock);

 cyg_thread_create(4, simple_program, (cyg_addrword_t) 0,
"Thread A", (void *) stack[0], 4096,
&simple_threadA, &thread_s[0]);

 cyg_thread_create(4, simple_program, (cyg_addrword_t) 1,
"Thread B", (void *) stack[1], 4096,
&simple_threadB, &thread_s[1]);

 cyg_thread_resume(simple_threadA);
 cyg_thread_resume(simple_threadB);
}

/* this is a simple program which runs in a thread */
void simple_program(cyg_addrword_t data)
{
 int message = (int) data;
 int delay;

 printf("Beginning execution; thread data is %d\n", message);

 cyg_thread_delay(200);

 for (;;) {
 delay = 200 + (rand() % 50);

 /* note: printf() must be protected by a
 call to cyg_mutex_lock() */
 cyg_mutex_lock(&cliblock); {
 printf("Thread %d: and now a delay of %d clock ticks\n",
message, delay);

 }
 cyg_mutex_unlock(&cliblock);
 cyg_thread_delay(delay);
 }
}

When you run the program (by typing run at the (gdb) prompt) the output should look
like this:
Starting program: BASE_DIR/examples/twothreads.exe
Entering twothreads’ cyg_user_start() function
eCos Getting Started with eCos ■ 61

A Sample Program with Two Threads
Beginning execution; thread data is 0
Beginning execution; thread data is 1
Thread 0: and now a delay of 240 clock ticks
Thread 1: and now a delay of 225 clock ticks
Thread 1: and now a delay of 234 clock ticks
Thread 0: and now a delay of 231 clock ticks
Thread 1: and now a delay of 224 clock ticks
Thread 0: and now a delay of 249 clock ticks
Thread 1: and now a delay of 202 clock ticks
Thread 0: and now a delay of 235 clock ticks

NOTE When running in a simulator the delays might be quite long. On a hardware
board (where the clock speed is 100 ticks/second) the delays should average
to about 2.25 seconds. In simulation, the delay will depend on the speed of the
processor and will almost always be much slower than the actual board. You
might want to reduce the delay parameter when running in simulation.

Figure 9, page 63 shows how this multitasking program executes. Note that apart from
the thread creation system calls, this program also creates and uses a mutex for
synchronization between the printf() calls in the two threads. This is because the
C library standard I/O (by default) is configured not to be thread-safe, which means
that if more than one thread is using standard I/O they might corrupt each other. This
is fixed by a mutual exclusion (or mutex) lockout mechanism: the threads do not call
printf() until cyg_mutex_lock() has returned, which only happens when the
other thread calls cyg_mutex_unlock().

You could avoid using the mutex by configuring the C library to be thread-safe (by
selecting the component CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS). Keep in mind
that if the C library is thread-safe, you can no longer use printf() in
cyg_user_start().
62 ■ Getting Started with eCos eCos

A Sample Program with Two Threads
Figure 9: Two threads with simple print statements after random delays
eCos Getting Started with eCos ■ 63

A Sample Program with Alarms
More Features — Clocks and
Alarm Handlers

If a program wanted to execute a task at a given time, or periodically, it could do it in
an inefficient way by sitting in an infinite loop and checking the real-time clock to see
if the proper amount of time has elapsed. But operating systems usually provide
system calls which allow the program to be interrupted at the desired time.

eCos provides a rich timekeeping formalism, involving counters, clocks, alarms, and
timers. The precise definition, relationship, and motivation of these features is beyond
the scope of this tutorial, but these examples illustrate how to set up basic periodic
tasks.

Alarms are events that happen at a given time, either once or periodically. A thread
associates an alarm handling function with the alarm, so that the function will be
invoked every time the alarm “goes off”.

A Sample Program with Alarms
simple-alarm.c (in the examples directory) is a short program that creates a thread
that creates an alarm. The alarm is handled by the function test_alarm_func(),
which sets a global variable. When the main thread of execution sees that the variable
has changed, it prints a message.

14
64 ■ Getting Started with eCos eCos

A Sample Program with Alarms
Table 4: A sample program that creates an alarm
 /* this is a very simple program meant to demonstrate
 a basic use of time, alarms and alarm-handling functions
 in eCos */

#include <cyg/kernel/kapi.h>

#include <stdio.h>

#define NTHREADS 1
#define STACKSIZE 4096

static cyg_handle_t thread[NTHREADS];

static cyg_thread thread_obj[NTHREADS];
static char stack[NTHREADS][STACKSIZE];

static void alarm_prog(cyg_addrword_t data);

/* we install our own startup routine which sets up
 threads and starts the scheduler */
void cyg_user_start(void)
{
 cyg_thread_create(4, alarm_prog, (cyg_addrword_t) 0,
"alarm_thread", (void *) stack[0],
STACKSIZE, &thread[0], &thread_obj[0]);

 cyg_thread_resume(thread[0]);
}

/* we need to declare the alarm handling function (which is
 defined below), so that we can pass it to
 cyg_alarm_initialize() */
cyg_alarm_t test_alarm_func;

/* alarm_prog() is a thread which sets up an alarm which is then
 handled by test_alarm_func() */
static void alarm_prog(cyg_addrword_t data)
{
 cyg_handle_t test_counterH, system_clockH, test_alarmH;
 cyg_tick_count_t ticks;
 cyg_alarm test_alarm;
 unsigned how_many_alarms = 0, prev_alarms = 0, tmp_how_many;

 system_clockH = cyg_real_time_clock();
 cyg_clock_to_counter(system_clockH, &test_counterH);
 cyg_alarm_create(test_counterH, test_alarm_func,
(cyg_addrword_t) &how_many_alarms,
&test_alarmH, &test_alarm);

 cyg_alarm_initialize(test_alarmH, cyg_current_time()+200, 200);

 /* get in a loop in which we read the current time and
 print it out, just to have something scrolling by */
 for (;;) {
 ticks = cyg_current_time();
 printf("Time is %llu\n", ticks);
 /* note that we must lock access to how_many_alarms, since the
 alarm handler might change it. this involves using the
 annoying temporary variable tmp_how_many so that I can keep the
eCos Getting Started with eCos ■ 65

A Sample Program with Alarms
 critical region short */
 cyg_scheduler_lock();
 tmp_how_many = how_many_alarms;
 cyg_scheduler_unlock();
 if (prev_alarms != tmp_how_many) {
 printf(" --- alarm calls so far: %u\n", tmp_how_many);
 prev_alarms = tmp_how_many;
 }
 cyg_thread_delay(30);
 }
}

/* test_alarm_func() is invoked as an alarm handler, so
 it should be quick and simple. in this case it increments
 the data that is passed to it. */
void test_alarm_func(cyg_handle_t alarmH, cyg_addrword_t data)
{
 ++*((unsigned *) data);
}

When you run this program (by typing run at the (gdb) prompt) the output should
look like this:

Starting program: BASE_DIR/examples/simple-alarm.exe
Time is 0
Time is 30
Time is 60
Time is 90
Time is 120
Time is 150
Time is 180
Time is 210
 --- alarm calls so far: 1
Time is 240
Time is 270
Time is 300
Time is 330
Time is 360
Time is 390
Time is 420
 --- alarm calls so far: 2
Time is 450
Time is 480

NOTE When running in a simulator the delays might be quite long. On a hardware
board (where the clock speed is 100 ticks/second) the delays should average
to about 0.3 seconds (and 2 seconds between alarms). In simulation, the delay
will depend on the speed of the processor and will almost always be much
slower than the actual board. You might want to reduce the delay parameter
when running in simulation.

Here are a few things you might notice about this program:

■ It used the cyg_real_time_clock(); this always returns a handle to the
default system real-time clock.
66 ■ Getting Started with eCos eCos

A Sample Program with Alarms
■ Alarms are based on counters, so the function cyg_alarm_create() uses a
counter handle. The program used the function cyg_clock_to_counter()
to strip the clock handle to the underlying counter handle.

■ Once the alarm is created it is initialized with cyg_alarm_initialize(),
which sets the time at which the alarm should go off, as well as the period for
repeating alarms. It is set to go off at the current time and then to repeat every 200
ticks.

■ The alarm handler function test_alarm_func() conforms to the guidelines
for writing alarm handlers and other delayed service routines: it does not invoke
any functions which might lock the scheduler. This is discussed in detail in the
eCos Reference Manual, in the chapter Requirements for programs.

■ There is a critical region in this program: the variable how_many_alarms is
accessed in the main thread of control and is also modified in the alarm handler.
To prevent a possible (though unlikely) race condition on this variable, access to
how_many_alarms in the principal thread is protected by calls to
cyg_scheduler_lock() and cyg_scheduler_unlock(). When the
scheduler is locked, the alarm handler will not be invoked, so the problem is
averted.
eCos Getting Started with eCos ■ 67

A Sample Program with Alarms
68 ■ Getting Started with eCos eCos

Appendixes
eCos Getting Started with eCos ■ 69

Sample numbers:
Appendix 1: Real-time
characterization

For a discussion of real-time performance measurement for eCos, see the eCos Users’
Guide.

Sample numbers:

Board: NEC VR4373

CPU : NEC VR4300 133MHz

Startup, main stack : stack used 1304 size 3576
Startup : Interrupt stack used 980 size 4096
Startup : Idlethread stack used 494 size 2552

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 6.49 microseconds (431 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 16
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Alarms: 32
70 ■ Getting Started with eCos eCos

CPU : NEC VR4300 133MHz
 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 17.21 16.18 22.14 0.88 75% 68% Create thread
 0.84 0.78 1.29 0.10 81% 81% Yield thread [all suspended]
 0.90 0.62 3.20 0.35 87% 87% Suspend [suspended] thread
 0.74 0.65 1.16 0.12 81% 68% Resume thread
 1.11 0.90 1.70 0.25 75% 68% Set priority
 0.11 0.05 0.35 0.09 75% 75% Get priority
 2.93 2.24 8.27 0.78 93% 75% Kill [suspended] thread
 0.88 0.78 1.92 0.16 93% 81% Yield [no other] thread
 1.82 1.20 4.71 0.62 87% 62% Resume [suspended low prio] thread
 0.70 0.63 0.86 0.09 68% 68% Resume [runnable low prio] thread
 1.21 1.07 1.61 0.13 81% 68% Suspend [runnable] thread
 0.86 0.78 1.58 0.13 81% 81% Yield [only low prio] thread
 0.69 0.62 0.84 0.09 68% 68% Suspend [runnable->not runnable]
 2.64 2.24 4.35 0.43 81% 62% Kill [runnable] thread
 1.50 1.07 5.82 0.56 93% 87% Destroy [dead] thread
 3.66 2.75 7.74 0.82 50% 56% Destroy [runnable] thread
 13.65 8.33 27.88 3.70 50% 43% Resume [high priority] thread
 2.04 1.89 3.32 0.15 46% 49% Thread switch

 0.19 0.05 0.83 0.13 48% 44% Scheduler lock
 0.50 0.41 1.59 0.13 89% 73% Scheduler unlock [0 threads]
 0.52 0.41 1.29 0.14 89% 64% Scheduler unlock [1 suspended]
 0.56 0.41 1.49 0.15 42% 47% Scheduler unlock [many suspended]
 0.56 0.41 1.41 0.15 43% 47% Scheduler unlock [many low prio]

 0.57 0.20 2.33 0.27 65% 50% Init mutex
 0.89 0.75 3.35 0.20 96% 75% Lock [unlocked] mutex
 0.90 0.74 4.38 0.25 96% 93% Unlock [locked] mutex
 0.77 0.65 2.63 0.17 96% 75% Trylock [unlocked] mutex
 0.66 0.59 1.16 0.10 75% 75% Trylock [locked] mutex
 0.07 0.00 0.45 0.09 75% 75% Destroy mutex
 7.95 7.71 9.49 0.19 50% 46% Unlock/Lock mutex

 1.04 0.81 3.44 0.27 93% 68% Create mbox
 0.10 0.02 0.57 0.11 71% 68% Peek [empty] mbox
 1.15 0.83 4.71 0.31 53% 71% Put [first] mbox
 0.10 0.02 0.57 0.12 68% 68% Peek [1 msg] mbox
 1.01 0.83 3.83 0.22 93% 75% Put [second] mbox
 0.09 0.02 0.57 0.10 71% 71% Peek [2 msgs] mbox
 1.03 0.81 5.02 0.27 96% 87% Get [first] mbox
 0.93 0.81 1.61 0.14 84% 62% Get [second] mbox
 1.07 0.77 4.18 0.23 68% 50% Tryput [first] mbox
 0.89 0.72 3.49 0.21 93% 71% Peek item [non-empty] mbox
 1.04 0.83 4.09 0.26 90% 81% Tryget [non-empty] mbox
 0.79 0.68 1.97 0.15 87% 68% Peek item [empty] mbox
 0.84 0.72 2.36 0.17 93% 68% Tryget [empty] mbox
 0.13 0.02 0.59 0.13 87% 62% Waiting to get mbox
 0.13 0.02 0.90 0.13 90% 62% Waiting to put mbox
 0.93 0.77 3.23 0.21 90% 71% Delete mbox
 4.74 4.51 8.80 0.32 93% 78% Put/Get mbox

 0.50 0.21 1.95 0.29 90% 50% Init semaphore
 0.86 0.57 2.87 0.29 93% 56% Post [0] semaphore
 1.01 0.74 3.62 0.28 93% 56% Wait [1] semaphore
 0.87 0.60 3.17 0.28 90% 59% Trywait [0] semaphore
eCos Getting Started with eCos ■ 71

CPU : NEC VR4300 133MHz
 0.74 0.62 1.70 0.14 93% 56% Trywait [1] semaphore
 0.36 0.11 1.11 0.26 65% 56% Peek semaphore
 0.25 0.12 1.19 0.14 93% 56% Destroy semaphore
 7.85 7.52 8.93 0.21 62% 43% Post/Wait semaphore

 0.90 0.44 3.08 0.29 65% 28% Create counter
 0.07 0.05 0.89 0.05 96% 96% Get counter value
 0.06 0.05 0.33 0.02 96% 96% Set counter value
 0.88 0.86 1.62 0.05 96% 96% Tick counter
 0.13 0.12 0.41 0.02 96% 96% Delete counter

 1.37 0.81 2.95 0.27 62% 25% Create alarm
 1.35 1.17 6.03 0.31 96% 93% Initialize alarm
 0.11 0.08 0.65 0.05 90% 90% Disable alarm
 1.23 1.14 3.05 0.15 93% 87% Enable alarm
 0.21 0.18 0.47 0.04 90% 90% Delete alarm
 1.03 0.99 2.11 0.07 96% 96% Tick counter [1 alarm]
 4.96 4.96 4.96 0.00 100% 100% Tick counter [many alarms]
 1.70 1.67 2.51 0.05 96% 96% Tick & fire counter [1 alarm]
 26.39 26.38 26.71 0.02 96% 96% Tick & fire counters [>1 together]
 5.65 5.64 5.91 0.02 96% 96% Tick & fire counters [>1 separately]
 2.55 2.38 9.86 0.19 96% 54% Alarm latency [0 threads]
 5.37 3.80 9.73 0.95 50% 34% Alarm latency [2 threads]
 8.79 5.83 16.12 1.29 57% 14% Alarm latency [many threads]

 5.85 2.26 16.24 0.00 Clock/interrupt latency

 1540 1536 1544 (main stack: 1664) Thread stack used (2552 total)
All done, main stack : stack used 1664 size 3576
All done : Interrupt stack used 312 size 4096
All done : Idlethread stack used 1440 size 2552

Timing complete - 23810 ms total

PASS:<Basic timing OK>
EXIT:<done>
72 ■ Getting Started with eCos eCos

RED HAT ECOS PUBLIC LICENSE Version 1.1
 Appendix 2: eCos Licensing

RED HAT ECOS PUBLIC LICENSE
Version 1.1
1. DEFINITIONS.

1.1. “Contributor” means each entity that creates or contributes to the
creation of Modifications.

1.2. “Contributor Version” means the combination of the Original Code, prior
Modifications used by a Contributor, and the Modifications made by that
particular Contributor.

1.3. “Covered Code” means the Original Code or Modifications or the
combination of the Original Code and Modifications, in each case including
portions thereof.

1.4. “Electronic Distribution Mechanism” means a mechanism generally accepted
in the software development community for the electronic transfer of data.

1.5. “Executable” means Covered Code in any form other than Source Code.

1.6. “Initial Developer” means the individual or entity identified as the
Initial Developer in the Source Code notice required by Exhibit A.

1.7. “Larger Work” means a work which combines Covered Code or portions
thereof with code not governed by the terms of this License.

1.8. “License” means this document.

1.9. “Modifications” means any addition to or deletion from the substance or
structure of either the Original Code or any previous Modifications. When
Covered Code is released as a series of files, a Modification is:

A. Any addition to or deletion from the contents of a file containing Original
Code or previous Modifications.

B. Any new file that contains any part of the Original Code or previous
Modifications.

1.10. “Original Code” means Source Code of computer software code which is
described in the Source Code notice required by Exhibit A as Original Code,
and which, at the time of its release under this License is not already
Covered Code governed by this License.
eCos Getting Started with eCos ■ 73

RED HAT ECOS PUBLIC LICENSE Version 1.1
1.11. “Source Code” means the preferred form of the Covered Code for making
modifications to it, including all modules it contains, plus any associated
interface definition files, scripts used to control compilation and
installation of an Executable, or a list of source code differential
comparisons against either the Original Code or another well known, available
Covered Code of the Contributor’s choice. The Source Code can be in a
compressed or archival form, provided the appropriate decompression or de-
archiving software is widely available for no charge.

1.12. “You” means an individual or a legal entity exercising rights under, and
complying with all of the terms of, this License or a future version of this
License issued under Section 6.1. For legal entities, “You” includes any
entity which controls, is controlled by, or is under common control with You.
For purposes of this definition, “control” means (a) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (b) ownership of fifty percent (50%) or more of the
outstanding shares or beneficial ownership of such entity.

1.13. “Red Hat Branded Code” is code that Red Hat distributes and/or permits
others to distribute under different terms than the Red Hat eCos Public
License. Red Hat’s Branded Code may contain part or all of the Covered Code.

2. SOURCE CODE LICENSE.

2.1. The Initial Developer Grant. The Initial Developer hereby grants You a
world-wide, royalty-free, non-exclusive license, subject to third party
intellectual property claims:

(a) to use, reproduce, modify, display, perform, sublicense and distribute the
Original Code (or portions thereof) with or without Modifications, or as part
of a Larger Work; and

(b) under patents now or hereafter owned or controlled by Initial Developer,
to make, have made, use and sell (“Utilize”) the Original Code (or portions
thereof), but solely to the extent that any such patent is reasonably
necessary to enable You to Utilize the Original Code (or portions thereof) and
not to any greater extent that may be necessary to Utilize further
Modifications or combinations.

2.2. Contributor Grant. Each Contributor hereby grants You a world-wide,
royalty-free, non-exclusive license, subject to third party intellectual
property claims:

(a) to use, reproduce, modify, display, perform, sublicense and distribute the
Modifications created by such Contributor (or portions thereof) either on an
unmodified basis, with other Modifications, as Covered Code or as part of a
Larger Work; and

(b) under patents now or hereafter owned or controlled by Contributor, to
Utilize the Contributor Version (or portions thereof), but solely to the
extent that any such patent is reasonably necessary to enable You to Utilize
the Contributor Version (or portions thereof), and not to any greater extent
that may be necessary to Utilize further Modifications or combinations.

3. DISTRIBUTION OBLIGATIONS.

3.1. Application of License. The Modifications which You create or to which You
contribute are governed by the terms of this License, including without
limitation Section 2.2. The Source Code version of Covered Code may be
74 ■ Getting Started with eCos eCos

RED HAT ECOS PUBLIC LICENSE Version 1.1
distributed only under the terms of this License or a future version of this
License released under Section 6.1, and You must include a copy of this
License with every copy of the Source Code You distribute. You may not offer or
impose any terms on any Source Code version that alters or restricts the
applicable version of this License or the recipients rights hereunder.
However, You may include an additional document offering the additional rights
described in Section 3.5.

3.2. Availability of Source Code. Any Modification which You create or to which
You contribute must be made available in Source Code form under the terms of
this License via an accepted Electronic Distribution Mechanism to anyone to
whom you made an Executable version available and to the Initial Developer;
and if made available via Electronic Distribution Mechanism, must remain
available for at least twelve (12) months after the date it initially became
available, or at least six (6) months after a subsequent version of that
particular Modification has been made available to such recipients. You are
responsible for ensuring that the Source Code version remains available even
if the Electronic Distribution Mechanism is maintained by a third party. You
are responsible for notifying the Initial Developer of the Modification and
the location of the Source if a contact means is provided. Red Hat will be
acting as maintainer of the Source and may provide an Electronic Distribution
mechanism for the Modification to be made available. You can contact Red Hat
to make the Modification available and to notify the Initial Developer.

3.3. Description of Modifications. You must cause all Covered Code to which you
contribute to contain a file documenting the changes You made to create that
Covered Code and the date of any change. You must include a prominent
statement that the Modification is derived, directly or indirectly, from
Original Code provided by the Initial Developer and including the name of the
Initial Developer in (a) the Source Code, and (b) in any notice in an
Executable version or related documentation in which You describe the origin
or ownership of the Covered Code.

3.4. Intellectual Property Matters

(a) Third Party Claims. If You have knowledge that a party claims an
intellectual property right in particular functionality or code (or its
utilization under this License), you must include a text file with the source
code distribution titled “LEGAL” which describes the claim and the party
making the claim in sufficient detail that a recipient will know whom to
contact. If you obtain such knowledge after You make Your Modification
available as described in Section 3.2, You shall promptly modify the LEGAL
file in all copies You make available thereafter and shall take other steps
(such as notifying appropriate mailing lists or newsgroups) reasonably
calculated to inform those who received the Covered Code that new knowledge
has been obtained.

(b) Contributor APIs. If Your Modification is an application programming
interface and You own or control patents which are reasonably necessary to
implement that API, you must also include this information in the LEGAL file.

3.5. Required Notices. You must duplicate the notice in Exhibit A in each file
of the Source Code, and this License in any documentation for the Source Code,
where You describe recipients rights relating to Covered Code. If You created
one or more Modification(s), You may add your name as a Contributor to the
Source Code. If it is not possible to put such notice in a particular Source
Code file due to its structure, then you must include such notice in a location
(such as a relevant directory file) where a user would be likely to look for
such a notice. You may choose to offer, and to charge a fee for, warranty,
eCos Getting Started with eCos ■ 75

RED HAT ECOS PUBLIC LICENSE Version 1.1
support, indemnity or liability obligations to one or more recipients of
Covered Code. However, You may do so only on Your own behalf, and not on behalf
of the Initial Developer or any Contributor. You must make it absolutely clear
that any such warranty, support, indemnity or liability obligation is offered
by You alone, and You hereby agree to indemnify the Initial Developer and
every Contributor for any liability incurred by the Initial Developer or such
Contributor as a result of warranty, support, indemnity or liability terms You
offer.

3.6. Distribution of Executable Versions. You may distribute Covered Code in
Executable form only if the requirements of Section 3.1-3.5 have been met for
that Covered Code, and if You include a notice stating that the Source Code
version of the Covered Code is available under the terms of this License,
including a description of how and where You have fulfilled the obligations of
Section 3.2. The notice must be conspicuously included in any notice in an
Executable version, related documentation or collateral in which You describe
recipients rights relating to the Covered Code. You may distribute the
Executable version of Covered Code under a license of Your choice, which may
contain terms different from this License, provided that You are in compliance
with the terms of this License and that the license for the Executable version
does not attempt to limit or alter the recipients rights in the Source Code
version from the rights set forth in this License. If You distribute the
Executable version under a different license You must make it absolutely clear
that any terms which differ from this License are offered by You alone, not by
the Initial Developer or any Contributor. You hereby agree to indemnify the
Initial Developer and every Contributor for any liability incurred by the
Initial Developer or such Contributor as a result of any such terms You offer.
If you distribute executable versions containing Covered Code, you must
reproduce the notice in Exhibit B in the documentation and/or other materials
provided with the product.

3.7. Larger Works. You may create a Larger Work by combining Covered Code with
other code not governed by the terms of this License and distribute the Larger
Work as a single product. In such a case, You must make sure the requirements
of this License are fulfilled for the Covered Code.

4. INABILITY TO COMPLY DUE TO STATUTE OR REGULATION.

If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Code due to statute or regulation
then You must: (a) comply with the terms of this License to the maximum extent
possible; (b) cite the statute or regulation that prohibits you from adhering
to the license; and (c) describe the limitations and the code they affect.
Such description must be included in the LEGAL file described in Section 3.4
and must be included with all distributions of the Source Code. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it. You must submit this LEGAL file to Red Hat for review, and You
will not be able use the covered code in any means until permission is granted
from Red Hat to allow for the inability to comply due to statute or regulation.

5. APPLICATION OF THIS LICENSE.

This License applies to code to which the Initial Developer has attached the
notice in Exhibit A, and to related Covered Code.

Red Hat may include Covered Code in products without such additional products
becoming subject to the terms of this License, and may license such additional
products on different terms from those contained in this License. Red Hat may
76 ■ Getting Started with eCos eCos

RED HAT ECOS PUBLIC LICENSE Version 1.1
license the Source Code of Red Hat Branded Code without Red Hat Branded Code
becoming subject to the terms of this License, and may license Red Hat Branded
Code on different terms from those contained in this License. Contact Red Hat
for details of alternate licensing terms available.

6. VERSIONS OF THE LICENSE.

6.1. New Versions. Red Hat may publish revised and/or new versions of the
License from time to time. Each version will be given a distinguishing version
number.

6.2. Effect of New Versions. Once Covered Code has been published under a
particular version of the License, You may always continue to use it under the
terms of that version. You may also choose to use such Covered Code under the
terms of any subsequent version of the License published by Red Hat. No one
other than Red Hat has the right to modify the terms applicable to Covered Code
beyond what is granted under this and subsequent Licenses.

6.3. Derivative Works. If you create or use a modified version of this License
(which you may only do in order to apply it to code which is not already
Covered Code governed by this License), you must (a) rename Your license so
that the phrases “ECOS”, “eCos”, “Red Hat”, “RHEPL” or any confusingly similar
phrase do not appear anywhere in your license and (b) otherwise make it clear
that your version of the license contains terms which differ from the Red Hat
eCos Public License. (Filling in the name of the Initial Developer, Original
Code or Contributor in the notice described in Exhibit A shall not of
themselves be deemed to be modifications of this License.)

7. DISCLAIMER OF WARRANTY.

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN “AS IS” BASIS, WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, WARRANTIES THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE,
FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED
CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANY
OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS
DISCLAIMER.

8. TERMINATION.

This License and the rights granted hereunder will terminate automatically if
You fail to comply with terms herein and fail to cure such breach within 30
days of becoming aware of the breach. All sublicenses to the Covered Code
which are properly granted shall survive any termination of this License.
Provisions which, by their nature, must remain in effect beyond the
termination of this License shall survive.

9. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUDING
NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL THE INITIAL DEVELOPER, ANY OTHER
CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED CODE, OR ANY SUPPLIER OF ANY OF
SUCH PARTIES, BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR
MALFUNCTION, OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH
eCos Getting Started with eCos ■ 77

RED HAT ECOS PUBLIC LICENSE Version 1.1
PARTY SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS
LIMITATION OF LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY RESULTING FROM SUCH PARTY’S NEGLIGENCE TO THE EXTENT APPLICABLE LAW
PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THAT EXCLUSION AND
LIMITATION MAY NOT APPLY TO YOU.

10. U.S. GOVERNMENT END USERS.

The Covered Code is a “commercial item,” as that term is defined in 48 C.F.R.
2.101 (Oct. 1995), consisting of “commercial computer software” and
“commercial computer software documentation,” as such terms are used in 48
C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R.
227.7202-1 through 227.7202-4 (June 1995), all U.S. Government End Users
acquire Covered Code with only those rights set forth herein.

11. MISCELLANEOUS.

This License represents the complete agreement concerning subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. This License shall be governed by California law provisions
(except to the extent applicable law, if any, provides otherwise), excluding
its conflict-of-law provisions. With respect to disputes in which at least one
party is a citizen of, or an entity chartered or registered to do business in,
the United States of America: (a) unless otherwise agreed in writing, all
disputes relating to this License (excepting any dispute relating to
intellectual property rights) shall be subject to final and binding
arbitration, with the losing party paying all costs of arbitration; (b) any
arbitration relating to this Agreement shall be held in Santa Clara County,
California, under the auspices of JAMS/EndDispute; and (c) any litigation
relating to this Agreement shall be subject to the jurisdiction of the
Federal Courts of the Northern District of California, with venue lying in
Santa Clara County, California, with the losing party responsible for costs,
including without limitation, court costs and reasonable attorneys fees and
expenses. The application of the United Nations Convention on Contracts for
the International Sale of Goods is expressly excluded. Any law or regulation
which provides that the language of a contract shall be construed against the
drafter shall not apply to this License.

12. RESPONSIBILITY FOR CLAIMS.

Except in cases where another Contributor has failed to comply with Section
3.4, You are responsible for damages arising, directly or indirectly, out of
Your utilization of rights under this License, based on the number of copies
of Covered Code you made available, the revenues you received from utilizing
such rights, and other relevant factors. You agree to work with affected
parties to distribute responsibility on an equitable basis.

13. ADDITIONAL TERMS APPLICABLE TO THE RED HAT ECOS PUBLIC LICENSE.

Nothing in this License shall be interpreted to prohibit Red Hat from
licensing under different terms than this License any code which Red Hat
otherwise would have a right to license.

Red Hat and logo - This License does not grant any rights to use the trademark
Red Hat, the Red Hat logo, eCos logo, even if such marks are included in the
Original Code. You may contact Red Hat for permission to display the Red Hat
and eCos marks in either the documentation or the Executable version beyond
78 ■ Getting Started with eCos eCos

RED HAT ECOS PUBLIC LICENSE Version 1.1
that required in Exhibit B.

Inability to Comply Due to Contractual Obligation - To the extent that Red Hat
is limited contractually from making third party code available under this
License, Red Hat may choose to integrate such third party code into Covered
Code without being required to distribute such third party code in Source
Code form, even if such third party code would otherwise be considered
“Modifications” under this License.

EXHIBIT A.

The contents of this file are subject to the Red Hat eCos Public License
Version 1.1 (the “License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://
www.redhat.com

Software distributed under the License is distributed on an “AS IS” basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
the specific language governing rights and limitations under the License.

The Original Code is eCos - Embedded Configurable Operating System, released
September 30, 1998.

The Initial Developer of the Original Code is Red Hat. Portions created by Red
Hat are Copyright (C) 1998, 1999, 2000 Red Hat, Inc. All Rights Reserved.

EXHIBIT B.

Part of the software embedded in this product is eCos - Embedded Configurable
Operating System, a trademark of Red Hat. Portions created by Red Hat are
Copyright (C) 1998, 1999, 2000 Red Hat, Inc. (http://www.redhat.com) All
Rights Reserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY RED HAT AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
eCos Getting Started with eCos ■ 79

Rationale
Appendix 3: The eCos Copyright
Assignment Form, Revision 1.1

Rationale
This preamble describes how to use the standard eCos copyright assignment form.
The rationale behind this assignment is to avoid any possible confusion over the legal
ownership of eCos, and to indemnify Red Hat and all eCos users against copyright or
patent claims on contributed code used within eCos. Red Hat would be especially
vulnerable, but all users and their eCos based applications could be affected.

All contributions to eCos for which there are copyright assignments will be covered
by the Red Hat eCos public license. The license provides a guarantee that the
contribution will remain freely available to all.

This agreement gives Red Hat ownership of your changes but promises that you will
retain the right to use your contributed changes as you see fit.

Because employers often can claim ownership over things that employees write, you
may also have to get your employer to sign a disclaimer that says that they have no
claim to the changes you are contributing.

Please read everything, and if you have any questions, email

ecos-assign@redhat.com

for help.

Thanks for your contribution to eCos!

How to assign copyright
The way to assign copyright to Red Hat is to sign an assignment contract. This is what
makes Red Hat the legal copyright holder, so that Red Hat can register the copyright
on the new version.
80 ■ Getting Started with eCos eCos

Rationale
If you are employed as a programmer (even at a university), or have made an
agreement with your employer or school that gives them ownership of the software
you write, then Red Hat needs a signed letter from your employer disclaiming rights to
the contributed software.

The disclaimer should be printed on the company’s headed paper, and signed by an
officer of the company, or someone authorized to license the company’s intellectual
property. Here is an example of wording that can be used for this purpose:

<INSERT COMPANY NAME> hereby disclaims all copyright interest in the changes
and enhancements made by <INSERT YOUR NAME> to eCos, including any future
revisions of these changes and enhancements.

<INSERT COMPANY NAME> affirms that it has no other intellectual property
interest that would undermine this release, or the use of eCos, and will do nothing to
undermine it in the future.

<INSERT SIGNATURE OF OFFICER OF COMPANY>,
<INSERT DATE>
<INSERT PRINTED NAME OF OFFICER OF COMPANY>
<INSERT TITLE OF OFFICER>

If your employer says they do have an intellectual property claim that could conflict
with the use of the program, then please contact Red Hat to discuss possible next
steps.

Below is the usual assignment contract. You need to edit and replace <INSERT
NAME OF CONTRIBUTOR> with your full name. Please print a copy, sign, date,
and mail it to:

Legal Department (eCos Assignments)
Red Hat, Inc.
2600 Meridian Parkway
NC 27713
USA

Don’t forget to include the original signed copy of the employer’s disclaimer.

Please try to print the whole first page of the form on a single piece of paper. If it
doesn’t fit on one printed page, put it on two sides of a single piece of paper, and
attach the second page of the form. Please write the date using letters rather than
numbers to avoid any confusion due to international day/month ordering conventions.

Note: This text is also available in the eCos software distribution, in the file assign.txt.

 --------------------------------- Cut Here ----------------------------------

eCos ASSIGNMENT
eCos Getting Started with eCos ■ 81

Rationale
For good and valuable consideration, receipt of which I acknowledge, I,
<INSERT NAME OF CONTRIBUTOR>, hereby transfer to Red Hat, Inc. my entire
right, title, and interest (including all rights under copyright) in my
changes and enhancements to eCos, subject to the conditions below. These
changes and enhancements are herein called the “Work”. The Work hereby
assigned shall also include any future revisions of these changes and
enhancements hereafter made by me.

Upon thirty days prior written notice, Red Hat agrees to grant me non-
exclusive rights to use the Work (i.e. just my changes and enhancements, not
eCos as a whole) as I see fit; (and Red Hat’s rights shall otherwise continue
unchanged).

I hereby agree that if I have or acquire hereafter any patent or interface
copyright or other intellectual property interest dominating the software
enhanced by the Work (or use of that software), such dominating interest will
not be used to undermine the effect of this assignment, i.e. Red Hat and the
general public will be licensed to use, in that program and its derivative
works, without royalty or limitation, the subject matter of the dominating
interest. This license provision will be binding on my heirs, assignees, or
other successors to the dominating interest, as well as on me.

I hereby represent and warrant that I am the sole copyright holder for the Work
and that I have the right and power to enter into this contract. I hereby
indemnify and hold harmless Red Hat, its officers, employees, and agents
against any and all claims, actions or damages (including attorney’s
reasonable fees) asserted by or paid to any party on account of a breach or
alleged breach of the foregoing warranty. I make no other express or implied
warranty (including without limitation, in this disclaimer of warranty, any
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE).

Agreed: [signature]

 [Print Name]

 Date: [Please write using letters]

For Red Hat:

 Date:

 -------------------- Cut Here and print on separate page ---------------------

[Please print your name here]

[For the copyright registration, of what country are you a citizen?]

[In what year were you born?]

[Please write your email address here]
82 ■ Getting Started with eCos eCos

Rationale
[Please write your address here, so we can mail a signed copy of the agreement
back to you]

[Please write a brief description of the contribution]

[Which files have you changed so far, and which new files have you written so
far?]
eCos Getting Started with eCos ■ 83

Rationale
84 ■ Getting Started with eCos eCos

eCos Getting Started with eCos ■ 85

Index

Symbols
alarms 64, 67

initializing 67
chips, supported 13
clocks 64, 66
component definition language (CDL) 18
Configuration Tool 45
counters 67
CygWin 30
delayed service routines 67
Developer’s Kit

bundled with GNUPro Toolkit 19
package contents 21

device drivers
serial 19

disk space requirements 23
ecosconfig.tcl 50
examples

hello world program 59
pkgconf.tcl list of available options 50
pkgconf.tcl list of available targets 51
program that creates an alarm 65
two-threaded program 60

G++ 19
GCC 19

command notation 14
GDB 19

command notation 14
GNUPro Toolkit 19
Hardware Abstraction Layer (HAL) 16
hardware setup 34
host operating systems, supported 13
I/O library 19
installation instructions

UNIX 31
Windows 30

ISO C library 18
86 ■ Getting Started with eCos eCos

kernel, real-time
features 17

libraries
ISO C 18
math 18
standard I/O 19

Linux
i386 synthetic target
setup 36
system requirements 24

math library 18
measuring

sample numbers 70
mutex 62
Net site 19
packages 21
performance

sample numbers 70
pkgconf.tcl

available options 50
list of targets 51

problem reports, submitting 25
ROM monitor (CygMon)

images available 19
Running Applications on the Target 38
sample programs

hello.c 59
simple-alarm.c 64
twothreads.c 60

serial device drivers 19
simulator

delays, as compared with hardware 62, 66
software installation instructions

UNIX 31
Windows 30

Sourceware 31
supported

host operating systems 13
target microprocessors 13
target platforms 13

system performance
sample numbers 70

system requirements 23
target
eCos Getting Started with eCos ■ 87

selecting with pkgconf.tcl 54
supported microprocessors 13
supported platforms 13

UNIX
ecosconfig.tcl 50
software installation instructions 31

VR4300
hardware setup 36
package contents 22

VRC4373
system requirements
VRC4373 board 23

Windows
Configuration Tool 45
software installation instructions 30
88 ■ Getting Started with eCos eCos

	Getting Started with eCos‘
	Copying terms
	Trademarks

	Contents
	Foreword
	Documentation Roadmap
	Notation and Conventions
	Overview of the Release
	Package Contents
	System Requirements
	Reporting Problems
	Software Installation
	Target Setup
	Running Applications on the Target
	Programming with eCos
	Configuring and Building eCos from Source
	Test Suites
	Building and Running Sample Applications
	More Features — Clocks and Alarm Handlers
	Appendix 1: Real-time characterization
	Appendix 2: eCos Licensing
	Appendix 3: The eCos Copyright Assignment Form, Revision 1.1
	Index

